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Genetic studies have identified BIN1 as the second most
important risk locus associated with late-onset Alzheimer’s
disease (LOAD). However, it is unclear how mutation of this
locus mechanistically promotes Alzheimer’s disease (AD) pa-
thology. Here we show the consequences of two coding variants
in BIN1 (rs754834233 and rs138047593), both in terms of
intracellular beta-amyloid (iAbeta) accumulation and early
endosome enlargement, two interrelated early cytopathological
AD phenotypes, supporting their association with LOAD risk.
We previously found that Binl deficiency potentiates iAbeta
production by enabling BACE1 cleavage of the amyloid pre-
cursor protein in enlarged early endosomes due to decreased
BACE]1 recycling. Here, we discovered that the expression of
the two LOAD mutant forms of Binl does not rescue the
iAbeta accumulation and early endosome enlargement induced
by Binl knockdown and recovered by wild-type Binl. More-
over, the overexpression of Binl mutants, but not wild-type
Binl, increased the iAbeta42 fragment by reducing the recy-
cling of BACE1l, which accumulated in early endosomes,
recapitulating the phenotype of Binl knockdown. We showed
that the mutations in Binl reduced its interaction with BACE1.
The endocytic recycling of transferrin was similarly affected,
indicating that Binl is a general regulator of endocytic recy-
cling. These data demonstrate that the LOAD-coding variants
in Bin1 lead to a loss of function in endocytic recycling, which
may be an early causal mechanism of LOAD.

Alzheimer’s disease (AD) is the most common neurode-
generative disease worldwide. The earliest known mechanisms
driving AD predicted to begin decades before diagnoses are
beta-amyloid (Ap) intracellular accumulation and endosome
dysfunction (1, 2). AP is generated intracellularly through the
sequential processing of the transmembrane amyloid precur-
sor protein (APP) by P-secretase 1 (BACE1) and y-secretase
(3-6). APP cleavage by BACEL is the rate-limiting step to
generate AP (4). Interestingly, APP and BACEL segregate in
the plasma membrane (7, 8). Endocytosis potentiates the
encounter of APP and BACEL, and processing, by delivery to a
common early endosome (7, 9-12). AP production is coun-
teracted by APP sorting for degradation (13-15) and BACE1
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recycling to the plasma membrane (8, 15). Endosomal
dysfunction causes are unclear. In familial AD (FAD), auto-
somal mutations cause increased AP42 production (16-19),
which we and others implicated in endosomal abnormalities
(20-23). In late-onset AD (LOAD), the causal mechanisms of
AP intracellular accumulation and endosomal enlargement are
likely different. LOAD is expected multifactorial, caused by a
combination of aging, lifestyle, and genetic risk factors. Ge-
neticists have been looking for genetic risk factors in LOAD
patients, given the prediction for a strong genetic predisposi-
tion, 58-79% (24). Among the genetic risk factors identified by
several genome-wide association studies (GWAS), BINI,
bridging integrator 1, was the second most associated with
increased AD risk (24—30).

BIN1 encodes several isoforms and, in the brain, are mainly
expressed the neuronal and ubiquitous isoforms (31). Binl
belongs to the BAR (Binl/amphiphysin/RVS167) superfamily.
Binl isoforms share the N-BAR domain, responsible for
sensing and inducing curvature of membranes (32, 33), and the
SH3 domain, responsible for interacting with several endocytic
players, such as dynamin (34-37), involved in the scission of
budding vesicles. The neuronal-specific isoform also encodes
the CLAP (clathrin and AP2 binding) domain, responsible for
interacting with clathrin and AP2 (38), both required for
clathrin-mediated endocytosis. In nonneuronal cells, Binl
overexpression inhibits transferrin endocytosis, known to be
mediated by clathrin (37). Furthermore, Binl knockdown re-
duces transferrin receptor recycling but not its endocytosis
(39, 40). In neurons, we previously showed that Binl polarizes
to axons, associated with early endosomes (15).

In AD, how Binl levels change is still controversial. BINI
transcripts increase in AD human brains (41). However, lower
BINI transcripts correlate with earlier disease onset (42). In
FAD models, Binl protein accumulates adjacent to amyloid
plaques (43). In contrast, in LOAD human brain homogenates,
Bin1 protein levels decrease (44, 45) or are unchanged (46). An
analysis of Binl isoforms separately revealed that neuronal
Binl decreases while ubiquitous Binl increases in AD human
brains (47, 48).

To study the impact of Binl depletion, researchers have
taken a knockdown approach in vitro because the Binl mouse
knockout is perinatal lethal (39). Binl knockdown in cortical
neurons increases APB42 intracellular production (15, 49). In
addition, Binl knockdown reduces endocytic BACE1 recycling
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BINT mutants recapitulate LOAD cytopathological mechanisms

(15), probably enlarging early endosomes (15, 50). Mechanis-
tically, Binl contributes to the scission of recycling carriers
containing BACE1 from early endosomes (15). In vivo AP
accumulation was undetectable in mice conditionally knocked
out for Binl in excitatory neurons (51), indicating that Binl
does not control the AP production in excitatory neurons or
the intracellular AP accumulation is difficult to detect in vivo
(52). These findings support Binl loss of function in AD,
implicated in AD earliest mechanisms in neurons: AP intra-
cellular accumulation and endosomal abnormalities.

The impact of Binl accumulation in AD is less studied.
Increased Binl expression decreases early endosomes size (50),
opposite to AD early endosome enlargement but possibly
linked to tau spreading, a mechanism related to AD progres-
sion. However, whether Binl increased levels impact Ap42
intracellular accumulation is still not known.

GWAS and subsequent targeted sequencing associated
BIN1 variants, in regulatory and coding regions, with LOAD
and poorer memory performance (24-29, 31, 53, 54). While
the regulatory variants may be more frequent and likely
associated with alterations in Binl transcription, the impact of
the coding variants in Binl is unknown. Two coding variants
leading to mutations in Binl were associated with LOAD
(53, 55). The first identified was rs754834233 (P318 L (PL)), a
proline for a leucine mutation localized to the proline-serine-
rich domain proximal to the CLAP domain (55). The second
mutation identified was rs138047593 (K358 R (KR)), an argi-
nine for a lysine mutation within the Binl SH3 domain (53).
Both mutations locate in or near domains necessary for Binl
proper function at endocytosis and recycling.

We set out to investigate if two LOAD Binl mutations
interfere with Binl function and lead to LOAD earliest
mechanisms, AP intracellular accumulation, and endosomal
abnormalities. We mutagenized wild-type Binl with LOAD
Binl PL and KR mutations. We used an overexpression and
rescue approach in the neuronal N2a cell line. By analyzing
endogenous intracellular AB42 accumulation, BACE1 endo-
cytic trafficking, and early endosome size, we found that PL
and KR replicate the impact of Binl loss of function. Thus,
these mutations may contribute to the development of LOAD
early mechanisms.

