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Abstract 

Background:  Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. 
The current standard for diagnosing coronary artery disease (CAD) is coronary angiography. Surprisingly, despite 
well-established clinical indications, up to 40% of the one million invasive cardiac catheterizations return a result of 
‘no blockage’. The present studies employed RNA sequencing of whole blood to identify an RNA signature in patients 
with angiographically confirmed CAD.

Methods:  Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by single-molecule sequencing of 
RNA (RNAseq) to identify transcripts associated with CAD (TRACs) in a discovery group of 96 patients presenting for 
elective coronary catheterization. The resulting transcript counts were compared between groups to identify differen-
tially expressed genes (DEGs).

Results:  Surprisingly, 98% of DEGs/TRACs were down-regulated ~ 1.7-fold in patients with mild to severe CAD (> 20% 
stenosis). The TRACs were independent of comorbid risk factors for CAD, such as sex, hypertension, and smoking. 
Bioinformatic analysis identified an enrichment in transcripts such as FoxP1, ICOSLG, IKZF4/Eos, SMYD3, TRIM28, and 
TCF3/E2A that are likely markers of regulatory T cells (Treg), consistent with known reductions in Tregs in CAD. A 
validation cohort of 80 patients confirmed the overall pattern (92% down-regulation) and supported many of the 
Treg-related changes. TRACs were enriched for transcripts associated with stress granules, which sequester RNAs, and 
ciliary and synaptic transcripts, possibly consistent with changes in the immune synapse of developing T cells.

Conclusions:  These studies identify a novel mRNA signature of a Treg-like defect in CAD patients and provides a 
blueprint for a diagnostic test for CAD. The pattern of changes is consistent with stress-related changes in the matura-
tion of T and Treg cells, possibly due to changes in the immune synapse.
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Background
There are more than a million heart attacks each year, 
and 2200 Americans die of cardiovascular disease each 
day, about one person every 40  s [1]. Outward symp-
toms of coronary artery disease (CAD) are chest pain, 
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typically radiating down the left arm, and shortness of 
breath upon exertion. However, chest pain and dysp-
nea alone are not particularly specific warning signs. In 
a prospective analysis of patients presenting with chest 
pain, ultimately, many cases were determined to be mus-
culoskeletal (20%) or gastroesophageal reflux disease 
(GERD) (13%), while CAD was diagnosed in only 11% 
of cases, and the remaining cases were either pulmonary 
[2], neurological, or idiopathic [3]. The Framingham risk 
factors of advanced age, male sex, elevated cholesterol, 
smoking, and hypertension, are good predictors of long 
term risk (30 yr. risk, C statistic = 0.803) [4], but they are 
far less accurate in acute clinical settings at determining 
whether a person has CAD or not (C statistic = 0.667, 
where 0.5 is random chance) [5]. Thus, there is a tremen-
dous need for improvement in the diagnosis of CAD. 
From the more than one million cardiac catheteriza-
tions yearly, 622,000 result in interventions such as stent 
placement [6]. Despite the presence of CAD symptoms 
and other clinical tests suggestive of CAD, 20–40% 
of angiograms do not detect any occluded arteries [5, 
7–10]. The American College of Cardiology’s Registry, 
covering 398,978 patients, identified 39.2% of patients 
undergoing invasive coronary angiography (ICA) as hav-
ing less than 20% stenosis [5]. Thus, reliable blood-based 
biomarkers of CAD would have the potential to reduce 
the number of cardiac catheterizations on relatively low 
risk individuals.

Several prior microarray studies suggested that there 
is an RNA signature in blood associated with CAD 
[11–15]. However, the agreement between these stud-
ies on exactly which transcripts are modulated is quite 
low. Such discrepancies could have several explanations, 
but likely arise from cross-hybridization noise created by 
highly abundant signals, such as globins, which can over-
whelm true signals in microarrays [16], and likely mask 
changes of low magnitude, or larger changes in a  small 
subset of cells. Thus, the present studies employed 
a more advanced, single-molecule RNA sequencing 
(RNAseq) methodology to identify diagnostic tran-
scripts associated with CAD (TRACs). Using RNAseq 
of whole blood RNA, a novel pattern of gene expression 
changes was identified that is associated with the pres-
ence of CAD, but essentially unrelated to other known 
risks for CAD. This subset of TRACs is consistent with 
extensive accumulating evidence for a role of regulatory 
T cell (Treg) dysfunction as an important component in 
the etiology of CAD.

Methods
Experimental design
The studies take advantage of the fact that up to 40% 
of patients that undergo invasive coronary angiography 

(ICA) actually do not have meaningful coronary block-
age. The TRACs were identified by comparing the 
mRNA expression pattern of patients with CAD ver-
sus those without CAD. The strength of this model is 
that blood was taken prior to the catheterization, and 
the outcome of the angiography becomes known within 
hours, which provides an ideal learning environment 
for designing a transcriptome-based test. After the 
coronary angiograms were digitally interpreted by an 
attending physician, the patients were divided into 3 
groups, ≤ 20% stenosis (LOW CAD), > 20% but < 70% 
stenosis of any vessel (MID CAD), and ≥ 70% steno-
sis of any artery (CAD). For power and simplicity, ini-
tial analyses compared LOW CAD (< 20% stenosis) to 
MID+ (> 20% stenosis).

Patients
Discovery cohort
Patients presenting for non-emergent complaints of typi-
cal or atypical chest pain, exertional dyspnea, or other 
symptoms suggestive of CAD provided written, informed 
consent for participation in this study under a protocol 
approved by the George Washington University IRB. 
Patients with heart failure, non-ST segment elevation MI, 
and ST segment elevation MI (STEMI) were excluded 
from the study. The design of the study is shown sche-
matically in Fig.  1. Patients admitted for cardiac cath-
eterization had three Tempus blood RNA tubes collected 
by peripheral venipuncture or an indwelling catheter. 
After blood sampling, these studies were purely observa-
tional and did not alter in any way the patient’s clinical 
course. All relevant clinical data, including a complete 
blood count (CBC), was captured for comparison to the 
transcriptomic studies. From an initial enrollment of 
113 patients, 96 patients had complete clinical and RNA 
sequencing data for further analysis.

Validation cohort
An independent group of patients were consented at 
INOVA Fairfax Hospital (Fairfax, Virginia) who were 
likewise undergoing routine, elective ICA for evaluation 
of suspected CAD. A total of 80 patients had sufficiently 
complete clinical and RNAseq data for further analysis.

Clinical prediction model
Prior to ICA in the Discovery cohort, cardiac medi-
cal histories were examined by their attending cardi-
ologists to determine CAD risk factors, as defined by 
the 2013 ACC/AHA Guidelines on the Assessment of 
Cardiovascular Risk [17]. Hypertension was defined as 
a history of untreated blood pressure ≥ 140/90  mmHg 
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and/or treatment with anti-hypertensive medica-
tions. Diabetes mellitus was defined by fasting glucose 
of ≥ 126  mg/dl and/or use of insulin or oral hypogly-
cemic agents. Dyslipidemia was defined according to 
National Cholesterol Education Program Adult Treat-
ment Panel III guidelines or by treatment with lipid 
lowering medication. Current smoking status was 
defined by active smoking within 3  months of presen-
tation. A family history of CAD was defined as MI or 
cardiac death in a first-degree relative.

Chest pain was classified according to standard crite-
ria for angina pectoris as described [18]. Typical angina 
includes substernal, jaw, and/or arm pain upon exertion, 
and which resolves within 15  min of rest and/or use of 
nitroglycerin. Atypical angina involves 2 of these symp-
toms, and patients with non-cardiac chest pain experi-
enced 1 or none of these symptoms. Dyspneic patients 
were classified as having symptoms of a typical angina.

From these clinical parameters, risk points were accu-
mulated based on age, sex, hypertension, diabetes, symp-
tom type, family history, and smoking status, and then 
compared to an ordinal risk model to predict likelihood 
of CAD [18].

Transcriptome profiling
RNA processing
RNA was purified from Tempus stabilized frozen 
(− 80  °C) peripheral blood samples using Tempus Spin 

RNA Isolation Kit (ThermoFisher Scientific) according to 
the manufacturer’s protocol. After rigorous in-solution 
treatment with 4 Units of DNAse (Turbo DNA-free Kit, 
Ambion), the typical nucleic acid yield from 2.5 ml Tem-
pus blood tubes averaged ~ 5  µg, with an RNA integrity 
(RIN) score > 8 (10 is maximal) on Agilent 2100 Bioana-
lyzer. A fixed amount (4.5 ug) of the DNAsed total RNA 
was depleted of ribosomal RNA (rRNA) by Ribo-Zero 
rRNA Removal Kit (Illumina), then concentrated with an 
RNeasy MinElute column (Qiagen), resulting in ~ 500 ng 
RNA for sequencing.

