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Abstract 

Background:  Prediction of the drug-target interaction (DTI) is a critical step in the 
drug repurposing process, which can effectively reduce the following workload 
for experimental verification of potential drugs’ properties. In recent studies, many 
machine-learning-based methods have been proposed to discover unknown interac-
tions between drugs and protein targets. A recent trend is to use graph-based machine 
learning, e.g., graph embedding to extract features from drug-target networks and 
then predict new drug-target interactions. However, most of the graph embedding 
methods are not specifically designed for DTI predictions; thus, it is difficult for these 
methods to fully utilize the heterogeneous information of drugs and targets (e.g., the 
respective vertex features of drugs and targets and path-based interactive features 
between drugs and targets).

Results:  We propose a DTI prediction method DTI-HeNE (DTI based on Heterogene-
ous Network Embedding), which is specifically designed to cope with the bipartite DTI 
relations for generating high-quality embeddings of drug-target pairs. This method 
splits a heterogeneous DTI network into a bipartite DTI network, multiple drug homo-
geneous networks and target homogeneous networks, and extracts features from 
these sub-networks separately to better utilize the characteristics of bipartite DTI 
relations as well as the auxiliary similarity information related to drugs and targets. The 
features extracted from each sub-network are integrated using pathway information 
between these sub-networks to acquire new features, i.e., embedding vectors of drug-
target pairs. Finally, these features are fed into a random forest (RF) model to predict 
novel DTIs.

Conclusions:  Our experimental results show that, the proposed DTI network embed-
ding method can learn higher-quality features of heterogeneous drug-target interac-
tion networks for novel DTIs discovery.

Keywords:  Drug-target interaction prediction, Heterogeneous network embedding, 
Graph mining, Feature fusion
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Background
Drug repurposing or repositioning refers to deploying old drugs for new purposes, 
which holds great promise in the future. That is because developing a new drug is costly 
and time-consuming [1]. By contrast, drug repurposing, i.e., finding the new use of exist-
ing drugs approved by the Food and Drug Administration (FDA) could save time and 
experimental funds for clinical trials. DTIs prediction based on computational tech-
niques plays an important role in drug repurposing because it requires lower cost and 
less time, compared with biochemical experimental methods [2–4]. With an increasing 
number of public databases [5], different computational strategies can be more effec-
tively applied for the DTIs prediction. There are two varieties of traditional computa-
tional methods: the ligand-based method [6] and the structure-based or docking-based 
method [7], which can provide relatively accurate DTI predictions. However, the former 
one has the limitation on predictive performance when few binding ligands are provided 
for a certain target, while the latter will not be feasible when the three-dimensional (3D) 
structure of the target is not available [2].

In recent years, machine-learning-based methods have been widely used for the DTIs 
prediction because they can search more potential targets of existing drugs in the DTIs 
space. The main assumption of most of these methods is that similar drugs may share 
similar targets [8]. Based on this assumption, kernel-based methods have been pro-
posed, which essentially map various drug-drug and target-target similarity matrices 
(i.e., kernels) to DTI labels [9, 10].

A recent trend is the graph-based methods, compared with kernel-based methods, 
they can better describe interactive relations between drugs and targets by vertices and 
edges. The methods extract topological features from drug-target interaction networks 
and process these features for DTI predictions [11]. However, many existing meth-
ods cannot consider the distinctive characteristics carried by different types of entities 
and complex relations between these entities. Heterogeneous information networks 
are powerful tools to model the semantic information of such complex data by varie-
ties of vertices and edges [12]. It is natural to use heterogeneous networks to represent 
the characteristics of drug and target vertices as well as diverse relations between drugs 
and targets. After constructing heterogeneous DTI networks, we need to use network 
embedding algorithms to extract the features, i.e., low-dimensional vector representa-
tions of networks, for downstream machine learning tasks, e.g., link predictions [13, 14].

However, while many homogeneous network embedding algorithms exist and have 
been applied to DTI predictions, heterogeneous network embedding remains a chal-
lenging task due to the various vertex types and the diversity of relations between verti-
ces. Recently, Chen et al. [15] proposed an idea to cope with the heterogeneous network 
embedding: a heterogeneous network can be decomposed into several sub-networks, 
and each of them is processed separately. Similarly, a heterogeneous DTI network can be 
divided into a bipartite DTI network and other auxiliary networks which contain simi-
larity information between the same kind of nodes. Luo et al. [2] proposed an approach 
named DTINet, which could learn embeddings by the network diffusion algorithm and 
inductive matrix completion strategy. Based on a heterogeneous network, Thafar MA 
et al. [16] utilized node2vec [17], graph mining techniques, and drug and target similari-
ties generated by heuristic algorithms for DTI predictions. Peng et al. [18] introduced a 
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random walk with restart (RWR) model, a denoising autoencoder (DAE), and a Convo-
lutional Neural Network (CNN)-based model to extract low-dimensional vectors from 
heterogeneous networks, and they also used end-to-end graph convolutional networks 
(GCN) to do the similar work [19].

Although the methods mentioned above achieved promising results, there are still 
some issues. More specifically, current methods do not explicitly consider the bipartite 
nature of the drug-target interactions (containing all known DTIs) in a heterogeneous 
DTI network. Instead, these bipartite drug-target interactions are treated equally with 
other auxiliary information such as drug-drug and target-target similarity information. 
Such an indiscriminate treatment of heterogeneous relationships might lead to the sub-
optimal set of features and will ultimately affect the accuracy of the DTIs prediction.

To address this issue, we propose a novel heterogeneous network embedding method 
called DTI-HeNE that specially considers the bipartite drug-target relations. Similar to 
Chen et al. [15], we first decompose a heterogeneous DTI network into a bipartite DTI 
network and homogeneous drug-drug and target-target similarity networks. The pro-
posed method is a multi-staged embedding method with good interpretability which 
then employs Bipartite Network Embedding (BiNE) [20] to specifically learn the DTI 
embeddings from the bipartite DTI network. Next, a path-based method is developed 
to combine the bipartite DTI embeddings with the homogeneous networks according to 
the topological information of pathways between sub-networks for creating new embed-
ding representations of all drug-target pairs. Finally, we acquire novel DTIs by running a 
random forest (RF) model to learn these integrated representations.