Results
Bin1 mutants increase intracellular AB42 accumulation

Previously, we found that Binl loss of function results in
AP42 intracellular accumulation in a neuroblastoma cell line
(N2a) and murine primary neurons (15). Significantly, this
defect was only rescued by Binl neuronal isoform (15),
revealing a specific function of neuronal Binl in AB42 pro-
duction. We now want to understand if rare coding variants
that lead to mutations in Binl found associated with LOAD
are sufficient to increase AP42 intracellular accumulation.
Besides, we investigated if neuronal Binl increased levels also
interfere with AP42 accumulation. To do so, we used a
semiquantitative assay for intracellular endogenous Ap based
on AB42 immunofluorescence that we performed previously
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(15, 20, 52). We have controlled this assay extensively,
including with APP knockout cells (56). Here, we show that
AB42 immunofluorescence was significantly reduced (50%)
upon inhibition of AP production (Fig. S1, A and B). We
introduced PL and KR mutations, in the corresponding nu-
cleotides, in mouse neuronal MYC-tagged BIN1 ¢cDNA (Binl-
PL and Binl-KR, respectively). We overexpressed (OE) either
neuronal Binl wild-type (Binl-WT), Binl-PL, Binl-KR, or
MYC-empty vector (MYC) in N2a cells. We observed that
overexpressed Binl-PL and KR have a broad cellular distri-
bution similar to overexpressed Binl-WT (Fig. 1A) but
different from endogenous Binl, which localizes to early
endosomes (15). We found that Bin1-WT overexpression did
not change intracellular endogenous AB42 levels (Fig. 1, A and
B). In contrast, Bin1-PL and Bin1-KR overexpression increased
intracellular AB42 significantly, in 12% and 30%, respectively.
Since the fluorescence of AP42 increased in areas of high anti-
MYC fluorescence, we analyzed at higher resolution the fluo-
rescence profiles of AB42, Binl-WT, Binl mutants, or MYC
vector and found that the fluorescence peaks do not entirely
overlap (Fig. S1, C and D). Moreover, we verified that the anti-
MYC immunofluorescence mean intensity was unchanged
when AB42 mean intensity was reduced (Fig. S1, A and B).

To understand whether Binl mutants induced AP42
accumulation in early or late endosomes/lysosomes, we
assessed APB42 colocalization with EEA1- or LAMP1-positive
endosomes, respectively. We found that Binl-KR increased
AP42 in EEAl-and LAMP1-positive endosomes, while the
Binl-PL only increased AB42 in LAMP1-positive endosomes
(Fig. S2, A and B). Overall, the data indicate that Binl mu-
tants increase AB42 more in late endosomes/lysosomes (40%)
than in early endosomes (30%). This trend is in agreement
with our previous observations in primary neurons modeling
familial AD (21).

To confirm if the rise in AP accumulation was specific for
AP42, the most toxic AP, we evaluated the effect of Bin1-WT
and mutants’ overexpression in intracellular Ap40 (Fig. 1, C
and D). Indeed, we found that Binl-PL overexpression
decreased AP40 (15%), and the Binl-KR overexpression
reduced more AP40 (25%), in contrast to the observed in-
crease in AP42. Of note, Bin1-WT overexpression showed no
significant impact on AP40 levels. Together these results
suggest that Binl mutants may contribute to an increased
ratio of AB42 over 40, potentially linked to higher A toxicity
(57).

The increase in AP42 accumulation upon Binl mutants’
overexpression recapitulates the impact of Binl knockdown
(KD) (15, 49), suggesting that the PL and KR mutations lead to
Bin1 loss of function.

To verify if these mutations lead to a loss of function, we
eliminated the confounding role of endogenous Binl by
expressing siRNA-resistant Bin1-WT or Binl mutants in cells
treated with Binl siRNA (knockdown). The localization of
Binl mutants was similar to Bin1-WT when expressed in Binl
knockdown (KD) cells (Fig. 1E). Importantly, we observed that
the mutants did not rescue the rise in Ap42 levels induced by
Binl KD, as the neuronal Bin1-WT (15) (Fig. 1, E and F). This
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Figure 1. BINT mutants increase intracellular AB accumulation. A, intracellular endogenous AR42 (fire LUT) in N2a cells transiently expressing Bin1 wild-
type (WT), Bin1 mutants PL and KR tagged with MYC, or MYC (control), immunolabeled with anti-AB42 and anti-MYC (insets), analyzed by epifluorescence
microscopy. Scale bar, 10 um. B, quantification of mean AP42 fluorescence intensity relative to control cells (n = 4, Neontrol = 492 cells, Nginq-wr = 410 cells,
Ngin1-pL = 564 cells, Ngin1-kr = 530 cells; *p = 0.0284 Bin1-PL versus Bin1-KR, **p = 0.0018 Bin1-PL versus control, ****p < 0.0001 Bin1-WT versus Bin1-KR, Bin1-
KR versus control, Kruskal-Wallis test, mean * SD). C, intracellular endogenous AB40 (fire LUT) in N2a cells transiently expressing Bin1 wild-type (WT), Bin1
mutants PL and KR tagged with MYC, or MYC (control), immunolabeled with anti-AB40 and anti-MYC (insets), analyzed by epifluorescence microscopy. Scale
bar, 10 um. D, quantification of mean AP40 fluorescence intensity relative to control cells (n = 3, Neontrol = 114 cells, Ngijnqiwr = 187 cells, Ngjnq.pL = 251 cells,
Ngin1-kr = 224 cells; P = 0.2287 Bin1-WT versus control, *p = 0.0333 Bin1-PL versus control, ****p < 0.0001 Bin1-WT versus control, ****p < 0.0001 Bin1-PL
versus Bin1 -WT, ****p < 0.0001 Bin1-KR versus Bin1-WT, *p = 0.0333 Bin1-KR versus Bin1-PL, Kruskal-Wallis test, mean + SD). E, intracellular endogenous
AB42 (fire) in siControl- and siBin1-treated N2a cells followed by transient transfection of Bin1-WT or Bin1 mutants PL and KR tagged with MYC. N2a cells
immunolabeled with anti-Ap42 (upper panel) and anti-MYC (lower panel), analyzed by epifluorescence microscopy. Scale bar, 10 um. F, quantification of
intracellular AB42 (iAB42) mean fluorescence in percentage of siControl (n = 3, Nsicontrol = 64 cells, Ngigin1 = 63 cells, Ngigin11gin1-wt = 65 cells, Ngigin1+Bin1-pL =
67 cells, Ngigin14+8in1-kr = 72 cells; ****p < 0.0001 siBin1 versus siControl, siBin1+Bin1-PL versus siControl, siBin1+Bin1-KR versus siControl, Kruskal-Wallis test,
mean = SD). G, endogenous APP and APP-CTFs levels by western blot with anti-APP antibody (Y188) of N2a cells transiently expressing Bin1-WT, or Bin1-PL
and -KR tagged with MYC, or MYC (control). Bin1 expression was analyzed by western blot with anti-MYC antibody. MYC empty vector was not detectable
due to its small size. Tubulin was immunoblotted as the loading control. H, quantification of Bin1-WT, Bin1-PL, and Bin1-KR levels normalized to tubulin in
the percentage of Bin1-WT (n = 5, "P = 0.8649 Bin1-KR versus Bin1-WT, P = 0.9829 Bin1-PL versus Bin1-WT, RM one way-ANOVA, mean =* SD). /, quan-
tification of APP levels normalized to tubulin in percentage of control (n = 5, "*P= 0.2236 Bin1-KR versus control, *p = 0.0227 Bin1-PL versus control, *p =
0.0171 Bin1-WT versus control, paired t test, mean =+ SD). J, quantification of APP-CTFs levels normalized to tubulin in the percentage of control (n = 5, P =
0.9831 Bin1-PL versus control, "*P = 0.9965 Bin1-WT versus control, Bin1-KR versus control, RM one way-ANOVA, mean + SD).