RNA sequencing
For RNAseq, 100  ng of rRNA-depleted RNA was frag-
mented and analyzed on a Heliscope true single mol-
ecule sequencer (tSMS, SeqLL, Inc.). The raw reads, 
typically 40 million at 38  bp average length, were then 
computationally aligned to the human genome using the 
Helisphere indexDPgenomic aligner [19]. The number 
of reads that align to each transcript was counted and 
then corrected for transcript length and differences in 
total reads obtained per patient. The raw read count was 
adjusted by the size of the transcript so that long tran-
scripts do not appear more highly expressed than short 
transcripts, and by the number of total reads per sample 
to produce “Reads Per Kilobase of transcript, per Mil-
lion mapped” (RPKM) counts. Thus, RPKM corrects 
the expression level between samples that have different 
absolute numbers of reads. RPKM levels were imported 
into GeneSpring GX14 suite, without additional normali-
zation, to identify transcripts that differ between CAD 
groups (TRACs). Differentially expressed genes (DEGs) 
were identified by filtering low expression genes, and 
then applying a combined p-value/fold change thresholds 
using a Volcano plot, and Analysis of Variance (ANOV) 
in Genespring.

Comparison of blood RNA preservation/isolation methods 
by droplet digital PCR (ddPCR)
To determine whether TRACs were affected by the type 
of blood RNA preservation method, three Tempus and 
three Paxgene tubes were drawn from the same subjects 
at the same time. The samples were isolated according 
to manufacturer’s protocols, with the exception that the 
Paxgene samples were not DNAsed on column, instead 
using the Turbo DNA-free kits (Ambion) on total RNA 
as a separate step, so as to be comparable with RNA iso-
lated from Tempus tubes. After DNAse, the samples were 
repurified with RNeasy MinElute kit (Qiagen) and cDNA 
was reverse transcribed from 500  ng of RNA using the 
iScript cDNA synthesis kit (Bio-Rad). The synthesized 
cDNA was diluted 15× to 7  ng/µl and 5  µl per reac-
tion were used in ddPCR combined with 15  µl QX200 

Fig. 1  Schematic of study design. Patients presenting for elective 
invasive coronary angiography (ICA) due to suspicion of CAD were 
consented to determine whether RNA transcripts in blood could 
serve as biomarkers for CAD. Typically, patients reported chest pain 
or shortness of breath upon exertion. The results of the angiogram 
divided the patients into groups with little to no coronary blockage 
(< 20%, LOW CAD), or patients in which coronary blockage was 
detected (> 20%, MID+ CAD). The blood from the patients was 
frozen in Tempus blood RNA preservative, thawed, extracted for 
RNA, depleted of residual genomic DNA and ribosomal RNA, and 
genome-wide RNA transcript counting was performed by RNAseq. 
The two groups were compared to identify transcripts unique to the 
CAD patients. Images were created by the authors
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EvaGreen ddPCR Supermix (Bio-Rad) containing 1 µl of 
2.5 pmol primers diluted from the original stock of 100 
uM (pmol/uL). The ddPCR droplets were generated with 
Automated Droplet Generator and signals were amplified 
using the standard ddPCR protocols on a C100 Thermal 
Cycler (Bio-Rad).

The Paxgene versus Tempus cDNAs were then ana-
lyzed with a set of ‘invariant’ PCR targets (beta-actin 
(ACTB) and alpha-tubulin (TBA1)), selected TRACs 
(DGKA, DLG1, ICOSLG, IKZF4, SMYD3, TCF3, 
TRIM28), and selected targets unrelated to TRACs 
(DEFA3, SELL, SOD2, IL12A). The abundance of each 
transcript was expressed as a ratio of the copies/20 µl per 
target in Tempus vs Paxgene samples (n = 4 samples from 
3 subjects).

Results
Clinical parameters
Discovery cohort
From a total of 112 patients enrolled, 96 patients had 
sufficient RNA quantity and quality, and adequate RNA 
read depth for further analysis. The clinical parameters 
of those 96 patients were generally comparable between 
the LOW and MID+ CAD groups. After correction for 
multiple testing, there were no significant differences 
correlated with age, ethnicity, sex, BMI, current smok-
ing, hypertension, dyslipidemia, diabetes, or aspirin use 
(Table  1). However, there was a trend for the group of 
LOW CAD patients to be somewhat younger (57.5  yr 
LOW vs 62.5  yr MID+), and with fewer males (43.8% 
male LOW vs 56.2% male MID+). To consider any pos-
sible confounding variables, we performed separate 
comparative analysis of all major clinical parameters as 
regulators of transcript profiles in blood against selected 
TRACs.

Validation cohort
Patients were recruited from an ongoing cohort examin-
ing the relationship between DNA variations and CAD. A 
total of 80 patients had acceptable RNAseq data for fur-
ther analysis. This suburban Virginia cohort had some-
what different demographics, with mainly the minority 
composition dropping from more than 50% in Discovery 
group to less than 20% in the validation group, as shown 
in Table 2.

Analytical parameters
The yield of RNA and the number of reads per patient 
did not vary significantly, when multiple testing was 
considered (Table  1). Of the 112 samples submitted for 
sequencing, 16 were excluded due to low yield from RNA 
purification or ribosomal depletion, inefficient cDNA 
synthesis, or low yield of usable reads from RNAseq. 

There was a trend that was not statistically significant 
when corrected for multiple testing that the LOW CAD 
patients had slightly higher RNA yield (6.09  µg/tube 
LOW, vs. 4.82  µg/tube MID + CAD, p = 0.07 uncor-
rected) and higher read depth (p = 0.02 uncorrected) on 
RNAseq. Thus, these were considered as possible con-
founds in subsequent analysis.

Sources of variation in RNA yield
Patient blood samples collected with either Paxgene or 
Tempus RNA preservation tubes show a surprisingly 
large variation in the RNA yield, with Tempus generally 
producing higher total RNA yield [20]. The total nucleic 
acid yield from Tempus-preserved samples ranged 
from 0.6 to 35.0  µg/tube whole blood, with a mean of 
10.6  µg per tube of blood, with post-DNAse and Min-
Elute cleanup yield of ~ 5  µg RNA per tube (Table  1). 
The correlations between total nucleic acid yield and 
any single blood cell count parameter were quite weak, 
with only a modest correlation to absolute lymphocyte 
count (r = 0.55 with N = 112, R2 = 0.31) (Additional file 1: 
Fig.  S1). While one outlier with a lymphocyte count of 
12  K/µl yielding 35  µg of RNA seems to drive this cor-
relation, the correlation remains modestly positive even 
when that patient is omitted (r = 0.45 w/o). Thus, the 
lymphocyte count is the major factor in RNA yield, but 
accounts for only about 30% of the variability.

Whole blood RNA biomarkers
The RNAseq data was subjected to minimal normaliza-
tion, using only the raw RPKM data for analysis. When 
sequencing was completed, the GRCh37/hg19 assembly 
was the most fully annotated in our lab. The RNAseq 
reads were aligned, and then parsed and counted 
against the 161,038 transcripts in hg19. Transcripts 
with very low-level expression were filtered by requir-
ing RPKM > 0.01 in 70% of the samples of at least one 
group, which had a minimal impact on the number of 
included transcripts (157,943). Dividing the samples by 
CAD level ≤ 20% (LOW, n = 48) versus > 20% (MID+, 
n = 48) and averaging across patients yielded the geomet-
ric mean expression per group per transcript, as shown 
in Fig.  2. Remarkably, without any normalization per 
sample beyond RPKM, the RNAseq data shows excel-
lent linearity over 23 log2 orders of magnitude, with the 
highest level of gene expression observed for hemoglobin 
B, at an average of RPKM of ~ 65 K (16 in log2 scale) in 
both groups. Compared to typical microarray data, the 
RNAseq shows less noticeable increases in variability at 
low levels of gene expression, and no detectable satura-
tion of the signal at very high gene expression.
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Table 1  Patient demographics: discovery cohort