Methods
Problem formulation

In our study, the DTIs prediction can be formulated as a transductive-learning binary 
link-prediction task (i.e., discovering novel DTIs within the DTIs space consisted of 
fixed drugs and targets in the given dataset, that is, the involved entities do not need 
to be extended) based on a heterogeneous network, which is divided into a bipar-
tite DTI network as well as drug and target homogeneous networks. More specifically, 
let Gb = (D,T, E) be a bipartite DTI network, where D = {d1, d2, . . . , dm} (m refers to 
the number of drugs in the dataset) and T = {t1, t2, . . . , tn} (n represents the amount 
of targets in the dataset) denote the set of drug and target protein nodes, respectively. 
E ⊂ D× T defines known edges (interactions) between drugs and targets, and all known 
edges correspond to the weight of 1. Meanwhile, the homogeneous drug and target net-
works are defined as the m×m matrix ( Gd ) and the n× n matrix ( Gt ), respectively, in 
which every element indicates the degree of similarity between two drugs or two targets. 
The higher the value of one element, the higher the similarity between two correspond-
ing entities. In addition, there is a m× n matrix (Y) storing binary DTI predictions, if 
yij = 1 , it indicates that the di − tj pair is predicted to have a potential interaction, if not, 
then yij = 0.

Furthermore, it is precisely because of the definition of our prediction task (i.e., the 
involved nodes are fixed) that the transductive-learning-like method can be utilized. 
Another contributing reason is that directly setting the weight of unknown inter-
actions to 0 may not produce a satisfactory performance on datasets with a highly 



Page 4 of 20Yue and He ﻿BMC Bioinformatics          (2021) 22:418 

imbalanced ratio between known and unknown samples (e.g., DTI datasets) [21]. 
The transductive learning allows methods to have observed all the data beforehand, 
including training and test datasets, and potentially exploit structure information in 
their distribution [22] (so that it can better use additional information of unknown 
samples in the face of datasets with sparse known interactions). Compared with the 
inductive learning that learns a general inference to a task based on the information 
of a dataset, transductive learning is less ambitious and finds a specific solution that 
is optimal only for the current dataset (i.e., acquiring the best performance under the 
fixed drugs and targets in the dataset in our case study) [23, 24]; and the transductive 
setup has already been mentioned by some DTI prediction approaches [25].

Workflow

Figure 1 presents the four main steps of the proposed method in our study:

1.	 Obtaining drug and target embeddings: a bipartite DTI network is established based 
on every known di − tj pair, and then the BiNE algorithm is performed on the bipar-
tite network to capture the prior high-order similarity information of explicit and 
implicit transition relationships of all entities in the dataset.

2.	 Selection and fusion of homogeneous networks: a heuristic algorithm is applied to 
screen and integrate multiple drug and target homogeneous networks.

3.	 Path-based information integration: in this step, the path-based heterogeneous infor-
mation is added as the auxiliary information to generate the embedding of every 
di − tj pair.

4.	 Novel DTI predictions: a RF classifier is trained to learn the integrated embedding 
representations for predicting unknown DTIs.

Learning bipartite DTI embedding

The challenge of learning bipartite network embedding is how to learn the explicit 
bipartite relationships between different types of vertices (e.g., DTIs) and implicit 

Fig. 1  The flowchart of our method. The method integrates three varieties of networks to acquire 
embeddings of drug-target pairs. The original representations of drug and target nodes are produced by 
BiNE, and then these representations are augmented using the drug and target homogeneous matrices as 
well as path-based topological features for predicting DTIs
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transition relationships between the same types of vertices (e.g., drugs and targets) 
simultaneously. BiNE addresses this challenge by using a three-part joint optimiza-
tion framework and assigns each type of relationships with a dedicated objection 
function and an adjustable weight, which produces better vertex embeddings. Specifi-
cally, the first part of the framework is modeling the explicit relationships. In order 
to preserve the information of observed edges between two different types of nodes 
( ui and vj ), the KL-divergence is chosen to measure the difference between the joint 
probability P(i, j) between vertices ui and vj and the joint probability P̂(i, j) between 
the embedding vectors of vertices ui and vj ( −→ui  and −→vj  ). The objection function can be 
defined as follows, which aims at minimizing the difference between P(i, j) and P̂(i, j):

For the sake of explicitly modeling the unobserved but transitive links (implicit transi-
tion relationships) between the same type of nodes (i.e., directly modeling that similar 
drugs/targets could interact with similar targets/drugs in our case study), firstly, BiNE 
utilizes an idea named Co-HITS [26] to generate two homogeneous networks (matrices) 
which contain the 2nd-order proximity between the same type of nodes, and then the 
nodes having at least one weight greater than 0 are selected in the generated matrices. 
Then the truncated random walks, which are designed to better capture the frequency 
distribution of nodes, are performed on these two homogeneous networks consisted 
of selected nodes respectively, to convert the networks into two corpora of vertex 
sequences. More specifically, during our DTIs prediction process, there are two differ-
ent types of homogeneous networks being generated. The first type is obtained in the 
second step of the workflow shown in Fig. 1, which contains the chemical and physical 
similarity information of drugs and targets and is more widely used by other DTIs pre-
diction methods [27]. For the second type, it is calculated by Co-HITS mentioned above 
to model the implicit transition relationships, which has the same size as the first type 
(i.e., drug homogeneous networks: m×m matrix, target homogeneous networks: n× n 
matrix), and every element (weight) denotes the implicit transition probability between 
two drugs/targets. That is, given a m× n bipartite DTI matrix Gb , the drug homogene-
ous network can be represented by a m×m matrix GbG

T
b  , and the target homogeneous 

network is defined as GT
b Gb , which is a n× n matrix. In our task, taking the drug homo-

geneous matrix as an example (Fig. 2), the entry wd
ij with a higher value in this matrix 

can be interpreted as that the drugi and drugj would share more similar targets, and the 
similar principle can be applied to the target homogeneous matrix. Such a characteristic 
is in line with the known assumption – “guilt-by-association” [2]. Thus, the second type 
of homogeneous networks can carry more interactive information between drugs and 
between targets, which is helpful to improve the accuracy of the DTIs prediction.