SASBMB J. Biol. Chem. (2021) 297(3) 101056 3



BINT mutants recapitulate LOAD cytopathological mechanisms

result supports that the LOAD mutations cause a loss of
function of Binl in the control of AP production.

To understand if increased APP processing underscored
the rise in AP42, we investigated APP processing into its
C-terminal fragments (APP-CTFs). APP processing was
analyzed by western blot using the antibody Y188 against the
C-terminal domain of APP, detecting APP full-length and the
APP-CTFs. We did not see changes in the level of endoge-
nous APP-CTFs when expressing Binl-WT or its mutants
(Fig. 1, G and J). Instead, we found APP full-length increased
upon Binl-WT (35%) and Binl-PL (46%) but not Bin-KR
overexpression (Fig. 1[). This increase in APP full-length
does not correlate with the observed rise in AP levels.
While AP is higher with the KR mutant, APP full-length is
not. We also observed that Binl mutants did not change Binl
expression levels (Fig. 1, G and H). Since Binl-WT OE de-
creases early endosomes (50), it could decrease sorting at
early endosomes for lysosomal degradation, explaining the
increase in APP levels.

Bin1 mutants lose control of early endosomes size

Next, we investigated if the LOAD mutations in Binl lead to
endosomal abnormalities, namely endosomal enlargement,
another early LOAD mechanism. Previous work demonstrated
that Binl controls early endosome size since Binl KD in-
creases it and neuronal Binl OE reduces it (15, 50).

To investigate how Binl mutants affect early endosome size,
we transiently expressed Rab5-GFP, an RAB GTPase enriched
at early endosomes, overexpressed Binl-WT, Binl-PL, Binl-
KR, and MYC as control, and measured Rab5-positive endo-
some size in N2a cells. As previously reported, Bin1-WT OE
decreased Rab5-positive endosome size by 20% (Fig. 2, A and
B). Differently, the Binl-PL OE reduced Rab5-positive endo-
some size only by 10%, and the Binl-KR OE did not alter
endosome size (Fig. 2, A and B). Additionally, we analyzed
endogenous EEA1, another marker of early endosomes
(Fig. S1). Similarly to Rab5, we found a shrinkage of EEA1-
positive endosomes upon Binl-WT OE (18%). The PL and
KR mutants induced smaller reductions in EEA1-positive en-
dosome size, by 13% and 4%, respectively, although only the
KR mutant was significantly different from Bin1-WT (Fig. S1,
A and B). Of note, Bin1-WT OE led to an increase in the
number of Rab5-and EEA1l-positive endosomes by 22% and
24%, respectively (Fig. S1, C and D). The Binl mutants failed to
increase the number of EEAl-positive endosomes but not
Rab5-positive endosomes (Fig. S1, C and D), suggesting that
the Rab5 OE compensates for the Binl mutants’ effect on
endosomes.

To remove the confounding role of endogenous Binl, we
performed a rescue experiment in which we expressed Binl-
WT and mutants upon Binl KD with siRNA. As reported,
we found Rab5-positive endosomes 16% larger upon Binl KD
(15, 50). Furthermore, Bin1-WT re-expression rescued Rab5-
positive endosomes size, whereas Binl-PL rescued partially,
and Bin1-KR did not rescue (Fig. 2, C and D). Additionally, a
heatmap of cumulative distribution (%) of endosome size is
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shown (Fig. 2F). The deepening of greater size blocks for
siBinl indicates the higher percentage of larger endosomes,
similar after Binl-KR re-expression but different from Binl-
WT and Binl-PL re-expression.

These results suggest that the KR mutation is more patho-
genic than the PL mutation, inducing a complete Binl loss of
function in the control of early endosomes size.

Bin1 mutations reduce interaction with BACE1 and its
endocytic recycling

Previously, we linked the increase in endosome size to the
decreased recycling of BACE1 when Binl was KD (15). In
addition, Miyagawa et al. (49) showed that Bin1 interacts with
BACE1 in Hela cells. Here, we demonstrate that Binl coim-
munoprecipitated BACE1 from wild-type mouse brain lysates
(Fig. 3A), supporting that Binl interacts with BACEL in the
brain. Moreover, we show the reverse that BACE1-GFP
coimmunoprecipitated Binl-WT from N2a cells coexpress-
ing BACE1-GFP and Binl-WT (Fig. 3B). We assessed if the
LOAD mutations interfere with the Binl interaction with
BACEL. Importantly, BACE1-GFP coimmunoprecipitated less
Bin1-PL and Bin1-KR (Fig. 3B). Quantification showed that the
BACE1-GFP tended to interact less with Binl-PL while the
interaction with Binl-KR was significantly reduced (65%)
(Fig. 3C), which indicates that although both mutations may
interfere with Binl interaction with BACE1, the KR mutation
has a more disruptive effect.