Coronary artery stenosis

Low MID+ P value*

Mean S.E.M Mean S.E.M uncorrected

N per group 48 48

Age (years) 57.5 1.49 62.5 1.41 0.02*

Race (% minority) 62.5 45.8 0.10

Sex (% male) 45.8 56.2 0.31

BMI 34.7 1.32 31.4 0.97 0.05*

Current smoker (%) 8.3 14.6 0.34

Hypertension (%) 70.8 75.0 0.86

Systolic BP 135.85 3.02 137.05 3.80 0.81

Diastolic BP 72.67 1.66 72.67 1.83 1.00

Dyslipidemia (%) 58.3 70.8 0.28

Total Chol. (mg/dL) 180.50 4.80 167.09 4.91 0.62

LDL Chol. (mg/dL) 109.00 4.49 95.64 4.74 0.61

VLDL Chol. (mg/dL) 13.00 0.61 23.45 1.60 0.23

HDL Chol 51.00 0.61 47.82 1.40 0.67

Tri-glycerides 66.00 3.06 117.45 7.97 0.23

Creatine kinase-(U/L) 152.00 19.60 172.75 19.78 0.87

Diabetes (%) 35.4 33.3 0.83

Aspirin (%) 52.1 62.5 0.21

PTT (s) 29.77 0.60 30.96 0.67 0.19

PT (s) 12.97 0.24 13.13 0.41 0.74

INR 0.99 0.02 0.96 0.01 0.26

WBC (× 103/uL) 6.99 0.35 6.92 0.36 0.89

RBC (× 106/uL) 4.63 0.07 4.37 0.07 0.02*

Hemoglobin (g/dL) 13.19 0.17 13.16 0.24 0.91

Hematocrit (%) 39.79 0.48 39.02 0.62 0.33

MCV (fL) 85.94 0.75 89.01 0.69 0.01*

MCH (pg) 28.45 0.30 30.00 0.26 0.00*

MCHC (g/dL) 33.06 0.17 33.70 0.18 0.02*

RDW (%) 14.16 0.25 13.03 0.27 0.01*

Platelet Count (× 103/uL) 249.81 8.08 228.98 8.84 0.09

MPV (fL) 10.63 0.13 10.57 0.14 0.76

Seg. neutrophils (%) 56.34 1.83 62.30 1.59 0.03*

Lymphocyte % 32.76 1.74 26.21 1.38 0.01*

Eosinophil % 2.34 0.19 2.33 0.26 0.96

Basophil % 0.40 0.07 0.24 0.07 0.17

Abs. seg. neutrophils (× 103/uL) 4.08 0.24 4.53 0.32 0.31

Abs. lymphocytes (× 103/uL) 2.42 0.25 1.72 0.09 0.02*

Abs. eosinophils (× 103/uL) 0.16 0.01 0.16 0.02 0.95

Absolute basophils (× 103/uL) 0.04 0.00 0.03 0.00 0.22

Auto monocyte % 7.53 0.34 8.35 0.39 0.15

Auto monocyte # (× 103/uL) 0.53 0.03 0.56 0.03 0.51

Immature granulocytes % 0.24 0.02 0.25 0.02 0.62

RNA yield (ng/ul) 50 ul total 121.72 11.1113 96.48 7.50 0.07

Yield (ug/2.5 ml tube) 6.09 4.82

Total RNAseq reads 6.08E+07 4,189,732 5.35E+07 3,691,059 0.19

Filtered reads 2.44E+07 1,876,258 2.02E+07 1,522,361 0.09

Aligned reads (informative) 8.75E+06 773,714 6.65E+06 474,229.5 0.02*
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Identification of differentially expressed RNA biomarkers 
for CAD
The 96 samples in the Discovery cohort were divided into 
LOW CAD (< 20% stenosis, N = 48) versus MID + CAD 
(> 20% stenosis, N = 48). The transcripts were filtered to 
exclude low expression transcripts (< 0.01 RPKM) and 
then compared by ANOV (p < 0.001) to identify a small 
set of differentially expressed genes (DEGs). This initial 
filtering identified 198 transcripts that include the 59 
transcripts highlighted in BLACK in Fig. 2 and detailed 
in Additional file 2: Table S1.

By filtering the 198 transcripts for those which had 
a > 20th percentile absolute level of expression (RPKM 
percentile) in both groups, the list was narrowed to 96 
transcripts with higher absolute expression. Of those 96 
transcripts, 51 showed a greater than 1.4-fold decrease in 
the MID + CAD group, which became the parent list for 
identifying smaller sets of CAD-related transcripts. This 
combined fold-change/t-test strategy has been estab-
lished in large, multicenter control studies using spiked 
samples as a reliable approach to identify true differences 
[21].

Comparison of TRACs relative to transcripts related 
to clinical risk factors
Because CAD has several known risk factors, such as 
hypertension, smoking, and dyslipidemia, the relation-
ship of TRACs to these other parameters was deter-
mined. While not strictly statistically significant, the 
demographic analysis suggested that the LOW CAD 
group tended to be younger, heavier, and more female. 
For comparison purposes, classifying the 96 patients by 
sex (48 M, 48 F) irrespective of CAD status, and using a 
combined filter for > threefold change and p < 0.05 (uncor-
rected), the analysis identified 84 transcripts that were 
‘sex-specific’ (Additional file  2: Table  S2). This  included 
transcripts from the X (XIST) and Y chromosomes, and 
yielded an PLSD prediction model that was 97% accurate 
(100% accurate for males, 95% for females), simply con-
firming that the RNAseq data can readily detect obvious 
biological differences.

Using a similar approach, RNA biomarkers lists were 
constructed for age (young < 60 YO), hypertension, dys-
lipidemia, BMI, smoking, diabetes, and aspirin use. 

Table 2  Patient demographics: validation cohort

Coronary artery stenosis

Low MID+ P value

Mean S.E.M Mean S.E.M uncorrected

N per group 37 43

Sex (% male) 62.16% 51.16% 0.32

Age (years) 62.89 1.74 67.61 1.79 0.06

Race (% minority) 16.22% 9.30% 0.99

Hispanic (%) 5.41% 2.33% 0.47

Height (cm) 173.54 2.12 170.39 1.57 0.23

Weight (kg) 96.11 4.69 86.59 3.25 0.09

BMI 32.01 1.57 29.83 1.04 0.24

SBP 124.62 2.58 127.42 3.02 0.49

DBP 70.19 1.67 68.58 1.40 0.46

MAP 88.35 1.67 88.23 1.68 0.96

HR 69.68 1.95 71.00 2.17 0.66

Heart Rate 69.68 1.95 71.00 2.17 0.66

EF % 54.70 1.67 58.16 1.51 0.13

Dyslipidemia 43.24% 65.12% 0.05*

Hypertension 67.57% 67.44% 0.99

Diabetes mellitus 21.62% 23.26% 0.86

Smoking 5.41% 11.63% 0.33

Aspirin 48.65% 76.74% 0.01*

Creatinine 0.96 0.04 0.98 0.04 0.69

%Stenosis 1.57 0.48 66.79 3.97 6.50E − 25*

RNA yield (ng/ul) 81.36 2.34 84.54 2.15 0.32

Total RNA/tube (ng) 7322.59 7608.50

Fig. 2  Genome-wide transcript profiling by RNAseq. A total of 96 
patients with angiographic results were analyzed by RNAseq of 
whole blood RNA depleted of ribosomal sequences. The short reads 
were aligned to the human transcriptome (hg19) and counted per 
transcript. The raw read counts (R) were normalized only by (Per) the 
length of the transcript (K) and the total number of reads obtained 
per patient in millions (M) to yield RPKM. The RPKM is expressed 
on a log2 scale and averaged across all patients in the LOW CAD 
group (n = 48, X axis) versus patients in the MID+ CAD group 
(n = 48, Y axis). Each point represents one transcript where the RPKM 
was > 0.01 RPKM in 70% of samples in at least one group (157,943 
transcripts). Black points represent a set of transcripts identified as 
differentially expressed between the 2 groups by a statistical analysis 
of fold-change and t-test probability (p < 0.001 uncorrected, and fold 
change > 1.5) resulting in 59 transcripts (49 unique, non-redundant)
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While each biomarker list showed interesting changes in 
RNA expression levels, there was very minor overlap with 
the TRAC list (Fig. 3). Five transcripts (ABCF2, CHST10, 
FAM129C, MAST4, TEX41) were sensitive to CAD and 
BMI, even though, to minimize confounding, the BMI list 
was derived from LOW CAD patients only. SMYD3 was 
identified as sensitive to the age of the subject, albeit with 
an alternative transcript ID compared to the TRAC list. 
However, the direction of the change, whereby SMYD3 
increased with age, is opposite to the change expected on 
the basis of the age of the patients with CAD, and thus, 
age is somewhat offsetting the CAD effect on SMYD3. 
Aspirin use was more common in the MID+ group, 
but its correlation with TRACs was statistically non-
significant. Two transcripts were identified that were 
both TRACs and aspirin-sensitive: CHST10 (decreased 
only at 81 mg/day dose) and NT5C3B (decreased only at 
325 mg/day dose). In general, however, there was little to 
no evidence that the TRACs are related to other known 
clinical correlates of CAD.

Relationship of TRACs to demographic/clinical predictors 
of CAD
Further, a statistical covariate analysis was conducted, 
observing that within the LOW or MID + groups, the 
TRACs were not significantly affected by the clinical 
variables. The CAD status was highly significantly related 
to TRAC score (p = 7.78E−11), while among the other 
risk factors for CAD, only age was a significant factor for 
TRAC score (p = 0.012), thus confirming that the TRACs 
appear to be largely independent of known risk factors 
for CAD in this cohort (Additional file 1: Fig. S2). Explor-
ing the bivariate relationship between age and the TRAC 

score, there is a slightly negative slope of − 1.22 and R2 of 
0.056 (p = 0.021, n = 96, Additional file  1: Fig.  S3). This 
impact of age is consistent with the use of age and sex in 
other gene expression models of CAD [22].