Next, based on the corpora created by the truncated random walks, the Skip-gram 
model [28] is used to learn embeddings of the two types of vertices in the bipar-
tite network (e.g., drug and target embeddings), which makes embeddings capture 
more high-order proximity information; Essentially, the purpose of the Skip-gram 
model is assigning the similar embeddings to the vertices which are more frequently 

(1)minimizeO1 = KL(P||P̂) =
∑

eij∈E

P(i, j)log(
P(i, j)

P̂(i, j)
)
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co-occurred in the same context of a sequence in the corpora. Intuitively, if the verti-
ces in a corpus sequence are more similar to each other, these vertices are more likely 
to co-occur in the same context, so they could be allocated more similar embeddings. 
Thus, we further add a relatively high restart probability (e.g., 0.7) to every step of 
truncated random walks. Taking the embedding process of drug nodes as an example, 
for a truncated random walk starting at a certain drug node, when the next node is 
randomly selected from the set which has other drug nodes having a connection to 
the current drug (the connection is determined based on the value between these two 
nodes in the drug homogeneous network, if the value is non-zero, which indicates 
that there is a connection between them), a number from 0 to 1 is randomly chosen. 
If this number is less than the restart probability, the next node will become the start-
ing node instead. In this way, the drug nodes selected in the current corpus sequence 
are closer to the starting node, which could bring higher-quality embeddings for the 
DTIs prediction.

Therefore, in order to learn the implicit transition relationships, there needs two objec-
tion functions expressed in (2)—(3) to maximize the conditional probability for high-order 
proximities on the two corpora respectively, where S denotes a vertex sequence which con-
tains only ui nodes or only vj nodes, DU and DV  correspond to the two generated corpora, 
CS(ui) and CS(vj) represent the context vertices of ui and vj in the sequence S , respectively, 
and context vertices are several vertices (the number is ws in total) before and after ui or vj 
in a sequence S . In addition, P(uc|ui) refers to how likely uc is found in the contexts of ui , 
and the similar meaning can be applied to P(vc|vj).

Finally, the three parts of objection functions mentioned above can be integrated into a 
joint framework to capture explicit and implicit transition relationships simultaneously. 

(2)maximizeO2 =
∏

ui∈S∧S∈DU

∏

uc∈CS(ui)

P(uc|ui)

(3)
maximizeO3 =

∏

vj∈S∧S∈DV

∏

vc∈CS(vj)

P(vc|vj)

Fig. 2  An illustration of the drug homogeneous network generated in BiNE. Assuming that there are only 
three drugs and two targets in the whole bipartite DTI matrix Gb . When the 3× 3 drug homogeneous matrix 
is made by multiplying Gb (the 3× 2 matrix) by GT

b (the 2× 3 matrix), we can find that, in this 3× 3 matrix, 
the value between Drug1 and Drug2 is 1, while the value between Drug1 and Drug3 is 0, and these values 
correspond to the DTI relations in Gb . Specifically, Drug1 and Drug2 share one target (Target2), Drug1 and 
Drug3 do not share any target, correspondingly, the value of the former drug pair in the drug homogeneous 
matrix is higher than that of the latter one
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The framework is optimized by the Stochastic Gradient Ascent (SGA) algorithm, which 
can be presented as the Eq. (4). α , β and γ are adjustable weights which control the rela-
tions between the three components.

When optimizing the Eq. (4) using SGA, in order to save the calculation time, nega-
tive sampling [29], which approximates the costly denominator of the softmax function 
by sampling several negative instances, is adapted to learn the embedding vectors. As a 
result, the whole optimization process in one gradient step is as follows:

Firstly the −γO1 part is maximized to update embeddings −→ui  and −→vj  as the Eqs. (5)-(6):

where � is the learning rate and wij is the weight of edge between ui and vj (in our study 
the weight is 1 if there is an edge between ui and vj ). Then, the αlogO2 and βlogO3 parts 
are maximized separately for further updating the embedding vectors as follows:

where uc and vc are the context vertices of ui and vj separately, Nns
S (ui) denotes the neg-

ative samples (the number is ns in total) of ui in the sequence SǫDU , and the similar 
meaning can be applied to Nns

S (vj) . I(z,ui) and I
(
z, vj

)
 are indicator functions determin-

ing whether vertex z is the context vertex of ui and vj respectively (is: 1, not: 0). Besides, 
σ is the sigmoid function 1/(1+ e−x) , and 

−→
θz  and 

−→
ϑz are the embeddings of the context 

vertex of ui and vj respectively.
Furthermore, BiNE is an embedding method which could not well learn total isolation 

nodes that the truncated random walk cannot reach. However, under our transductive-
learning setup, we reckon that the use of BiNE can be understood from another perspec-
tive. More specifically, many methods adopt multiple drug and target similarities (as a 
part of the input feature to generate homogeneous networks), which are pre-calculated 
over all nodes in the dataset based on certain properties of drugs and targets. As an anal-
ogy, we can treat BiNE as a similarity generator which takes drug and target Co-HITS 
matrices (that are calculated based on  the whole bipartite DTI network) as the input to 
pre-calculate another type of similarity of drugs and targets. In this case, the form of this 
drug and target similarity is the embedding score, and the property on which it is based 
is the high-order proximity; and every node in the whole bipartite DTI network in used 
datasets has at least one edge such that the truncated random walk can produce every 
node’s (high-order proximity) similarity in advance (i.e., there are no isolation nodes 
actually in the process of high-order similarity production).