BACE1 trafficking could be affected by the loss of its
interaction with Binl mutants. To confirm this hypothesis, we
investigated if the LOAD mutations alter Binl control of
BACE1 endocytic recycling. To analyze BACE1 trafficking, we
performed pulse/chase assays using an antibody against FLAG
(M1) in N2a cells transiently expressing BACE1 cDNA with an
N-terminal FLAG-tag and a C-terminal GFP (FLAG-BACEL1-
GFP), as previously (15).

To measure BACEL1 recycling to the plasma membrane, we
pulsed N2a cells with M1 for 10 min, then we acid-stripped
non-endocytosed BACEl-bound M1 and further chased
endocytosed BACE1-bound M1 for 20 min (15, 58).

Firstly, we measured BACE1l endocytosis (10 min pulse)
since Binl-WT OE decreases transferrin endocytosis (59),
which we confirmed (Fig. 4). Endocytosed BACE1 was deliv-
ered to EEA1-positive early endosomes (Fig. S4A4). We found
that Bin1-WT OE reduced BACE1 endocytosis by 15% (Fig. 3,
D and E). The mutations in Binl did not alter the BACE1
endocytosis decrease induced by Bin1-WT OE (10% Binl-PL
and 15% Binl-KR; Fig. 3, D and E). Binl-WT likely alters
endocytosis when overexpressed by sequestering necessary
endocytic components since Binl is not required for BACE1
endocytosis (15). The LOAD mutations do not change this
overexpression phenotype.

Secondly, we measured non-recycled BACE1 (Fig. 3, F and
G). We found that nonrecycled BACE1l was significantly
increased in cells overexpressing Binl-PL (43%) and Binl-KR
(70%) while Binl-WT overexpression did not alter non-
recycled BACE1 as compared with control (Fig. 3F).
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Figure 2. Bin1 mutants lose control of early endosomes size. A, Bin1 mutants’ overexpression impact early endosomes. Rab5-GFP positive early
endosomes (fire LUT) detected in N2a cells transiently expressing Rab5-GFP (control) and Bin1-WT or Bin1-PL and -KR tagged with MYC (insets), analyzed by
epifluorescence microscopy. Images are displayed after background subtraction with Fiji. Scale bar, 10 um. The white squares indicate the perinuclear region
magnified in (a-d), where the white circles highlight Rab5-positive early endosomes mean size. Scale bar, 1 um. B, quantification of Rab5-positive early
endosomes size (LM?). (n = 3, Neontror = 96 cells, Ngin-wr = 45 cells, Ngin1-pL = 51 cells, Ngin1.kr = 54 cells; "*P = 0.1409 Bin1-KR versus control, *p = 0.0300 Bin1-
WT versus Bin1-PL, **p = 0.0027 Bin1-PL versus Control, ****p < 0.0001 Bin1-WT versus control, Bin1 WT versus Bin1 KR, one way-ANOVA with Tukey’s
multiple comparisons test, mean + SD). C, Bin1 mutants rescue of early endosomes enlargement induced by Bin1 KD. Rab5-positive early endosomes (fire
LUT) were detected in siControl- and siBin1-treated N2a cells alone or upon transient transfection with Bin1-WT, -PL and -KR tagged with MYC (insets),
analyzed by epifluorescence microscopy. Images are displayed after background subtraction with Fiji. Scale bar, 10 pm. The white squares indicate the
perinuclear region magnified in (a-d), where the white circles highlight Rab5-positive early endosomes’ mean size. Scale bar, 1 pm. D, quantification of
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The nonrecycled BACE1 is the net balance between endo-
cytosis and recycling. Since BACE1 endocytosis decreased
upon the Binl mutant’s overexpression, the increase in non-
recycled BACEL is likely due to the reduction in BACE1
recycling.

We showed that Binl KD decreases BACEL recycling
resulting in BACE1 accumulation in early endosomes (15), and
Miyagawa et al. showed BACE1 accumulation in late endo-
somes/lysosomes (49). Thus, we investigated the localization
of nonrecycled BACE1 upon Binl mutants’ overexpression.
Overall nonrecycled BACE1 colocalized more with EEA1-
positive endosomes (40-50%) than with LAMPI-positive
endosomes (10-15%). Notably, Binl-PL and Binl-KR over-
expression increased nonrecycled BACEL colocalization with
EEA1 by 12% (Fig. 3, H and I). None of the Binl mutants
increased colocalization with LAMP1 (Fig. 3, J and K). Binl-
WT overexpression did not affect nonrecycled BACE1 coloc-
alization with EEA1 but increased colocalization with LAMP1
by 5% (Fig. 3, H-K).

Together, our results indicate that Bin1-WT OE may not
alter AB42 accumulation because it reduces BACE1 endocy-
tosis required for APP cleavage by BACE1L or because it in-
creases traffic to late endosomes. In turn, both Binl mutants’
impact on BACE1 recycling was more prominent than on its
endocytosis. Consequently, the decrease of BACEL1 recycling to
the plasma membrane leads to BACE1 accumulation in early
endosomes, where likely increases APP processing. The
mechanism may be due to the reduced interaction of Binl with
BACEL1 due to LOAD mutations.

Bin1 mutants impair the canonical transferrin endocytic
recycling

Since transferrin is the canonical cargo of endocytic recy-
cling and Binl overexpression impairs transferrin endocytosis
in nonneuronal cells (37), we next checked whether over-
expression of Binl-WT and mutants alter transferrin endo-
cytosis and recycling, similarly to BACE1 (Fig. 3).

To follow transferrin endocytosis, we pulsed N2a cells with
fluorophore-conjugated transferrin for 2 min, upon Binl-
WT, Binl-PL, and Binl-KR OE. We found that Bin1l-WT
OE reduced transferrin internalization by 25% and that
when cells overexpressed Binl-PL and Binl-KR, there was a
similar reduction in transferrin endocytosis (20%) (Fig. 4,
A and B). These results indicate that Binl-WT over-
expression impairs transferrin endocytosis, which is not
altered by the mutations.

To follow transferrin recycling, we chased endocytosed
transferrin for 20 min after a 10 min pulse and quantified the
intensity remaining intracellularly (Fig. 4, C and D). Like
BACEL, Binl-WT OE did not significantly change while the
Binl-PL OE increased substantially by 50% nonrecycled

transferrin. Unexpectedly, the Bin1-KR OE did not alter the
nonrecycled transferrin.

These data indicate that transferrin recycling is reduced by
Binl-PL mutant but not by Binl-WT or Binl-KR. The KR
mutation may affect BACE1 endocytic recycling more specif-
ically, while the PL mutation may have a more broad effect on
endocytic recycling.