Relationship of TRACs to analytical variables
In addition to the clinical covariates, the potential con-
tribution of analytical/technical variables was considered. 
Two factors were identified that might affect the types of 
transcripts: 1) the MID+ patients tended toward lower 
RNA yield and 2) fewer informative (non-rRNA) reads 
(LOW = 8.7  M reads, MID+ = 6.7  M reads, p = 0.02). 
The likely cause of this difference is the observed differ-
ence in lymphocyte counts between groups, which is the 
primary source of RNA yield (Additional file 1: Fig. S1), 
and potentially in read depth. To determine whether read 
depth could contribute to the DEGs, the patients with 
read depth of < 5 M informative reads (n = 25) were com-
pared to patients with > 5 M reads (n = 71) and analyzed 
in a similar manner for DEGs. Not surprisingly, a large 
number of differentially expressed transcripts were iden-
tified (1008). However, only 8 transcripts from the 198 
TRAC list were sensitive to read depth (APOL4, APTX, 
C5ORF60, HIF3A, MYO19, NPAS2, RRP12, TMEM67), 
and this is somewhat confounded by an increased num-
ber of MID+ in the low depth group. Thus, it is unlikely 
that read depth explains the observed pattern of expres-
sion in the TRACs.

Interpreting the TRAC signature
To understand the TRAC signature, the 198-transcript 
list (Additional file  2: Table  S1), generated by analysis 
of the complete cohort, was subjected to an in-depth 

Fig. 3  Relationship between TRACs and transcripts identified for clinical risk factors. To determine whether the TRACs (CAD, LOW vs MID+ High, 198 
transcripts) were sensitive to known risk factors for CAD, the 96 patients were separated into new groups based on their current smoking (yielding 
381 transcripts), aspirin use (324), dyslipidemia (250), age (41), sex (81), and BMI (198). In the case of age, sex, and BMI (right cluster), only the LOW 
CAD patients were analyzed (n = 48) to prevent confounding with CAD
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analysis. A surprising finding was that 195 of 198 tran-
scripts (98.5%) were down-regulated in the MID and 
HIGH (MID+) CAD patients, a pattern that rarely 
occurs in RNA expression analysis, where there is typi-
cally a balance between increased and decreased tran-
scripts. Furthermore, the changes are essentially all of 
the same magnitude (mean =  ~1.7 fold). A similar, but 
slightly less stringent analysis, using a T-test/fold change 
filter between the LOW vs MID+ groups identified 461 
transcripts, largely overlapping with the 198-gene list, 
but containing some additional markers of interest, 
including FLYWCH1, as discussed below (Additional 
file 2: Table S3).

Discriminant ability of TRACs for clinical CAD
A partial least squares discriminant (PLSD) model build 
on these 198 transcripts was very accurate at discrimi-
nation between groups, showing an overall accuracy of 
98.9% (100% for LOW, 97.9% for MID+). This remained 
fairly robust even with N-fold internal validation, yielding 
overall accuracy of 80% (77% for LOW, 83% for MID+). 
Using a smaller 96 transcript set, with higher fold change, 
did not improve the predictive ability of the PLSD model 
built on it, with overall accuracy of 93% (92% for LOW, 
94% for MID+), but still produced a quite powerful test, 
with fewer transcripts. However, these complex polyno-
mial models are able to fit almost any classification, and 
thus, to minimize ‘over-fitting’, a much simpler linear 
model was built using predetermined transcripts con-
nected to T cell function.

This smaller linear model employed 7 transcripts based 
on known relevance to T cell function (DGKA, DLG1, 
ICOSLG, IKZF4/Eos, SMYD3, TCF3, TRIM28) that were 
normalized to their average expression level, and then an 
average composite score was calculated (Fig.  4, Upper 
Right Panel). The composite score of 7 transcripts was 
highly significant between groups (p = 6.02 × 10−12), and 
a simple linear prediction model yielded a receiver-oper-
ator curve (ROC, via JROCFIT [23]) with a C-statistic of 
0.873, sensitivity of 77.4%, specificity of 83.7% and overall 
accuracy of 80.2%, with a positive predictive value (PPV) 
of 85.4% and negative predictive value (NPV) of 75.0% 
(Fig.  4, Lower Right Panel). By comparison, a purely 
clinical model using 7 predictors had a C-statistic of only 
0.636, with 55.6% sensitivity, 53.3% specificity, 54.2% 
overall accuracy, 41.7% PPV, and 66.7% NPV (Fig.  4, 
Lower Left Panel). A combined clinical (age) and TRAC 
model yielded a much stronger C-stat of 0.917.

Expression changes in relation to GWAS findings
A variety of GWAS studies have been conducted using 
various types of atherosclerotic disease or strongly 
related risk factors, and approximately 150 loci have 
some reported association with CAD. Several of the 
TRACs were essentially identical to prior GWAS loci 
containing variants associated with cardiovascular or 
immune variables (Table 3). For instance, alpha-1-B gly-
coprotein (A1BG) associates with hepatocyte growth 
factor levels in the MESA cohort [24], and with adverse 
cardiovascular outcomes during antihypertensive ther-
apy [25]. C6ORF10 associates with susceptibility to 
CAD in Chinese Han [26], Cadherin 13 (CDH13) has 
SNPs which associate with multiple CAD risks [27, 28], 
COMM domain-containing 5 (COMMD5) has been 
identified in rodent models as associated with hyper-
tension [29], the fibrillin 3 locus (FBN3) associates with 
metabolic syndrome in the Framingham cohort [30], and 
the FCH and double SH3 domains 2 (FCHSD2) locus has 
been associated with systemic lupus erythematosus (SLE) 
[31], an autoimmune disease frequently complicated by 
aggressive atherosclerosis. The methylenetetrahydro-
folate dehydrogenase 1-like (MTHFD1L) Rs6922269 SNP 
predicts mortality after acute coronary syndrome [32], 
and is a known risk loci for CAD [33]. Phospholipase A2 
group 10 (PLA2G10) is also a known CAD risk loci in 
humans [34] and mice [35]. Psoriasis is a well-established 
risk for CAD, and the psoriasis susceptibility 1 candidate 
1 (PSORS1C1) gene expression is reduced in the present 
CAD cohort, and its locus is associated with psoriasis 
[36], rheumatoid arthritis [37], and capillary leak [38], 
and was recently associated with cardiometabolic param-
eters [39]. Serpin peptidase inhibitor D (SERPIND1, hep-
arin cofactor II) levels have been associated with in-stent 
restenosis of peripheral arteries [40], and the staining for 
SERPIND1 in human coronary lesions was correlated 
with the degree of atherosclerosis in the PDAY study 
[41]. Notably, Flywich-type zinc finger 1 (FLYWCH1), 
was identified by the CARDIOGRAM consortium as a 
driver eQTL risk loci for CAD in vascular and adipose 
tissues [42]. Thyroid adenoma associated (THADA) was 
identified in a functional expression analysis of a human 
beta cell line as potentially relevant to type II diabetes 
[43]. Thus, GWAS and expression studies suggest that 
several of the whole blood mRNA expression changes 
correspond with previously published SNPs for CAD, or 
CAD risk factors, such as hypertension, SLE, type 2 dia-
betes, and psoriasis.

Ontology/pathway analysis of TRACs
The 198-gene list was more fully annotated by both 
automated and manual literature mining and genome 
analysis. Several levels of analysis were employed. 
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Initially, because the DEGs tended to all be decreased 
by a similar magnitude, transcripts were examined to 
determine whether they were indicative of a particular 
cell type present in blood that might be associated with 
CAD. At least 17 of the TRACs were readily associated 
with T-cell function (Table  4, upper). Notably, CYTIP 
and PLCG1 have known interactions with the T cell 
receptor (TCR) signaling [44, 45]. Likewise, DLG1 and 
PPARA are well established regulators of T-cell func-
tion, and TIA1 is an intracellular antigen which marks 
cytotoxic T-cells [46–48].