(4)maximizeL = αlogO2 + βlogO3 − γO1

(5)−→ui =
−→ui + �{γwij[1− σ(

−→ui
T−→
vj )] •

−→
vj }

(6)−→
vj =

−→
vj + �{γwij[1− σ(

−→ui
T−→
vj )] •

−→ui }

(7)
−→ui =

−→ui + �{
∑

z∈{uc}∪N
ns
S (ui)

α[I(z,ui)− σ(
−→ui

T−→
θz )] •

−→
θz }

(8)
−→
vj =

−→
vj + �{

∑

z∈{vc}∪N
ns
S (vj)

β[I
(
z, vj

)
− σ(

−→
vj

T−→
ϑz )] •

−→
ϑz }
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Composite homogeneous network generation

As for the second step of our workflow, we choose a heuristic method to screen and 
combine different homogeneous networks (in matrix form) which contain different 
drug-drug and target-target similarity information [27]. This method can acquire an 
informative and robust composite homogeneous network by removing redundant infor-
mation and integrating the retained features. Specifically, we first calculate the entropy 
of each homogeneous matrix for determining how much information these matri-
ces contain. Secondly, delete the homogeneous matrices with the entropy value higher 
than c1log(k) where c1 is a threshold to control the information each matrix contains 
(is subjectively set to 0.7) and log(k) represents the highest entropy contained among all 
matrices.

Next, flatten each matrix and calculate the Euclidean distance ( d ) between homogene-
ous matrices, and then start from the matrix with the lowest entropy, based on the simi-
larity index Es (shown in Eq. (9)), further remove other matrices having Es higher than c2 
(is subjectively set to 0.6) with the current matrix, and the process will be repeated until 
all matrices are removed or retained. Finally, the similarity network fusion (SNF) [30] 
algorithm is adopted for non-linearly fusing the remaining matrices into a composite 
matrix that carries the necessary information from different similarity measures.

As a result, a drug and a target composite matrix are obtained from multiple drug and 
target homogeneous matrices respectively. These two matrices and other matrices men-
tioned in this section all belong to the first type of the homogeneous network mentioned 
in the “Learning bipartite DTI embedding” section, which sizes are m×m (for drug) and 
n× n (for target), respectively.

Generating new embedding vectors of drug‑target pairs

In order to tackle the problem that some recent embedding-based methods cannot add the 
pathway information about drug-target interactions into embeddings of drug-target pairs 
(e.g., simply concatenating generated drug and target embeddings as the final embeddings 
of drug-target pairs), we provide a method, which draws on the path-based information 
(about similar drugs interacting with the same targets and about similar targets sharing the 
same drugs), to acquire new embeddings of every drug-target pair (i.e., the reconstruction 
of DTI relations (network) included in the whole dataset). The intuition behind this idea is 
that, although separate drug and target embeddings produced by embedding algorithms 
could carry certain DTI (high-order proximity) information through learning process, the 
characterization of DTIs they contain for DTI predictions is still insufficient before the het-
erogeneous information (e.g., path-based knowledge) is added. The explanation of main 
calculation steps is shown in Fig. 3.

Specifically, taking the embedding generation process of a di − tj pair as an example, 
first, we obtain di and tj embeddings ( −→di and −→tj  ) produced by BiNE, the bipartite DTI 
matrix Gb , and drug and target homogeneous fused matrices mentioned in the “Com-
posite similarity matrix generation” section. Second, acquire the five nearest drugs of 

(9)Es =
1

1+ d
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di according to the weights in the drug homogeneous matrix. That is, find the row cor-
responding to di in the drug homogeneous matrix, and the values in the row are sorted 
from large to small, then the drugs corresponding to the five largest values are selected. 
In the same way, five targets with the highest similarity to tj can be found.

Third, multiply the embedding vector of di by corresponding weights (i.e., similari-
ties) of selected five nearest drugs in the drug homogeneous matrix respectively, then 
sum the obtained five products up to acquire a new feature dsim_i ; the same rule can be 
applied to the embedding vector of tj to acquire a new feature tsim_j (Eqs. (10)-(11)).

where Dnear and Tnear denote the set of the selected nearest drugs of di and the near-
est targets of tj separately, wz

d is the weight between dz and di in the drug homogeneous 
matrix, and the similar meaning can be applied to wz

t  . The main purpose in this step 
is integrating drug-drug and target-target homogeneous matrices (similarity informa-
tion) into the embedding vectors di and tj , respectively. In the fourth step, multiply the 
embedding vector tj by weights in Gb between selected five nearest drugs and tj respec-
tively, and then sum the five generated products up for acquiring a new feature dpath_i . 
At the same time, we multiply the embedding vector di by weights in Gb between five 
selected nearest targets and di respectively, and then sum the obtained products up to 
create a new feature tpath_j (Eqs. (12)-(13)).

(10)dsim_i =
∑

dz∈Dnear

wz
d

−→
di

(11)tsim_j =
∑

tz∈Tnear

wz
t

−→
tj

Fig. 3  The illustration of the embedding generation process of the di − tj pair. Characteristics from three 
types of sub-networks will be combined to create a new embedding representation. This process will be 
repeated many times until embeddings of all drug-target pairs in the DTIs space are produced
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where wz
tj
 and wz

di
 represent the weight between dz and tj in Gb and the weight between 

tz and di in Gb , respectively. In this step, we can model the interactive pathway informa-
tion about the known interactions between drugs (which are more similar to di ) and 
tj as well as the known interactions between di and targets (which are more similar to 
tj ). In the fifth step, a new embedding vector dpart_i is calculated by summing the vec-
tors dsim_i and dpath_i up, and the embedding vector tpart_j is formed in a similar way 
(Eqs. (14)-(15)).

Finally, the dpart_i and tpart_j can be concatenated to obtain an embedding of the di − tj 
pair, which effectively integrates characteristics from the bipartite DTI network as well as 
drug and target homogeneous networks. In addition, this calculation process is conducted 
after the cross-validation (CV) setup.

RF‑based drug‑target interaction predictor

After acquiring embeddings of all drug-target pairs in the dataset, the RF classifier [31] can 
be used for predicting the DTIs. RF has been proved to perform well in the face of high-
dimensional features and be able to deal with overfitting in the case of insufficient training 
data. More importantly, it can handle the sample-class-imbalance problem efficiently. We 
implement the RF classifier by using the scikit-learn [32] tool, and the embeddings of drug-
target pairs are as the input. The probability of whether each drug-target pair has a poten-
tial interaction is then predicted.