Discussion

BIN1 variants were associated with LOAD, but their trans-
lation into a disease mechanism is missing. Previously, we
showed that Binl loss of function induced by Binl knockdown
(KD) increased AP42 production due to the accumulation of
BACEL at enlarged early endosomes. Mechanistically, we found
that Binl KD reduced BACEL recycling to the plasma mem-
brane. Here we investigated the impact of two LOAD coding
variants in BIN1 function in controlling AB42 production and
early endosome size. We introduced the two mutations, PL and
KR, in wild-type neuronal BIN1 ¢cDNA and determined the
impact of their overexpression or re-expression in neuronal
cells. Binl mutants increased AP42 intracellular accumulation,
failed to control early endosome size, decreased BACE1 recy-
cling, and reduced interaction with BACE], indicating that the
two LOAD mutations are pathogenic (Fig. 5).

Intracellular AB

The overexpression of Binl mutants increased intracellular
AP42 while, in contrast, Binl wild-type did not. The Binl
mutants’ phenotype was similar to that of Binl KD, although
the mutants’ effect was more modest, increasing AB42 by 30%,
while knocking down Binl increased AB42 by 65%. The loss of
Binl function due to the LOAD mutations was confirmed
when both mutants’ re-expression failed to rescue the Binl
KD-dependent rise in AB42 compared with Binl wild-type.
The impact of these two coding variants could be different
from the regulatory variant (rs59335482) previously shown to
increase BIN1 expression (41) since wild-type neuronal Binl
overexpression did not impact intracellular Ap42 accumula-
tion. Since the increased expression of BIN1 also leads to in-
crease levels of the ubiquitous Binl isoform, it remains
undetermined if ubiquitous Binl overexpression affects
intracellular Ap42.

Interestingly, we also observed that the Binl mutants did
not increase iAP40, not recapitulating our previous observa-
tions that Binl KD increased iAp40 although to a lesser extent
than iAP42 (15). Our results suggest an increase in the ratio
AB42/40 in the presence of LOAD Binl mutations. The in-
crease in the ratio AP42/40 in AD was established due to fa-
milial AD mutations in presenilins, the catalytic component of
y-secretase (60). More recent work indicates that presenilins’
activity depends on the trafficking of y-secretase to endosomes

Rab5-positive early endosomes size (umz) (n = 3, Nsicontrol = 48 cells, Ng;gin1 = 51 cells, Ngigin1+gin1-wt = 31 cells, Ngiginsgin1-pL = 39 cells, Ngigin1+8in1-kr = 36 cells;
"P > 0.9999 siBin1+Bin1-WT versus siControl, siBin1+Bin1-PL versus siControl, siBin1 vs siBin1+Bin1 KR, *p = 0.0243 siBin1 versus siBin1+Bin1-PL, ****p <
0.0001 siBin1 versus siControl, siBin1+Bin1-KR versus siControl, Kruskal-Wallis test, mean + SD). E, cumulative Rab5-positive endosomes size (umz) frequency
distribution. Colormap magma: 0% (black) to 100% (yellow) (n = 3; Nsicontrol = 48 cells, Ngigin1 = 51 cells, Ngigin1+8in1-wt = 31 cells, Ngigin+gin1-pL = 39 cells,

Nsigin1+Bin1-kr = 36 cells).
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Figure 3. Bin1 mutants’ impact BACE1 endocytic trafficking. A, BACET co-immunoprecipitation with Bin1 from wild-type mouse brain homogenates
(input) using anti-Bin1 (IP Bin1), or normal 1gG (IP 1gG) detected with anti-BACE1 or anti-Bin1 antibodies (n = 3). B, Bin1-WT or mutants coimmunopreci-
pitation with BACE1-GFP from cells coexpressing BACE1-GFP and Bin1-WT, Bin1-PL or Bin1-KR (input), using GFP-traps, detected with anti-BACE1 (IP) or anti-
Bin1 (Co-IP) antibodies. C, quantification of coimmunoprecipitated Bin1-WT or mutants normalized by immunoprecipitated BACE1 and respective inputs
(n =4, "P =0.3143 Bin1-PL versus Bin1-WT, "*P = 0.3429 Bin1-PL versus Bin1-KR, *p = 0.0286 Bin1-WT versus Bin1-KR, Mann-Whitney test, mean * SD). DK,
BACE1 endocytic trafficking followed in N2a cells transiently expressing BACE-GFP N-terminally tagged with FLAG (control) and Bin1-WT or Bin1-PL and -KR,
using a pulse-chase assay with M1, an anti-FLAG antibody, analyzed by epifluorescence microscopy. D, endocytosed BACE1 (10 min M1, fire LUT) assessed
by immunofluorescence in N2a cells with a secondary antibody against the endocytosed anti-FLAG (M1). Insets show GFP signal corresponding to FLAG-
BACE1-GFP. Scale bar, 10 pm. E, quantification of endocytosed BACE1 (10 min M1) fluorescence normalized to FLAG-BACE1-GFP fluorescence and in the
percentage of the control (n = 4, Neoniro = 134 cells, Nginiwr = 137 cells, Ngin1.p. = 171 cells, Nginq g = 142 cells, "*P = 0.5282 Bin1-WT versus Bin1-PL, "P >
0.9999 Bin1-WT versus Bin1-KR, Bin1-PL versus Bin1-KR, *p = 0.0404 Bin1-PL versus control, **p = 0.0017 Bin1-KR versus control, ***p = 0.0002 Bin1-WT versus
control, Kruskal-Wallis test, mean + SD). F, nonrecycled BACE1 (fire LUT) detected upon 10 min pulse with M1 and 20 min chase, assessed by immuno-
fluorescence in N2a cells with a secondary antibody against the endocytosed anti-FLAG (M1). Insets show GFP signal corresponding to FLAG-BACE1-GFP.
Scale bar, 10 um. G, quantification of nonrecycled BACE1 fluorescence normalized to FLAG-BACE1-GFP fluorescence and in the percentage of the control
(N =3, Neontrot = 105 cells, Nginq-wr = 101, Nging-pL = 104 cells, Nginq.kr = 104 cells; "*P = 0.0934 Bin1-WT versus Control, ****p < 0.0001 Bin1-PL versus control,
Bin1-KR versus control, Bin1-WT versus Bin1-KR, Kruskal-Wallis test, mean + SD). H, nonrecycled BACE1 (green, detected upon 10 min pulse with M1 and
20 min chase) localization in EEA1-positive endosomes (magenta), assessed by immunofluorescence in N2a cells with an antibody against endogenous
EEA1. Images are displayed merged after background subtraction with Fiji. Scale bar, 10 um. The white squares indicate magnified endosomes. Nonrecycled
BACE1 is shown individually and merged with EEA1. Scale bar, 1 um. /, quantification of nonrecycled BACE1 colocalization with EEA1 (n = 3, Neontrol =
24 cells, Ngin1.wr = 22 cells, Ngin1.pL = 21 cells, Nginq kg = 21 cells; "P = 0.9305 Bin1-WT versus control, ****p < 0.0001 Bin1-PL versus control, Bin1-KR versus
control, Bin1-WT versus Bin1-PL, Bin1-WT versus Bin1-KR, one-way ANOVA, mean + SD). J, non-recycled BACE1 (green, detected upon 10 min pulse with M1
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Figure 4. Bin1 mutants impair the canonical transferrin endocytic recycling. Transferrin endocytic trafficking followed in N2a cells transiently expressing
MYC (control), Bin1-WT, Bin1-PL, and -KR, using a pulse-chase assay with fluorescently labeled transferrin (Alexa647-transferrin), analyzed by epifluorescence
microscopy. A, endocytosed transferrin (2 min Alexa647-transferrin, fire LUT) detected in N2a cells. Insets show MYC signal corresponding to MYC (control), Bin1-
WT, Bin1-PL, and -KR. Scale bar, 10 um. B, quantification of endocytosed transferrin mean fluorescence in the percentage of control (n = 3, Neonor = 109 cells,
Ngin1-wt = 105 cells, Ngin1p. = 101 cells, Nginixr = 111 cells; ****p < 0.0001 Bin1-WT versus control, Bin1-PL versus control, Bin1-KR versus control, Kruskal-Wallis
test, mean + SD). C, nonrecycled transferrin (fire) detected upon 10 min pulse with Alexa647-transferrin and 20 min chase in N2a cells. Insets show MYC signal
corresponding to control, Bin1-WT, Bin1-PL, and -KR. Scale bar, 10 um. D, quantification of non-recycled transferrin mean fluorescence in percentage of control
(n =3, Neontrol = 76, Ngin1-wt = 97, Ngin1-pL = 88, Ngin1.kr = 97; "°P = 0.8713 Bin1-WT versus control, "*P > 0.9999 Bin1-KR versus control, *p = 0.0265 Bin1-WT versus
Bin1-PL, ***p = 0.0002 Bin1-PL versus control, ****p < 0.0001 Bin1-PL versus Bin1-KR, Kruskal-Wallis test, mean + SD).