As shown in the lower half of Table  4, another 10 
transcripts suggest that TRACs might be most closely 
associated with regulatory T cells (Treg). Several strong 
indications are provided by transcripts such as IKAROS 

family zinc finger 4 (IKZF4, aka Eos), which is consid-
ered a signature transcript for the Treg cell subset [49], 
and which is important in controlling Treg transition 
into T-helper (Th) cells [50]. IKZF4/Eos is thought to 
be a required corepressor for the FoxP3-dependent 
gene silencing that is necessary for maintaining the 
stable Treg phenotype [51]. Likewise, Set and Mind 
domain containing 3 (SMYD3) is also involved in epi-
genetic control of FoxP3 expression [52]. Further, 
TCF3, aka E2A, is a major transcription factor con-
trolling FoxP3 expression [53], and TRIM28 has been 
identified as a member of the FoxP3 transcriptional 
complex [54]. Given that FoxP3 is considered the hall-
mark of Treg cells [55], alterations in the expression of 

Fig. 4  Clinical versus RNA predictors of CAD. a Conventional clinical predictors of CAD plotted for each group in the upper panel, showing Age 
(decades/10), Sex (%Male), Symptom type (typical/atypical), Diabetes (%), Hypertension (HTN, %), Family History of CAD (%), and current Smoking 
(%). A cumulative CAD risk score is calculated for each patient based on the method of Min et al. and divided by 10 for graphic purposes. The 
relationship between the cumulative risk score and CAD was calculated by the Receiver Operator Characteristic (ROC) and a confusion matrix to 
identify the accuracy of the method (lower left). b The performance of 7 RNA transcripts as their gene symbols (i.e. DGKA, DLG1) expressed as the 
RPKM by CAD group. A cumulative score was computed expressing each transcript as a ratio to the mean of its expression in the entire group, 
to prevent highly expressed transcripts from being over-represented. For graphic purposes, the TRIM28 and Cumulative scores are /10. In the 
lower panel, the relationship between the cumulative TRAC score (constant-TRAC, to create positive ROC) and angiographically-confirmed CAD is 
analyzed by ROC similar to the clinical model for the 48 patients in each group



Page 10 of 20McCaffrey et al. BMC Med Genomics          (2021) 14:216 

these transcripts suggest that changes in the abundance 
of the Treg population may contribute to the TRAC 
signature.

Cell type‑specific RNA markers in relation to CAD level
To explore a potential cell type hypothesis more directly, 
published microarray analysis of purified human blood 
subsets have identified cell type-specific mRNAs [56], 
which were cross-referenced to the current RNAseq tran-
scriptome, and used to build a composite index of ~ 15 to 
20 mRNAs relatively unique to each subtype. As shown in 
Fig. 5, a composite index of RNA expression levels shows 
a trend toward lower expression of lymphocyte markers 
in patients with MID to HIGH CAD. This trend is main-
tained in T-cells, and specifically in CD8 + T-cells, but is 
not observed in B-cell or granulocyte-related transcripts.

TRACs do not appear to be markers of circulating 
progenitor cells
There is a substantial literature [57], summarized in 
Additional file  2: Table  S4, that consistently reports 
reductions in circulating progenitor cell (CPC) popula-
tions in patients with stable CAD [58, 59], or preclinical 
atherosclerosis [60]. The major cardiovascular risk factors 
are associated with reduced numbers and activity of CPC 

[61]. Conversely, circulating endothelial progenitor cells 
(EPC) are increased in acute MI cases [62]. However, it is 
unlikely that a decrease in EPC numbers, which are rare 
(< 1%), could cause the substantial shift in RNA levels, 
detected in whole blood. Nonetheless, the RNAseq data 
was analyzed for changes in recognized markers of EPC 
and CPC, such as CD34, cKit, PROM1/AC133, and KDR, 
and the RNA levels are shown in Additional file 1: Fig. S4. 
There was no systematic change detectable: CD34 and 
cKit were slightly elevated in MID + CAD, while KDR 
and AC133 were decreased by comparable amounts.

The expression of consensus Treg markers by CAD level
A second potential explanation for TRACs as mark-
ers of a specific cell type is that there are known reduc-
tions in the Treg subset of lymphocytes in atherosclerosis 
[63]. An extensive literature documents reduced Treg 
abundance, and a relative imbalance in Treg vs T effec-
tor (Teff) cells in patients with CAD (summarized in 
Additional file 2: Table S5) [63, 64]. To test for the poten-
tial changes in Treg, the mRNA levels of known Treg 
markers was analyzed in the CAD groups. As shown in 
Fig. 6, five established markers of Treg cells, FoxP3, CD4, 
CD25, ETS1, and RUNX1, showed a stepwise decrease in 
mRNA expression from LOW, MID, to HIGH CAD. By 

Table 3  TRACs with known GWAS or expression associations

Gene name p value Fold Fold Expression (RPKM) Symbol Description RefSeq

HvsL MvsL HIGH MID LOW

uc061drv.1 2.93E−04 1.01↑  − 4.97↓  − 1.24  − 3.56  − 1.25 A1BG alpha-1-B glycoprotein NM_130786

uc059ulu.1 5.07E−04  − 1.57↓  − 2.22↓  − 0.71  − 1.21  − 0.06 BBS2 Bardet–Biedl syndrome 2 NM_031885

uc061wwa.1 6.36E−04  − 1.44↓  − 1.39↓  − 0.29  − 0.23 0.24 BLCAP Bladder cancer associated protein NM_001167820

uc063nqr.1 3.79E−04 1.29↑  − 3.35↓  − 5.67  − 7.78  − 6.04 C6orf10 Chromosome 6 open reading frame 10 NM_001286474

uc059xrj.1 1.45E−04  − 2.97↓  − 8.68↓  − 2.86  − 4.41  − 1.29 CDH13 Cadherin 13 transcript variant 5 NM_001220491

uc064rqz.1 8.12E−04  − 1.46↓  − 1.57↓ 0.09  − 0.01 0.64 COMMD5 COMM domain containing 5 NM_001081004

uc060std.1 7.00E−04 1.21↑  − 6.37↓  − 2.71  − 5.66  − 2.99 FBN3 fibrillin 3 NM_032447

uc058fep.1 6.63E−04  − 1.37↓  − 1.52↓  − 0.02  − 0.18 0.43 FCHSD2 FCH and double SH3 domains 2 NM_014824

uc058vgw.1 2.07E−04  − 1.69↓  − 1.83↓  − 2.04  − 2.15  − 1.28 MMP17 Matrix metallopeptidase 17 NM_016155

uc063sgp.1 7.99E−04  − 2.35↓  − 6.59↓  − 2.57  − 4.06  − 1.34 MTHFD1L Methylenetetrahydrofolate dehydrogenase 1L NM_001242768

uc059rbn.1 8.11E−04  − 1.42↓  − 1.91↓ 1.87 1.45 2.38 PLA2G10 Phospholipase A2, group X NM_003561

uc063mxz.1 3.53E−04  − 4.06↓  − 5.22↓  − 3.46  − 3.82  − 1.44 PSORS1C1 Psoriasis susceptibility 1 candidate 1 NM_014068

uc059xcn.1 9.57E−04  − 1.43↓  − 1.59↓  − 0.58  − 0.73  − 0.06 RFWD3 Ring finger and WD repeat domain 3 NM_018124

uc062bvk.1 8.81E−04  − 1.52↓  − 1.42↓  − 0.80  − 0.69  − 0.19 SERPIND1 Serpin peptidase inhibitor D, heparin cofactor NM_000185

uc001zwr.5 9.10E−04 1.02↑ 1.67↑ 0.59 1.30 0.56 SLC12A1 Solute carrier family 12A1 NM_000338

uc064wao.1 3.99E−04  − 1.80↓  − 1.66↓  − 1.08  − 0.96  − 0.23 SLC25A25 Solute carrier family 25 A25 NM_052901

uc063fxo.1 5.55E−04 1.02↑  − 1.81↓ 0.47  − 0.41 0.44 SLC25A46 Solute carrier family 25 member 46 NM_001303250

uc062iym.1 2.16E−04  − 2.20↓  − 1.14↓  − 0.19 0.76 0.95 SLC6A20 Solute carrier family 6 (proline transport) NM_022405

uc061irb.1 5.78E−05  − 2.01↓  − 1.74↓  − 1.11  − 0.91  − 0.10 THADA Thyroid adenoma associated NR_073394

uc060vxm.1 4.76E−06  − 3.08↓  − 10.76↓  − 2.48  − 4.28  − 0.86 TMEM161A TRANSMEMBRANE protein 161A NM_001256766

uc061you.1 1.46E−04  − 1.45↓  − 1.61↓  − 0.91  − 1.07  − 0.38 ZGPAT Zinc finger, CCCH-type with G patch domain NM_181485
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comparison, the expression of an irrelevant marker, such 
as the prostaglandin E receptor 3 (PTGER3), does not 
show this CAD-related trend.

TRACs correlate with FoxP3 and other Treg markers
To further understand whether the TRACs are related 
to Treg cell changes, the expression levels of FoxP3 were 
correlated with 24 other known Treg markers or TRACs 
across all 96 patients (Additional file  2: Table  S6). The 
strongest correlations of FoxP3 occurred with AHRR 
(0.72, TRAC), CD8A (0.53), PDCD1 (0.48), ICOSLG 
(0.41, TRAC), RUNX1 (0.36), and PSORS1C1 (0.35, 
TRAC) (all p < 0.001), while other known Treg markers, 
such as IKZF4/Eos (0.13, p > 0.2, TRAC), showed weaker 
correlations. For reference, 2 splice variants of ICOS are 
correlated at 0.87, and 2 variants of B3GAT1 are corre-
lated at 0.64. Furthermore, the levels of ICOS and ICOS-
LG mRNA in whole blood are reduced comparably to 
FoxP3 in both the MID and HIGH CAD groups (Addi-
tional file  1: Fig.  S5). Thus, the expression of several of 

the TRACs (AHRR, ICOSLG, PSORS1C1), correlate with 
FoxP3 RNA levels in these patients to a degree similar 
to or better than other known Treg markers (RUNX1, 
IKZF4/Eos).