In addition, we tune the parameters of the RF classifier for better learning the complex 
integrated embeddings. The number of estimators is set to 100, the criterion for measuring 
the quality of a split is the Gini coefficient, and we make the weights of the model inversely 
proportional to the occurrence frequency of positive (known DTIs) and negative (unknown 
DTIs) classes based on input labels, to further overcome the challenge of considerable 
imbalance between the number of known and unknown DTIs.

Results
In this section, we evaluate the predictive performance of the purposed method in 
two different settings (SD, ST) based on two main datasets. Firstly, we introduce model 
parameters, details of experimental settings as well as model evaluation metrics. 
Then, we compare our method with other advanced DTI prediction approaches under 
the same experimental conditions. Next, we conduct a case study in which unknown 

(12)dpath_i =
∑

dz∈Dnear

wz
tj

−→
tj

(13)tpath_j =
∑

tz∈Tnear

wz
di

−→
di

(14)dpart_i = dsim_i + dpath_i

(15)tpart_j = tsim_j + tpath_j
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DTIs are predicted and top-score results are validated by searching for the evidence 
from multiple reference databases.

Dataset

In this study, two benchmark datasets are used for establishing the bipartite DTI rela-
tions (networks); the first one (a gold standard dataset) was collected by Yamanishi 
et al. [33], which includes four DTI subsets classified by the types of target proteins 
(in human): Enzymes (E, including 445 drugs and 664 proteins), Ion Channels (IC, 
210 drugs and 204 proteins), G-protein-coupled Receptors (GPCR, 223 drugs and 95 
proteins), and Nuclear Receptors (NR, 54 drugs and 26 targets), respectively. The sec-
ond one was obtained from Olayan RS et al. [27], consisting of interactions between 
1482 FDA-approved drugs and 1408 human target proteins (including multiple cat-
egories), which were acquired from the DrugBank dataset [34]. Furthermore, the pro-
portion of known and unknown interactions in these datasets are shown in Table 1.

In the bipartite DTI networks, if there is a known interaction between di and tj , the 
corresponding weight is 1, otherwise it is 0 instead.

Besides, the drug-drug and target-target similarities for generating the composite 
homogeneous network were obtained from Olayan RS et al. [27]. As for the similari-
ties for the first dataset, there are three types of drug similarities (chemical structure 
fingerprints, drug side-effects profiles, and the Gaussian interaction profile (GIP)) 
and six varieties for targets (amino acid sequences profiles, various parameterizations 
of the Mismatch, Spectrum kernels, target proteins functional annotation based on 
Gene Ontology (GO) terms, proximity in the protein–protein interaction (PPI) net-
work, and the GIP). With regards to the second dataset, there are eight similarities 
for drugs (molecular fingerprints, drug interaction profiles, side-effects profiles, drug 
profiles of the anatomical therapeutic class coding system, drug-induced gene expres-
sion profiles, drug disease profiles, drug pathways profiles, and the GIP), and six in 
total for targets (protein amino acid sequence, protein GO annotations, proximity in 
the PPI network, the GIP, protein domain profiles, and gene expression similarity pro-
files of protein encoding genes). Besides, the weights in each kind of similarity matrix 
were mapped to the same scale using the 0-1 normalization method.

Experimental settings, evaluation metrics and model parameters

In order to avoid an overly idealistic assessment, we evaluate the performance of our 
method (i.e., the quality of generated embeddings) under two different DTI prediction 
settings inspired by Pahikkala T et  al. [35], which provide different split of generated 
drug-target pair embeddings set. Further, same to the definition of the settings in Olayan 
RS et al. [27], the first setting is called the SD task in which the tenfold CV is used, and in 

Table 1  The proportion of positive and negative samples in each dataset

Nuclear receptors Ion channels GPCR Enzymes DrugBank

Positive 6.41% (90) 3.45% (1476) 3% (635) 1% (2926) 0.47% (9881)

Negative 93.59% (1314) 96.55% (41,364) 97% (20,550) 99% (292,554) 99.53% (2,076,775)
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each fold, drug-target pair embeddings in the DTIs space corresponding to one tenth of 
all drugs will only appear in the test set). As an analogy, for the ST task, drug-target pairs 
in the DTIs space corresponding to one tenth of all targets will only appear in the test 
set. In addition, the case study mentioned above corresponds to a more realistic scenario 
to test the performance of predicting unknown DTIs, in which all known DTIs are added 
to the training data as the auxiliary information to predict unknown DTIs (and then ver-
ify these predictions) [27, 36]. More specifically, we first set the labels of all known DTIs 
to 1, and the labels of other samples (including drug-target pairs without any interac-
tion and drug-target pairs with undiscovered interactions) in the DTIs space are set to 0. 
Then, we randomly divide all drug-target pairs labeled 0 into 10 non-overlapping groups, 
and in each group, all samples labeled 1 are incorporated into the training set. Thus, dur-
ing the whole predictive process, the RF classifier will receive embeddings correspond-
ing to all drug-target pairs labeled 0 and thus can provide the probability scores of all 
unknown drug-target pairs in the given dataset, so that we can acquire predicted novel 
DTIs from top-ranked-score results. Furthermore, since the aim of the case study is to 
predict potential interactions of unknown DTIs only, it is not necessary to calculate the 
performance metrics.

As for the SD and ST tasks, we can acquire a more reasonable performance estimation 
by choosing the PR-AUC as the main evaluation metrics, it functions well when there are 
far more negative samples than positive samples in the dataset (Table 1), because it can 
impose a stricter punishment on the false positive (FP) case [37], and the ROC-AUC is 
selected as the auxiliary evaluation metrics. In each fold of CV, the PR-AUC is obtained 
by calculating the area under the precision-recall (PR) curve constructed based on the 
predictions of the RF classifier and corresponding actual labels. Similarly, the ROC-AUC 
can be calculated from the ROC curve, which is plotted by multiple true positive rate 
(TPR)—false positive rate (FPR) pairs under different threshold settings. The overall PR-
AUC and ROC-AUC of the tenfold CV are derived by averaging the values in all folds. 
The general hyperparameters of our method tuned by the grid search for each dataset 
are shown in Table 2. In addition, the dimension of final embeddings of drug-target pairs 
is twice as high as that of the embeddings generated by BiNE.