and endosomal luminal pH (18, 61, 62). Thus the trafficking of
y-secretase may also be susceptible to the interference of
LOAD mutations in the Binl control of endocytic recycling.

transferrin and BACE1 endocytosis in neuronal cells. Our data
confirmed that Binl, when overexpressed, interferes with
endocytosis, giving a similar inhibition for transferrin and
BACE1 endocytosis. However, unexpectedly, the mutations in
Binl did not alter the decrease in endocytosis induced by Binl
overexpression. The mechanism of BACE1l endocytosis is
somewhat controversial, with reports supporting that it is
clathrin-mediated, while others indicate that it is ARF-6-
dependent (7, 8). Our results support that BACE1 undergoes
clathrin-mediated endocytosis like transferrin (64).

The overexpression of both Binl mutants reduced BACE1
recycling, recapitulating the Binl KD phenotype, indicating
that the mutations induce the loss of function of Binl in the
control of BACE1 recycling. Accordingly, both mutations
decreased Binl interaction with BACEL. The decrease in
recycling led to increased intracellular BACEL1 in early endo-
somes, suggesting increased BACE1 access to APP in early
endosomes, processing it more. We analyzed APP processing
upon Binl mutants’ overexpression, but we found no signifi-

Early endosome size

The Binl wild-type overexpression reduced Rab5 and
EEA1-positive early endosome size as previously reported for
Rab5-positive endosomes (50). The overexpression of Binl
mutants did not recapitulate Binl wild-type reduction of early
endosome size, suggestive of a loss of function. However, their
loss of function was insufficient to induce early endosomes’
enlargement as observed when Binl is depleted. Interestingly,
the rescue experiments revealed that the KR mutation in Binl
could be more pathogenic than the PL mutation. Since Binl-
KR re-expression could not rescue Rab5-positive endosome
size in cells depleted for Binl, while the Bin1-PL re-expression
partially rescued.

BACET1 endocytic recycling

Given the previously reported impact of Binl over-
expression in transferrin endocytosis (37, 63), we analyzed

cant change in the overall APP C-terminal fragments. The
increase in beta-CTFs production is likely below the detection
limit of the technique used. Unfortunately, more sensitive

whether Binl wild-type and mutants’ overexpression impact methods are not available for mouse APP-CTFs.

and 20 min chase) localization in LAMP1-positive endosomes (magenta), assessed by immunofluorescence in N2a cells with an antibody against endog-
enous LAMP1. Images are displayed merged after background subtraction with Fiji. Scale bar, 10 um. The white squares indicate magnified endosomes.
Non-recycled BACE1 is shown individually and merged with LAMP1. Scale bar, 1 um. K, quantification of non-recycled BACE1 colocalization with LAMP1 (n =
3, Neontrol = 29 cells, Nginq-wt = 32 cells, Ngin1-p. = 30 cells, Nginq-kr = 28 cells; "P > 0.9999 Bin1-KR versus control, Bin1-WT versus Bin1-PL, Bin1-PL versus Bin1-
KR, "P = 0.8539 Bin1-PL versus control, "*P = 0.6546 Bin1-WT versus Bin1-KR, *p = 0.0299 Bin1-WT versus control, Kruskal-Wallis test, mean * SD).
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Figure 5. Schematic diagram illustrating the mechanisms used by Bin1 mutants to increase intracellular Ap accumulation. Normally, Bin1 enables
BACE1 recycling to the plasma membrane maintaining low AP production. The LOAD mutations PL (near CLAP domain) and KR (in the SH3 domain) in Bin1
interfere with its function in regulating BACE1 trafficking. Bin1 mutants interfere with BACE1 endocytosis but even more with its recycling—the accu-
mulation of nonrecycled BACE1 results in more A production and accumulation. KR mutation leads to a more prominent defect in BACE1 recycling than
the PL mutation. Thus, their pathogenicity may impact the development of late-onset AD early mechanisms differently.

Nevertheless, we detected an increase in AB42 accumulation
in early endosomes and late endosomes/lysosomes. Interest-
ingly, the impact of the two mutations in Binl in BACE1
recycling has different magnitudes. The KR mutation has a
more significant effect than the PL mutation in BACE1 recy-
cling, which correlates with higher intracellular Ap42.

Besides, we analyzed transferrin recycling since it decreases
upon Binl depletion (39, 40) to determine if it was similarly
affected by Binl mutants. Surprisingly we found that the PL
mutation, but not KR, leads to decreased transferrin recycling.
Thus, PL mutation likely interferes with Binl function in the
control of endocytic recycling differently from KR mutation.