Treg/Teff cell ratio relative to TRAC RNA expression
To determine whether a reduction in Treg cell counts 
in blood would be sufficient in magnitude to produce 
the observed changes in RNA levels, 8 publications 
that reported Treg percentages in normal and CAD 
patients, such as unstable angina or acute coronary syn-
drome (ACS), were reviewed, and the change in Treg 
percentage was computed (Additional file  2: Table  S5). 
The average Treg abundance, typically defined as 
CD4+CD25+CD127low by flow cytometry, was 4.7% in 
normal, but decreased to 3.2% in CAD or unstable angina 
(30.3% reduction). This reduction in Treg abundance 
would translate to a 1.43-fold difference in Treg RNA 
levels, assuming that these markers are relatively unique 
to Tregs. Thus, the 1.47-fold reduction in mRNA for the 

Table 4  TRACs related to T cell and Treg function

Gene name p value Fold HvsL Symbol Description RefSeq

Related to T cell function

uc064mjf.1 8.03E−04  − 1.24↓ AP3M2 adaptor-related Protein 3, mu 2 NM_006803

uc061mig.1 6.28E−04  − 1.21↓ CHST10 Carbohydrate sulfotransferase 10 NM_004854

uc061otq.1 1.03E−04  − 1.47↓ CYTIP Cytohesin 1 interacting protein NM_004288

uc058pdy.1 7.75E−04  − 1.36↓ DGKA Diacylglycerol kinase, alpha NM_201554

uc062seb.1 9.10E−04  − 1.18↓ DLG1 DISCS, large homolog 1 NM_001204386

uc057gll.1 5.73E−04  − 1.73↓ EPS15 EGF receptor pathway substrate 15 NM_001981

uc063okh.1 1.65E−04 1.12↑ FOXP4-AS1 FOXP4 antisense RNA 1 NR_126417

uc062dbe.1 3.38E−04  − 1.56↓ GATSL3 GATS protein-like 3 NM_001037666

uc059uvj.1 5.04E−04 1.44↑ GPR56 Adhesion G prot-coupled recep G1 NM_001145774

uc062xlo.1 2.87E−04  − 1.15↓ NUP54 Nucleoporin 54 kDa NR_103781

uc057jvt.1 6.40E−04  − 1.51↓ PHGDH Phosphoglycerate dehydrogenase NM_006623

uc061xai.1 5.74E−04  − 1.75↓ PLCG1 Phospholipase C, gamma 1 NM_182811

uc062fel.1 1.70E−04  − 1.09↓ PPARA​ perox. prolif. activated rec. a NM_001001928

uc058jqr.1 9.54E−04  − 1.26↓ RAD52 RAD52 homolog NM_001297421

uc064bpk.1 5.85E−04  − 1.30↓ SCIN Scinderin NM_033128

uc061kij.1 8.52E−04  − 1.45↓ TIA1 Cytotoxic granule-assoc. RNA BP NM_022173

Relevant to Treg and/or FoxP3

uc063bvz.1 9.62E−05  − 1.25↓ AHRR Aryl-hydrocarbon rec. repressor NM_001242412

uc058uor.1 8.95E−04  − 1.38↓ HIP1R Huntingtin interact. prot.1 related NM_003959

uc061yty.1 1.48E−04  − 1.62↓ ICOSLG Inducible T-cell costimulator ligand NM_001283052

uc058pgk.1 8.59E−04  − 3.36↓ IKZF4 IKAROS family zinc finger 4 (Eos) NM_022465

uc063ljh.1 9.84E−04  − 1.59↓ IRF4 Interferon regulatory factor 4 NM_001195286

uc063ady.1 5.93E−04  − 1.34↓ LRBA LPS-responsive, beach anchor NM_006726

uc057qye.1 2.67E−04  − 1.35↓ SMYD3 SET and MYND domain containing 3 NM_022743

uc057jcy.1 5.62E−04  − 1.55↓ STRIP1 Striatin interacting protein 1 NM_001270768

uc061duf.1 4.36E−04  − 1.33↓ TRIM28 Tripartite motif containing 28 NM_005762

uc060rek.1 4.39E−04  − 1.39↓ TCF3 Transcription factor 3 NM_003200
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consensus FoxP3 marker, and the ~ 1.7-fold reduction in 
the TRACs, is quite consistent with the reported reduc-
tion in Treg cell numbers in CAD.

TRACs and Treg markers are sensitive to RNA stabilization 
procedures
Given that the Treg imbalance data has been reported 
from multiple labs worldwide, it is curious that changes 
in established Treg markers have not been reported in 
any prior publications using expression profiling of blood 
from patients with stable CAD. One possible explanation 
is that RNAseq is potentially much more sensitive than 
microarray methods, allowing these low abundance mes-
sages to be detected more accurately. A second consider-
ation is that, to our knowledge, all prior CAD microarray 
studies were conducted using RNA stabilized and iso-
lated from Paxgene preservative tubes, while the present 
studies employed Tempus preservative tubes. In the cur-
rent studies, Tempus tubes were selected due to studies in 
our lab, and others, showing a ~ 10 to 20% better yield of 
RNA at 20% lower cost and 40% less time [65, 66]. Based 
on prior studies demonstrating quite marked changes in 
gene expression profiles based on the RNA stabilizer [20, 
65, 66], the effect of the RNA stabilizer was examined 
for its impact on TRACs versus neutrophil transcripts 
(DEFA3) and other selected markers (IL12A, SELL, 

Fig. 5  Expression of cell-type specific transcripts as a function of CAD 
status. Transcripts with relative specificity toward particular blood 
cell subsets was curated from published studies. The expression 
level (RPKM) of those transcripts (10–15 per cell type) in the RNAseq 
data was calculated and averaged for each cell type. The average 
expression was calculated for patients in 3 groups of CAD severity, 
LOW (n = 48), MID (n = 28), or HIGH (n = 20)

Fig. 6  RNA levels of markers for Treg cells as a function of CAD level. The expression levels (log2 RPKM) of 5 known Treg markers (FoxP3, CD4, CD25, 
ETS1, Runx1) and 1 control (PTGER3) is plotted for 3 groups of patients with LOW (≤ 20% stenosis, n = 48), MID (21–69% stenosis, n = 28), or high 
CAD (≥ 70% stenosis, n = 20). Points are mean per group with bars ± s.e.m
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SOD2, TBA1, ACTB). As shown in Additional file  1: 
Fig. S6, blood from the same normal subjects at the same 
time, but collected into two different collection/stabilizer 
tubes, showed marked differences in the levels of mRNAs 
measured by droplet digital PCR (ddPCR). Several of the 
TRACs, such DGKA, DLG1, ICOSLG, and TCF3, were 
detected ~ 4 to sixfold more efficiently in blood RNA iso-
lated from Tempus versus Paxgene tubes. Chemically, 
the Paxgene tubes are based on a cationic detergent that 
creates micellar-like structures that protect RNA, while 
Tempus uses the strong chaotrophic effects of guanidine-
based salts to denature RNAses and dissolve RNA/pro-
tein complexes. Thus, the Tempus/chaotrophic approach 
appears to isolate Treg-related mRNAs better than the 
Paxgene/detergent approach.

Analysis of TRACs in an independent validation cohort
Simple linear classification models built in the Discov-
ery cohort (Fig. 4) and then applied to the RNAseq val-
ues obtained from 80 patients in the Validation Cohort 
did not perform much better than random in the valida-
tion set. However, it was quickly noted that the Discovery 
RNAseq had been aligned to the GRCh37/hg19 human 
genome, while the Validation set, aligned at a later date, 
used the GRCh38/hg38 reference genome. Thus, the 
entire Discovery RNAseq database was realigned to the 
hg38 genome and then reanalyzed for DEGs to build a 
classification model. As a quick test of the stability of a 
predictive model, in the hg38-aligned Discovery dataset, 
strict filtering for > twofold change at p < 0.001 identi-
fied 27 transcripts of which 23 (85%) were expressed at 
a lower level in the CAD group. A PLSD model built on 
those 27 transcripts was 95.5% accurate in LOW, 91.9% 
accurate in MID+, for 93.3% overall accuracy. However, 
those same transcripts were less predictive in the Valida-
tion dataset, but still informative, showing 78.4% accu-
racy for low, 62.8% for MID+, with 70% overall accuracy. 
Thus, the hg19 vs hg38 alignments play a significant role 
in the stability of the TRAC signal, but the discrimi-
nant ability of PLSD models remains imperfect between 
cohorts. To understand this discrepancy, the DEGs iden-
tified by each cohort were analyzed.