Table 2  Hyperparameters of BiNE for different datasets

Parameter names Nuclear 
receptors

Ion channels GPCR Enzymes DrugBank

Maximum iterations 100 100 100 1000 100

Learning rate 0.1 0.1 0.1 0.1 0.01

Number of negative samples ns 4 4 4 4 2

Size of window ws 5 7 5 5 5

Trade-off parameter α 0.01 0.01 0.01 0.01 0.01

Trade-off parameter β 0.1 0.1 0.1 0.1 0.01

Trade-off parameter γ 0.1 1 0.1 0.1 0.1

Embedding size of BiNE 64 128 32 128 128

Embedding size of drug-target pairs 128 256 64 256 256

Walk stopping probability 0.15 0.15 0.15 0.15 0.15

Walk restart probability 0.7 0.7 0 0.7 0.7
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Comparison with other recent DTI prediction methods

In this section, under the same datasets, evaluation metrics, and prediction tasks (SD 
and ST tasks), seven advanced methods including DDR [27], NEDD [38], NRLMFβ [39], 
DTINet [2], CMF [40], BLM-NII [41], and NetLapRLS [10] which can effectively utilize 
the drug-target related knowledge are involved into the performance comparison, which 
allows us to compare the proposed method with the representative heterogeneous-
network-based, matrix-factorization-based, and kernel-based methods. For methods 
which could only handle a single type of drug and target similarities, like BLM-NII and 
NetLapRLS, we use compound structure similarities (for drugs) and protein sequence 
similarities (for targets) provided by Yamanishi et al. [33] as the model input. In order to 
further demonstrate the effectiveness and feasibility of integrating similarity-based and 
path-based prior knowledge into the embeddings of drug-target pairs, we add BiNE into 
the comparison. That is, obtain the embedding vector of each drug-target pair by directly 
concatenating corresponding drug and target embeddings produced by BiNE (i.e., not 
considering any additional prior information). The generated vectors are then put into a 
RF classifier which is the same as the RF used in our method, to get the probability score 
of every drug-target pair. In addition, we do not consider DTiGEMS + [16] mentioned 
above, because it is difficult to evaluate this method and ours simultaneously in the same 
experimental settings. In other words, it requires the same number of positive and nega-
tive samples in each fold of a tenfold CV, while in our method, the allocation of samples 
follows the rule of the SD and ST tasks, which results in highly imbalanced samples in the 
training set.

Tables 3 and 4 show the PR-AUC and ROC-AUC of the methods participating in the 
SD and ST tasks. In general, based on the main evaluation metrics PR-AUC, our method 

Table 3  Performance comparison over five datasets in the SD task

Best performing methods under the current dataset and performance indicator are indicated in bold

Methods Performance 
indicators

Datasets

E IC GPCR NR DrugBank

DTI-HeNE PR-AUC​ 0.908 0.912 0.982 0.980 0.921
ROC-AUC​ 0.980 0.981 0.998 0.997 0.995

NEDD PR-AUC​ 0.896 0.879 0.951 0.953 0.578

ROC-AUC​ 0.986 0.982 0.998 0.993 0.959

DDR PR-AUC​ 0.897 0.888 0.857 0.874 0.598

ROC-AUC​ 0.972 0.983 0.958 0.941 0.895

NRLMFβ PR-AUC​ 0.313 0.322 0.324 0.471 0.249

ROC-AUC​ 0.679 0.735 0.824 0.892 0.669

DTINet PR-AUC​ 0.270 0.320 0.298 0.250 0.316

ROC-AUC​ 0.772 0.727 0.764 0.685 0.896

CMF PR-AUC​ 0.193 0.190 0.355 0.450 0.047

ROC-AUC​ 0.793 0.701 0.854 0.817 0.600

BLM-NII PR-AUC​ 0.076 0.209 0.099 0.417 0.185

ROC-AUC​ 0.752 0.754 0.593 0.792 0.884

NetLapRLS PR-AUC​ 0.112 0.178 0.223 0.416 0.120

ROC-AUC​ 0.782 0.750 0.806 0.782 0.855

BiNE PR-AUC​ 0.766 0.751 0.588 0.724 0.316

ROC-AUC​ 0.944 0.962 0.944 0.936 0.856
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has overall better performance than the other methods in the both tasks. For the SD task, 
the PR-AUC achieved by our method increases by 1.2%, 2.6%, 3.2%, 2.8%, and 35.1% on 
E, IC, GPCR, NR, and DrugBank datasets, respectively, compared with that of the sec-
ond-best model. For the ST task, the corresponding improvements made by our method 
are 1.8% (E), 2.8% (IC), 4.2% (GPCR), 13.8% (NR), and − 11.7% (DrugBank), respectively. 
Meanwhile, under the auxiliary evaluation metrics ROC-AUC, our method is also gen-
erally superior to other models.

To investigate why our method performed differently in the SD and ST tasks on the 
DrugBank dataset, we counted the number of targets that every drug had ( Ndrug ) in the 
SD task (in which data was split according to drugs) and the number of drugs that every 
target corresponded to ( Ntarget ) in the ST task (in which data was split according to tar-
gets) based on the known DTIs in the DrugBank dataset; and we further calculated the 
mean and variance of Ndrug and Ntarget . The corresponding values were 
Mean

(
Ndrug

)
= 6.67 , Var

(
Ndrug

)
= 45.30 , Mean

(
Ntarget

)
= 7.02 , and 

Var
(
Ntarget

)
= 660.80 , respectively. The significant difference between Var

(
Ndrug

)
 and 

Var
(
Ntarget

)
 components indicates that when auxiliary information (i.e., pathway and 

similarity-based information), Mean
(
Ndrug

)
 , and Mean

(
Ntarget

)
 are similar, because our 

method is dependent on high-quality bipartite DTI relations to produce embeddings as 
well as the sample variance related to DTI relations in the ST task is much larger than 
that in the SD task, therefore, our method performs better in the SD task than in the ST 
task. Meanwhile, another heterogeneous network embedding method DTINet, which 
also relies on DTIs to generate projection matrix for DTI predictions, also suffers a sig-
nificant drop in the predictive performance (from 0.316 to 0.176 in PR-AUC). In 