Overall, we find that the more prominent defect in BACE1
recycling plausibly overcomes the reduction in endocytosis to
underlie the increase in A 42 production induced by mutant Bin1.

Potential mechanisms
Bin1 WT overexpression impact in reducing endocytosis

Binl overexpression may inhibit endocytosis by seques-
tering its interacting partners’ clathrin, endophilin, and dyna-
min, indirectly compromising endocytic vesicle formation,
membrane curvature, and scission, respectively (37, 63).

Bin1 mutants” impact in reducing endocytic recycling

The difference in the PL and KR Binl mutants’ impact on
endocytic recycling could be related to how the two mutations
alter the Binl protein.

SASBMB

The PL mutation localizes in the proline-serine rich domain,
where the lost proline could lead to an altered Binl secondary
structure or conformation (65) or the observed reduced
binding to BACE1 directly or via interactors (66), such as
clathrin (67), which can participate in endocytic recycling (68).

The KR mutation occurs in the SH3 domain in the RT loop,
one of three loops that characterize the structure of SH3 do-
mains, composed of a patch of aromatic residues on the do-
main’s ligand-binding face that can modulate binding typically
to proline-rich domains of proteins. Indeed, Binl interacts
through its SH3 domain with the proline-rich domain in
dynamin (69, 70). Further, the replacement of arginine to
lysine was observed to reduce protein-binding affinity due to
conformation changes (66). Indeed, the KR mutation had a
more dramatic impact in the interaction with BACE], but the
Bin1-KR interaction with dynamin, and others, may be equally
reduced.

Both mutations may also interfere with neuronal Binl self-
inhibition through the intramolecular binding between the
CLAP domain and the SH3 domain (46). This intramolecular
binding may function as a curvature sensor triggering Binl to
engage with the appropriately curved membrane (71). Thus,
mutations in each domain could interfere with the Binl
localization to the tubulated recycling endosomal carriers.
Alternatively, it could interfere with the binding of Binl
directly to BACE1l or indirectly through interaction with
sorting nexin 4 (SNX4) (72), which also plays a role in BACE1
(73, 74) and transferrin recycling (75, 76).
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Further studies of Binl mutations are underway, namely
identifying Binl mutants interactome, which should illuminate
the mechanism of interfering with BACE1 recycling.

Bin1 as an AD risk factor

These results support the known function of Binl in BACE1
recycling at early endosomes and show how Binl variants
associated with LOAD interfere with this function, potentiating
AB42 production and intracellular accumulation as well as en-
dosome enlargement. The mild loss of Binl PL and KR mutants’
function is consistent with developing a late-onset form of AD.
Future studies are underway to confirm if this intracellular
accumulation of AB42 is sufficient to cause synaptic dysfunc-
tion, the most critical effector of AD cognitive decline.

Experimental procedures
¢DNA and siRNA

We used the following DNA plasmids encoding: BACE1-
GFP (15); FLAG-BACE1-GFP (15); Rab5-GFP plasmid was a
gift from M. Arpin (Institut Curie); siRNA-resistant neuronal
Bin1-MYC construct (brain amphiphysin II (BRAMP2); iso-
form 1; NP_033798.1; (15)); Binl-PL and Binl-KR were
generated by site-directed mutagenesis (NZYtech) of siRNA-
resistant neuronal Bin1-MYC (for Binl-PL, primers 5GAAC-
CATGAGCCAGAGCTGGCCAGTGGGGCCTC and 5'GAGG
CCCCACTGGCCAGCTCTGGCTCAT GGTTC;; for Binl-KR
primers 5GATGAGCTGCAACTCAGAGCTGGCGATGT
GGTG and 5'CACCACATCGCCAGCTCTGAGTTGCAG
CTCATC3). All plasmids were sequenced. We used the
following siRNA oligonucleotides: as siControl a nontargeting
control siRNA (GeneCust) and for Binl knockdown, siBinl
(65,598; Thermo Fisher Scientific) (15).

Cell culture, transfections, and treatments

Neuroblastoma Neuro2a (N2a) cells (ATCCCCL-131) were
a gift from Zsolt Lenkei (ESPCI-ParisTech). Cells were
cultured in DMEM-GlutaMAX (Thermo Fisher Scientific)
with 10% FBS (Sigma-Aldrich) at 37 °C in 5% CO,. For cDNA
expression, N2a cells were transiently transfected with 0.5 pg
of cDNA with Lipofectamine 2000 (Thermo Fisher Scientific)
and analyzed after 24 h. For small interfering RNA (siRNA)
treatment, N2a cells were transiently transfected with 10 nM
specific siRNA with Lipofectamine RNAiMax (Thermo Fisher
Scientific) and analyzed after 72 h. When indicated, cDNA was
transfected after 48 h of siRNA treatment, and cells were
analyzed after 24 h. When indicated, BACE1 was inhibited by
9-16 h treatment with 30 uM compound IV (Calbiochem),
gamma-secretase was inhibited by 9-16 h treatment with
250 nM DAPT (Calbiochem), or DMSO (solvent) was used as
control. All experiments were carried out in at least three in-
dependent sets of culture, except when indicated.

Antibodies and probes

The following antibodies were used: anti-APP (Y188, Gene-
Tex, cat GTX61201, 1:1000); anti-ApP42 mAb (H31L21,
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Invitrogen, cat 700254, 1:200); anti-AP40 pAb (Sigma, cat
Ab5074P, 1:100); anti-FLAG (M1) mAb (Sigma, cat F3040,
1:100); anti-MYC pAb (1:500); anti-tubulin mAb (Tu-20, Milli-
pore, cat MAB1637, 1:10,000); anti-EEA1 pAb (Sigma, cat E3906;
1:250); anti-EEA1 pAb (N-19, Abcam, cat sc-6415, 1:50); anti-
LAMP1 mAb (BD, cat 553792, 1:200); anti-Binl mAb (Sigma,
cat 05-449, 1:1000). The probe Alexa Fluor 647 Conjugate-
transferrin (Thermo Fisher Scientific) was used in pulse-chase
assays. Immunofluorescence labeling N2a cells were fixed with
4% paraformaldehyde for 10 to 15 min, permeabilized, and
blocked with 0.1% saponin, 2% FBS, 1% BSA for 1 h before
antibody incubation using standard procedure. For Ap42 label-
ing, cells were permeabilized with 0.1% saponin for 1 h before
blocking, and primary antibody incubated for 16 h. Coverslips
were then mounted using Fluoromount-G (Southern Biotech).