Correlation between Discovery and Validation expression 
levels for TRACs
Using the list of 599 DEG transcripts identified in the 
Validation set, it was determined that their expres-
sion levels in the Discovery set were highly correlated 
for both the low (r = 0.96), and Mid + (r = 0.98) CAD 
groups. Thus, quantitation of the transcript levels in the 2 
cohorts was very similar, at least at the group level (LOW 
vs MID +). Thus, the variation in the DEGs between the 
2 cohorts is more likely attributable to variation at the 

patient to patient level, which could reflect the different 
demographics of the 2 groups.

Identification of TRACs shared by the discovery 
and validation cohorts
Using the strictest filtering, exactly as applied to the 
Discovery set to obtain the 27  g predictors used above, 
the Validation dataset yielded 22 transcripts, but none 
were identical matches at the gene symbol level between 
cohorts. By relaxing the filtering criteria to create DEGs 
of about 350 unique and annotated transcripts in each 
cohort (p < 0.01, fc1.2), 16 exact matches were observed, 
which is 4.5 times greater than expected by chance 
(p < 8.7 × 10−7) (Additional file 2: Table S7). An additional 
17 close matches were observed (ie. ELP3 vs ELP2), and 
37 more matches that were close or identical to HG19 
alignments of the Discovery cohort, for a total of 70 
close or exact matches. Both the Discovery and Valida-
tion DEGs (92% decreased in CAD) shared a strong trend 
toward decreasing expression in the CAD group.

Cell type analysis in reproducible TRACs
These transcripts common to both datasets were used to 
determine if any enrichment of a particular cell type was 
evident by comparing them to the precurated Blood Atlas 
RNAseq database. The results indicated the greatest sim-
ilarity to T cells, with 12 exact or close matches (4.3-fold 
over-representation, p = 9.8 × 10−6, Fisher Exact test). 
Rather striking in this group of T cell-related transcripts, 
identified as significantly decreased in both cohorts, is 
FoxP1. While FoxP3 is considered a pivotal transcript in 
Treg development, FoxP1 is likewise a well-known and 
critical determinant of Treg maturation [67].

By comparison, the overlap of the shared DEG list 
with other cell types is less striking: B cell (1 exact, 4 
close matches, 3.5 fold enrichment, p < 0.014), granulo-
cytes (1 exact, 5 close matches), monocyte/macrophage 
(1 exact, 4 close matches), natural killer (NK) cells (1 
close match), dendritic cells (3 exact, 4 close matches). 
Some transcripts, especially OSBPL10, were found as an 
exact match on multiple cell types, and thus do not truly 
inform the cell type analysis.

Prevalence of transcripts associated with stress granules 
(SG)
In addition to the apparent similarity of TRACs with 
Treg markers, it was also noted that a disproportion-
ate number of transcripts had a known association with 
stress granules (Additional file 2: Table S8). Stress gran-
ules are membrane-less granules that result from liquid 
to gel transitions under cellular stress, and contain RNAs 
that are being sequestered from translation during vari-
ous stressors, such as nutrient stress. Fortunately, other 
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groups have used relatively unbiased approaches, such 
as microarrays and RNAseq, to identify RNA transcripts 
retained in SG during stress [68]. Thus, this hypothesis 
was tested more formally by comparing the TRACs to 
known SG transcripts and determining whether the over-
lap was greater than expected by chance.

In the initial hg19 TRAC list (198 transcripts, Addi-
tional file  2: Table  S1) there was noticeable similar-
ity to previously published lists of SG transcripts [68]. 
For instance, of the 198 TRACs, 34 were near or exact 
matches to known SG transcripts, reflecting a fivefold 
overrepresentation (p = 9.5 × 10−15). This association 
held strong when the TRACs common to both studies 
were analyzed for their similarity to a previously curated 
list of 723 known SG transcripts, whereby there was a 
25-fold enrichment for SG transcripts (p = 4.04 × 10−39). 
A summary of these transcripts is shown in Additional 
file  2: Table  S8, and 10 transcripts are depicted graphi-
cally in Fig. 7.

The stress granule-related RNAs include dead box pro-
teins (DDXs, including DDX46, DDX51, DDX54), which 
are a family of RNA helicases that regulate RNA biogen-
esis, editing, folding, translation, and decay, as well as 
having critical antiviral activities [69]. Likewise, EDC3 
is considered an important regulator of mRNA transla-
tion and decay [70], and interestingly, DDX proteins 

(i.e. DDX6) are known partners to EDC3 and mRNA 
decapping enzymes in the regulation of P-body assem-
bly and function [71]. Of note is the Lamin A (LMNA) 
transcript, which is the target of germline mosaic muta-
tions in Hutchinson-Guilford Progeria, a premature 
aging syndrome characterized by aggressive atheroscle-
rosis and myocardial infarction in adolescents [72]. Also 
of interest, special AT-rich binding protein (SATB1) is a 
key chromatin protein that is a well-established modula-
tor of T cell progenitor maturation [73]. Notably, SATB1, 
along with IKZF4/Eos, IRF4, and GATA1, are considered 
a Treg ‘locking’ genes [74].

Potential involvement of cilia/immune synapse transcripts
During manual curation of the DEG transcripts from 
both cohorts, there was an apparent overrepresentation 
of transcripts related to cilia, synapses, and adhesion: 
functions not normally associated with circulating cells. 
A representative list of 11 such transcripts derived from 
the DEGs common to both cohorts is shown in Addi-
tional file  2: Table  S9. An excellent example is Bardet-
Biedl Syndrome 2 (BBS2) which is a heritable cause of an 
autosomal recessive syndrome characterized by central 
obesity, rod-cone dystrophy, renal and vascular abnor-
malities that emanate from a central defect in cilia assem-
bly and synaptic function [75]. Related transcripts that 
appeared in only one of the cohorts includes dystonin 
(DST), which likewise affects the ciliary connections in 
the ear, causing congenital deafness, but has also been 
associated by GWAS with CAD [76]. Other DEGs com-
mon to both cohorts include copine 3 or 6 (CPNE3/6) 
which are components of the ciliary body, and affects 
neural plasticity, but coincidentally, reduced CPNE3 
expression is associated with the risk of acute MI and 
stable CAD [77]. A potential connection between these 
cilia/synaptic transcripts and the Treg changes in ather-
osclerosis is that the maturation of Tregs likely depends 
on proper immune synapse formation in maturing T cells 
[78].

Comparison of TRACs to prior microarray‑based biomarker 
panels
Other published works have identified transcripts with 
predictive value for CAD based on Affymetrix array 
technology and PaxGene blood RNA preservation tubes 
[12]. For comparison purposes, these published tran-
scripts were matched by gene symbol to RNAseq tran-
scripts, identifying 17 transcripts in the current RNAseq 
dataset. The expression levels of these array-based mark-
ers were overall much higher than TRACs, but surpris-
ingly, the RNA levels did not differ between LOW and 
MID + (average log2 RPKM = 3.26 vs 3.31, p = 0.94) 
(Additional file  2: Table  S10). These 17 transcripts were 

Fig. 7  Schematic representation of stress granule-regulated 
transcripts. Analysis of the transcripts associated with CAD (TRACs) 
indicated an apparent enrichment for transcripts previously known 
to be associated with stress granules, which are membrane-less 
aggregates of proteins and RNA formed when cells are exposed to 
a variety of stressors, listed on the left. Under stress, these TRACs, of 
which 10 are shown here (DDX, EDC3, etc.), translocate from active, 
translatable forms in the cytosolic machinery, to sequestered, inactive 
forms in the stress granule. Molecular images courtesy of www.​somer​
sault​1824.​com under a Creative Commons license

http://www.somersault1824.com
http://www.somersault1824.com
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used to build a classification model that yielded only 
36.7% accuracy (LOW 45.1%, MID 10%, CAD 37.5%, w/ 
33% = random). However, in fairness to the prior CAD 
biomarkers, it is difficult to extrapolate their weighting 
algorithm to the RNAseq data, and that might improve 
the prediction model.

Discussion
The analysis of the RNA transcriptome in relation to 
angiographically confirmed CAD offers several major 
advantages in both our basic science understanding of 
CAD and in clinical medicine. First, if blood biomarkers 
can be identified, it might be possible to reduce invasive 
testing, such as cardiac catheterization, as well as more 
judiciously use imaging resources, such as CT and MR 
angiography. Secondly, it would be possible to improve 
diagnosis of CAD in rural areas worldwide, where inva-
sive or advanced imaging methods are unavailable. 
Finally, the proposed biomarkers potentially can serve 
both as therapeutic targets and markers to monitor the 
appropriateness and efficacy of new or existing thera-
pies, such as statins or PCSK9 inhibitors. For instance, 
Treg numbers have been shown to be responsive to sta-
tin therapy, and so it might be possible to use TRACs to 
monitor statin therapies.