Table 4  Performance comparison over five datasets in the ST task

Best performing methods under the current dataset and performance indicator are indicated in bold

Methods Performance 
indicators

Datasets

E IC GPCR NR DrugBank

DTI-HeNE PR-AUC​ 0.941 0.974 0.914 0.989 0.429

ROC-AUC​ 0.997 0.997 0.976 0.996 0.891
NEDD PR-AUC​ 0.929 0.901 0.876 0.853 0.421

ROC-AUC​ 0.992 0.982 0.995 0.983 0.881

DDR PR-AUC​ 0.924 0.947 0.862 0.818 0.486
ROC-AUC​ 0.974 0.987 0.964 0.929 0.885

NRLMFβ PR-AUC​ 0.797 0.791 0.527 0.541 0.268

ROC-AUC​ 0.931 0.954 0.939 0.921 0.766

DTINet PR-AUC​ 0.477 0.425 0.093 0.272 0.176

ROC-AUC​ 0.895 0.860 0.681 0.676 0.841

CMF PR-AUC​ 0.273 0.365 0.402 0.366 0.104

ROC-AUC​ 0.765 0.754 0.809 0.533 0.702

BLM-NII PR-AUC​ 0.650 0.738 0.352 0.418 0.158

ROC-AUC​ 0.911 0.914 0.775 0.533 0.831

NetLapRLS PR-AUC​ 0.651 0.708 0.302 0.348 0.140

ROC-AUC​ 0.907 0.912 0.758 0.523 0.810

BiNE PR-AUC​ 0.674 0.612 0.432 0.459 0.183

ROC-AUC​ 0.936 0.919 0.831 0.651 0.841
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contrast, for DDR, since it is not an embedding-based method that needs DTIs, there-
fore, its performance in the ST task remains stable. This phenomenon can also prove that 
the quality of bipartite DTI relations plays a significant role for learning embeddings of a 
heterogeneous DTI network.

In addition, after obtaining drug and target embeddings, DTINet used inductive 
matrix completion (IMC) to learn these embeddings and known DTIs directly, for gen-
erating a projection matrix, which led to DTI predictions, and there were few between-
class imbalance learning techniques being adopted. While our method utilized the RF 
classifier to predict DTIs, which could handle the sample-class-imbalance problem more 
efficiently. Therefore, in the face of highly imbalanced samples in the SD and ST tasks, 
our method outperformed DTINet.

Case study

To further prove the capability of the proposed model in a more realistic DTI prediction 
scenario, we introduce the case study mentioned in the “Experimental settings, evalu-
ation metrics and other model parameters” section. Based on the case study, we can 
acquire drug-target pairs with the highest (top 5) probability scores predicted by the RF 
classifier on each dataset and search for the relevant evidence from six external data-
bases (KEGG (K) [42], DrugBank (D) [34], Matador (M) [43], ChEMBL (C) [44], T3DB 
(T) [45], and CTD [46]). The DTIs contained in the used datasets were collected before 
2008, thus, we can do verification by using newly updated DTIs in the above databases. 
The predicted interactions (a total of 25 pieces of data) and corresponding supporting 
evidence are shown in Table 5.

In summary, we found the evidence for the majority of predicted interactions (22 out 
of 25), and we carried out further research on these predictions. For the drug in the 
drug-target pair having a top probability score, we can usually find the evidence that 
this drug can interact with other targets which belong to the same gene family as the 
target in this drug-target pair. For example, in the GPCR group, the first ranked pre-
diction indicates that there is a potential interaction between pindolol and ADRA2C. 
Pindolol is a moderately lipophilic beta blocker (adrenergic beta-antagonists) [47], and 
ADRA2C stands for the Alpha-2C adrenergic receptor. It was reported that the gene 
coding ADRA2C is associated with beta blockers response in a group of patients trou-
bled by chronic kidney disease [48]. Meanwhile, we find that ADRA2A and ADRA2B, 
which are also members of the ADRA gene family, can interact with pindolol (from the 
Matador database).

There is another instance that can be used to further illustrate such a characteristic 
of DTI predictions. In the IC group, it was predicted that carbachol could react with 
CHRNA5 (the top ranked interaction). Carbachol [49] is a slowly hydrolyzed choliner-
gic agonist and CHRNA5 refers to the neuronal acetylcholine receptor subunit alpha-5. 
There is a recent drug-repurposing report that carbachol can combine with histamine 
and dopamine to block the inhibitory effects of benztropine mesylate on mammosphere 
formation of breast cancer stem cells. During the interaction process, the mRNA expres-
sion levels of CHRNA5 were variably altered within different types of tested cells [50]. 
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Furthermore, the interactive information between carbachol and CHRNA2, CHRNA3, 
CHRNA4, CHRNA6 can be accessed from the Matador dataset.

Discussion
In this work, we introduce a novel DTI prediction method – DTI-HeNE, which resorts 
to the heterogeneous information from every sub-network of the heterogeneous DTI 
network, to produce high-quality embeddings of drug-target pairs. Under the same 
experimental settings (SD and ST tasks) and evaluation metrics (PC-AUC, ROC-AUC), 
we obtained the comparison results shown in Tables  3  and  4. Based on current five 
benchmark datasets, we show that the overall performance of our method is better than 
that of other advanced methods involved in the experiment. We consider that the supe-
rior performance of DTI-HeNE is attributed to the following two reasons.