Trafficking assays

Trafficking assays were performed as previously (15). Briefly,
before endocytosis experiments, N2a cells, expressing FLAG-
BACE1-GFP or not, were starved in a serum-free medium
(30 min). For BACE1 endocytosis, N2a cells were incubated
with anti-FLAG (M1) for 10 min. For BACEL1 recycling, N2a
cells pulsed with M1 were acid stripped (0.5 M NaCl, 0.2 M
acetic acid; 4 s) and quickly rinsed in PBS before chasing for
20 min at 37 °C. A second acid stripping was performed before
fixation, and nonrecycled proteins were immunolabeled upon
permeabilization. For transferrin endocytosis, N2a cells were
incubated with fluorophore-conjugated transferrin (1:100) for
2 min. For transferrin recycling, N2a cells pulsed with
fluorophore-conjugated transferrin were washed in PBS (4 s)
before recycling for 20 min at 37 °C. A second washing was
performed before fixation.

Image acquisition

Epifluorescence microscopy was carried out on a widefield
upright microscope Axio Imager.Z2 (Zeiss) equipped with a
60x NA-1.4 oil immersion objective and an AxioCam MRm
CCD camera (Zeiss). Confocal microscopy was performed with
LSM980 equipped with AiryScan 2.0 (Zeiss). For direct com-
parison, samples were imaged in parallel and using identical
acquisition parameters.

Image processing and analysis

Image processing analyses were carried out using the free
image analysis software: ICY (77) and FIJI (Image]) (78).

For the quantification of intracellular AP42, BACE1, and
transferrin levels, regions of interest corresponding to
randomly chosen single cells were outlined based on MYC
labeling using the ICY "polygon type ROI (2D" tool. An ROI
was also randomly chosen in an area without cells corre-
sponding to the background. The mean fluorescence in each
ROI was obtained using ICY ROI export and was presented as
a percentage of the indicated control upon background fluo-
rescence subtraction.

For the quantification of Rab5- and EEA1l-positive endo-
somes puncta size and density per area, images were processed
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using "subtract background"” in FIJI. Then the endosomes were
segmented using the ICY "Spot detector” plugin in each single
cell ROL The number of spots per cell ROI area was used to
obtain the endosome density per area.

For the line profiles of AB, Binl, and MYC, we used the "plot
profile" tool in FIJI.

For the quantification of colocalizations, we used the
ComDet v.0.5.5 plugin for Image ] (https://github.com/
ekatrukha/ComDet).

Immunoblotting

N2a cell lysates were prepared using modified RIPA buffer
(50 mM Tris—HCI pH 7.4, 1% NP-40, 0.25% sodium deoxy-
cholate, 150 mM NaCl, 1 mM EGTA, 1% SDS), with 1X PIC
(Sigma-Aldrich). Sonication was performed with the settings:
three cycles of 1s on and 45 ms off (pulse; total time of 30 s) at
10% amplitude. Proteins separated by 7.5, 10, or 4—12% Tris-
glycine SDS-PAGE was transferred to 0.45 pum nitrocellulose
membranes and processed for standard immunoblotting.
HRP-conjugated secondary antibodies signal was revealed
using ECL Prime kit (GE Healthcare) and captured using the
ChemiDoc imager (BioRad) within the linear range and
quantified by densitometry using the Image]J software protocol
(https://imagej.nih.gov/ij/docs/menus/analyze.html#gels).

Coimmunoprecipitation

Adult wild-type mice (BALB/c) cortices lysates were
immunoprecipitated with anti-Binl or mouse IgG 16 h at 4 °C
and then with 30 pl of protein G-Sepharose beads (GE
Healthcare) for 3 h at 4°C. Beads were washed 3x with lysis
buffer. The sample was eluted with 2x SDS loading bulffer,
resolved by 7.5% Tris-Glycine SDS-PAGE, and detected by
immunoblotting. Animal procedures were performed accord-
ing to EU recommendations and approved by the NMS-UNL
ethical committee (07/2013/CEFCM) and the national DGAV
(0421/000/000/2013).

N2a cell lysates were prepared using modified RIPA buffer
(50 mM Tris—HCI pH 7.4, 1% NP-40, 0.25% sodium deoxy-
cholate, 150 mM NaCl, 1 mM EGTA, 1% SDS), with 1X PIC
(Sigma-Aldrich). Lysates were immunoprecipitated with GFP-
Trap Agarose beads (Chromotek) following the manufacturer
protocol. Briefly, lysates were rotated with GFP-Trap Agarose
beads for 1 h at 4 °C. Beads were washed three times with
washing buffer (10 mM Tris-Cl pH 7.5; 100 mM NaCl; 0.5 mM
EDTA; 0.05% NP-40; 1% glycerol). The IP proteins were eluted
with 2x SDS loading buffer, resolved by 7.5% Tris-Glycine
SDS-PAGE together with lysates (input), and detected by
immunoblotting.

Statistics

GraphPad Prism 8 software was used for graph generation
with mean + SD. The sample size was determined based on
pilot studies. Statistical significance for at least three inde-
pendent experiments was determined on normal data (D’Ag-
ostino-Pearson omnibus normality test) by two-tailed
Student’s ¢ test and multiple comparisons one-way ANOVA
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with Tukey’s test using GraphPad Prism 6. Statistical signifi-
cance for nonparametric data was tested by the Mann-—
Whitney test or, for multiple comparisons, the Kruskal—Weallis
test, followed by Dunn’s multiple-comparison test. Data were
expressed as mean + SD.

Data availability

Data are to be shared upon request.
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bovine serum albumin; CTF, carboxyl-terminal fragment; cDNA,
complementary DNA; CLAP, clathrin and AP2-binding domain;
DMEM, Dulbecco’s modified eagle medium; EEA1, early endosome
antigen 1; FAD, familial Alzheimer’s disease; EGTA, ethylene glycol
tetraacetic acid; FBS, fetal bovine serum; GFP, green fluorescent
protein; GWAS, genome-wide association studies; HRP, horseradish
peroxidase; IP, immunoprecipitation; IgG, immunoglobulin G; KD,
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knockdown; LOAD, late-onset Alzheimer’s disease; N2a, Neuro2a;
mAb, monoclonal antibody; OE, overexpression; pAb, polyclonal
antibody; PBS, phosphate-buffered saline; PIC, protease inhibitor
cocktail; RIPA, radio-immunoprecipitation assay; RVS167, reduced
viability upon starvation protein 167; SDS-PAGE, sodium dodecyl
sulfate—polyacrylamide gel electrophoresis; SH3, src homology 3
domain; siRNA, small interfering RNA; SNX4, sorting nexin-4.
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