The connection between the immune system and 
atherosclerosis is extensively documented. Blood com-
ponents, especially monocytes/macrophages [79], neu-
trophils, lymphocytes [80], and platelets mechanistically 
contribute to the development of CAD [81]. Recently, 
the microanatomy of the human carotid atherosclerotic 
lesion has been analyzed by single-cell transcriptomics, 
revealing at least 14 subtypes of cells, including several 
T cell subsets [82]. The present results are consistent 
with the extensive evidence that CAD is associated with 
changes in the Treg/Teff ratio, lipid imbalances, inflam-
mation, microbiome changes, and autoimmunity in ath-
erosclerosis [83]. There is a large and fairly consistent 
literature demonstrating changes in the Treg/Teff ratio 
in patients with CAD [84–88], and the observed cellular 
changes would be consistent in both direction and mag-
nitude with the detected changes in mRNA expression 
in the present studies (Additional file  2: Table  S5). One 
interpretation of the beneficial effects of statins is that in 
addition to lowering LDL cholesterol, statins can induce 
FoxP3 + Treg cells, via modulation of TGF-ß signaling 
[89, 90]. Beyond the reproducible clinical correlations, 
experimental manipulation of Treg levels in mouse mod-
els of atherosclerosis suggests a potentially causal rela-
tionship [91]. Furthermore, it has been suggested that a 
Treg-oriented immunomodulatory approach may offer 
therapeutic potential for atherosclerosis [92, 93].

The relationship between Treg dysfunction and ath-
erosclerosis is further observed through the well-known 
incidence of atherosclerosis in various autoimmune dis-
eases, most notably in the case of systemic lupus ery-
thematosus (SLE) [94]. While the relationship between 
Tregs and SLE is complex, there is a general consensus 
that deficient Treg activity is one element of SLE [95], 
and thus, might also be a component of SLE-associated 
atherosclerosis [96]. Likewise, psoriasis and psoriatic 
arthritis, which are associated with Treg imbalances, 
have well-established associations with atherosclero-
sis [97–99]. The immune-CAD connection is seen quite 
clearly by an apparently causal relationship in immune-
mediated transplant arteriosclerosis [100]. Further evi-
dence for the immune-CAD connection derives from the 
proven efficacy of rapamycin and related compounds, 
which are antibiotics/immunosuppressants, to block cor-
onary artery restenosis. Rapamycin is known to increase 
Treg numbers and function at clinically relevant levels 
[101]. Recent findings provide fairly direct evidence that 
the cytokine responsiveness of T cell subsets is a bet-
ter predictor of CAD than CRP [102]. Important recent 
studies indicate that Tregs license the pro-resolving abili-
ties of plaque-resident macrophages in order to facilitate 
plaque regression [103].

Many of the TRACs identified herein have known rela-
tionships with Treg function, as shown schematically in 
Fig.  8. Foremost, the FoxP3 transcription factor is con-
sidered the definitive marker for the Treg subset and is 

Fig. 8  Schematic representation of Treg-related TRACs identified by 
RNAseq. The control of FoxP3 mRNA and protein expression is known 
to be controlled by many factors, including promoter methylation, as 
well as transcriptional regulation by SMYD3, TCF3/E2A, and IKZF4/Eos. 
FoxP3, in turn, is itself a transcriptional regulator, in association with 
cofactors such as TRIM28, IRF4, and others. The FoxP3-sensitive target 
genes, and other regulators such as AHRR, ICOS, TGF-ß, and mTOR, are 
then intrinsic components of the transition of Treg progenitor cells to 
functional Tregs. Molecular images courtesy of www.​somer​sault​1824.​
com under a Creative Commons license

http://www.somersault1824.com
http://www.somersault1824.com
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thought to transcriptionally regulate a set of transcripts 
involved in Treg function. FoxP3 is itself epigenetically 
controlled by promoter demethylation and transcription 
factors, such as SMYD3, IKZF4/Eos, and TCF3/E2A, to 
allow stable expression in Tregs. Once transcribed and 
translated, FoxP3 regulates Treg-specific transcription 
via known promoter binding sites [55] and by interaction 
with a number of co-regulators, including RUNX1 [104], 
TRIM28, and IRF4 [105], which, along with SMYD3, 
IKZF4/Eos and TCF3, were identified as TRACs in the 
present studies. Other studies indicate that two isoforms 
of diacylglyceral kinase (DGKA, DGKZ) have been impli-
cated in T-cell anergy [106], and DGKZ has been impli-
cated in the generation of natural Tregs via modulation of 
the NFkB signaling through c-rel [107].

The ICOS/ICOSLG system is potentially important 
because athero-prone LDLR(-) mice transplanted with 
ICOS-deficient marrow develop more severe atheroscle-
rosis [108]. Treg can be either ICOS+ or ICOS− [109], 
and typically ICOSLG is considered as a marker of a den-
dritic cell or innate lymphoid cell type 2 (ILC2), whereby 
ICOS on the Treg would engage ICOSLG on the ILC2s 
[110]. Flow cytometry analysis of Tregs in MI patients 
showed a subset of ICOS+ type to be preferentially 
affected [111]. Thus, the decrease in ICOSLG suggests 
that there may be some type of coordinate decrease in 
both Treg and ILC2 numbers or function.

The current studies differ from prior microarray-based 
analysis of CAD in several important ways. The current 
studies used a broader definition of CAD that would 
include earlier and more diffuse, but less occlusive dis-
ease. This definition also provided a better balance 
between the sizes of affected and unaffected groups. Fur-
ther, prior studies used Paxgene blood RNA preservative, 
which is known to produce a very different RNA profile, 
while the present Tempus system was more sensitive for 
Treg markers. Likewise, RNAseq appears to be impor-
tant for detecting changes in Treg activity and provides 
numerous quantitative and qualitative advantages over 
microarrays.

There are certain limitations in the present studies. 
First, the TRAC signature could be related to unidenti-
fied risk factors or drug treatments that differ between 
groups. While it is difficult to completely rule it out, 
based on the collected variables, we cannot identify a 
clinical covariate that would differ sufficiently to create 
this effect. Second, it is possible that the TRACs would 
detect disease in arteries other than the coronaries, but 
this would still have tremendous diagnostic value. A third 
limitation is that the clinical endpoint of an invasive cor-
onary angiography (ICA) is excellent, but still imperfect 
at detecting coronary disease. Up to 75% of symptomatic 
patients that appear to have normal arteries by ICA can 

be shown by CT angiography to have significant ath-
erosclerosis that does not occlude the artery [112]. The 
TRAC test would likely report these patients as positive, 
while they would be scored as angiographically negative 
for CAD by ICA. Future validation studies will need to 
incorporate CT angiography as an additional endpoint 
to avoid these ambiguous ‘false positives’ on blood-based 
tests. Likewise, TRAC-positive patients that are angio-
graphically negative, could be in the early stages of the 
disease process, but that could be addressed only by a 
long-term follow-up study.

The present studies suggest several important direc-
tions for future investigation. Bioinformatically, it would 
be valuable to analyze the co-expression network of the 
transcripts, and analyze any RNA editing, differential 
splicing, and allele usage that might be occurring in CAD. 
The identification of RNA biomarkers that are associated 
with CAD has the potential to help dissect the mecha-
nisms of atherosclerotic initiation and progression. It is 
likely worthwhile to further investigate the regulation of 
these transcripts by stress granules, as one component 
of immune dysfunction in coronary disease. Further, a 
potential connection between stress and the function 
of the immune synapse could elucidate specific mecha-
nisms of disease, and targets for therapy, or prevention. 
Through high-throughput screening, dozens of FDA-
approved compounds that stimulate Treg generation 
have already been identified [113]. Further refinement in 
the quantitation of these RNA biomarkers could lead to 
blood-based diagnostics for CAD, that would be a valu-
able addition to the diagnostic toolkit.

A long-term goal is to identify TRACs that may be pre-
dictive of CAD in asymptomatic, but ‘at risk’ individuals, 
especially middle age patients with one or more known 
risk factors [114]. Of the more than a million heart 
attacks per year in the US, approximately 50% of cases 
had no overt warning signs, and 50% of first heart attacks 
are fatal. Thus, an ‘early warning sign’ from blood-based 
RNA profiling could allow the patient to be referred for 
minimally-invasive diagnostics, such as stress tests, CT 
calcium scores, or MR/CT angiography, and thus hope-
fully reducing the incidence of heart attacks and strokes.

Conclusions
Transcriptome-wide profiling of whole blood RNA 
from patients with CAD identifies a pattern of changes 
that parallels known defects in the number and func-
tion of the regulatory T cell subset. The RNA pattern 
defines a risk that is independent of other known clini-
cal risks, and thus could add value to future risk stratifi-
cation models. Simple linear classification models using 
only seven transcripts provides surprisingly strong 
prediction of CAD status as determined by invasive 
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coronary angiography. The RNA changes are consist-
ent with stress-related changes in the immune synapse, 
which may help to define the precise cellular mecha-
nisms of atherosclerotic lesion formation.
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