The first reason is the use of BiNE, when processing bipartite DTI relations for DTI 
predictions, in addition to modeling observed edges between drugs and targets, it is 

Table 5  The novel interactions predicted by DTI-HeNE and corresponding evidence provided by 
external databases

Drug ID Drug names Target ID Target names Evidence sources

Enzymes

D00437 Nifedipine hsa1585 CYP11B2 M, CTD

D00528 Caffeine hsa50940 PDE11A CTD

D00126 Ibuprofen hsa247 ALOX15B M

D00394 Trimipramine hsa5152 PDE9A None

D00574 Aminoglutethimide hsa1589 CYP21A2 M

G-protein-coupled receptors

D00513 Pindolol hsa152 ADRA2C None

D01713 Epinastine hsa152 ADRA2C C

D00454 Olanzapine hsa3357 HTR2B K, T, CTD

D02354 Thiethylperazine hsa1816 DRD5 C

D00283 Clozapine hsa1132 CHRM4 D, C, T

Ion channels

D00524 Carbachol hsa1138 CHRNA5 CTD

D03365 Nicotine hsa1138 CHRNA5 K, D, T, CTD

D03826 Physostigmine sulfate hsa2564 GABRE None

D00550 Midazolam hsa2570 GABRR2 T, CTD

D00303 Disopyramide hsa6326 SCN2A K

Nuclear receptors

D00585 Mifepristone hsa2099 ESR1 M, T, CTD

D00066 Progesterone hsa2100 ESR2 D, CTD

D01161 Fulvestrant hsa5241 PGR M, C

D00182 Norethisterone hsa2099 ESR1 CTD

D00066 Progesterone hsa367 AR DB, CTD

DrugBank

DB01589 Quazepam P47870 GABRB2 T, K

DB00546 Adinazolam Q16445 GABRA6 K

DB00321 Amitriptyline P14416 DRD2 T

DB01215 Estazolam Q16445 GABRA6 K

DB00696 Ergotamine P41595 HTR2B D, C, T
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essential to consider the distinctive information of drug and target nodes, respec-
tively. BiNE implements this by separately extracting implicit transition relationships 
between drugs and between targets (i.e., acquiring the 2nd-order proximity between 
the same type of vertices), which can provide unique similarity information (e.g., the 
homogeneous network illustrated in Fig. 2) compared with the similarities calculated 
based on domain knowledge. The second reason is that distinct information of each 
sub-network of the heterogeneous DTI network is effectively combined by using the 
path-based semantic information, as integrating this information through interpret-
able pathways between the sub-networks could contribute to a more explicit descrip-
tion of drug-target associations throughout the DTIs space. For the analogical reason, 
DDR also achieved great performance by extracting various path-category-based fea-
tures from a heterogeneous network and combining the generated features into one 
fixed-length vector (as a representation of one drug-target pair). The advantage of our 
method is that the high-order prior proximity information of drugs and targets can be 
fused into the representations of drug-target pairs, and the length of these represen-
tations is no longer fixed so that we can flexibly adjust the length to meet the needs 
of some specific tasks. These benefits are brought by utilizing embedding-based algo-
rithm as the backbone to process the heterogeneous DTI network.

When doing the case study, we observed that, for the newly discovered DTIs, it was 
common to find the supporting evidence that the targets that belonged to the same gene 
family as the predicted target could interact with the predicted drug. We speculate the 
reason is that we follow the principle “similar drugs may interact with similar targets” 
to design the predictive method, which can be reflected in the process of the Co-HITS-
based homogeneous matrix generation and the drug-target embedding generation. The 
benefit is that we can forecast unknown DTIs more purposefully and directionally and 
reduce the probability of misjudgment using abundant similarity information. However, 
the scale of the searching space in which novel DTIs could be found is also narrowed. 
That is, if the similarity between the nodes in a certain drug-target pair and other nodes 
in the dataset is relatively low, it is less likely for this drug-target pair to be predicted to 
have a potential interaction, even though it actually contains an association. Thus, we 
plan to explore how to give our method a functional extension which can give higher 
attention to certain drugs having relatively lower similarity to other drugs but are wor-
thy of further study. In addition, the proposed method is an attempt to use the stage-
by-stage transductive-learning method to do the DTIs prediction, the benefit is that the 
method has better interpretability than many end-to-end methods, as every stage has 
a clearly actual meaning in the workflow; however, it is because currently our method 
functions in a transductive-like way, it has higher computational cost than the inductive-
learning method (as the inductive learning will not be limited to a specific dataset, e.g., 
fixed drugs and targets, i.e., transductive learning can bring higher predictive accuracy 
than inductive learning due to the better use of additional information of unknown sam-
ples in the dataset with sparse known interactions, while the model have to be re-run if 
any new nodes/samples will be added into the dataset). Thus, in the future, we would 
like to do further modification of our method to make it suitable for inductive-like DTI 
prediction task.
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Furthermore, adapting our algorithm to predict interactions between microRNAs 
(miRNAs) and small molecular drugs would be a highly interesting future direction. 
This is because increasing number of studies have found that the abnormal expression of 
miRNAs had close connections with many complex human diseases, and small molec-
ular drugs could treat them by modulating the expression of miRNAs [51]. Similar to 
the general drug-target interaction prediction, accurate predictions of miRNA targets of 
small molecular drugs can be made based on miRNA and small molecule similarity net-
works, known miRNA-molecule interactions, and the “guilt-by-association” assumption 
[52–54]; and such data is quite similar to the required data of our method. Based on this, 
we believe that, with proper adjustments and data, DTI-HeNE can be applied to predict 
the interaction between small molecular drugs and miRNAs.

Conclusion
In this paper, a novel heterogeneous network embedding method – DTI-HeNE, has 
been proposed for the DTI prediction, which can extract distinct features from every 
sub-network of the heterogeneous DTI network and concatenate these features by the 
topological information between the sub-networks. This study has demonstrated the 
feasibility and practicability of de-constructing the heterogeneous DTI network to cap-
ture the contained complex information for generating high-quality embeddings of 
drug-target pairs. In addition, we have proved that, after proper adjustments, BiNE can 
efficiently learn the special bipartite relations included in the drug-target interactions.

Moreover, our method achieved overall higher predictive accuracy than other 
advanced methods in different experimental scenarios based on the same way of evalua-
tion and verification. In the task of novel DTI predictions, our method can also generate 
reasonable results with clear directivity. In conclusion, for drug repurposing, the pro-
posed method is an effective and useful tool to identify new DTIs.
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