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Abstract

Large-scale genome-wide association (GWAS) studies provide opportunities for developing

genetic risk prediction models that have the potential to improve disease prevention, intervention

or treatment. The key step is to develop polygenic risk score (PRS) models with high predictive

performance for a given disease, which typically requires a large training data set for selecting

truly associated single nucleotide polymorphisms (SNPs) and estimating effect sizes accurately.

Here, we develop a comprehensive penalized regression for fitting l1 regularized regression

models to GWAS summary statistics. We propose incorporating Pleiotropy and ANnotation

information into PRS (PANPRS) development through suitable formulation of penalty functions

and associated tuning parameters. Extensive simulations show that PANPRS performs equally well

or better than existing PRS methods when no functional annotation or pleiotropy is incorporated.

When functional annotation data and pleiotropy are informative, PANPRS substantially

outperforms existing PRS methods in simulations. Finally, we applied our methods to build PRS

for type 2 diabetes and melanoma and found that incorporating relevant functional annotations and

GWAS of genetically related traits improved prediction of these two complex diseases.
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1. Introduction

One goal of genome-wide association studies (GWAS) is to develop accurate polygenic risk

score (PRS) prediction models, which are fundamental for prevention, early detection and

treatment of complex diseases. Although large-scale GWAS have identified dozens or even

hundreds of single nucleotide polymorphisms (SNPs) associated with individual diseases,

PRS models still have poor predictive performance, far away from the upper limit implicated

by heritability analyses for most of diseases [1–3]. Theoretical analysis suggested that the

performance of PRSs relies on both the genetic architecture of the disease and the sample

size of the training data set [1, 3]. While PRSs can be improved by substantially increasing

the sample sizes of the training data, efficient statistical method is also needed to improve

PRS based on existing data.

PRS can be built with complex machine learning algorithms [4] or linear mixed models [5,

6] based on individual level genotypic and phenotypic data. However, developing PRS based

on GWAS summary statistics (including the marginal regression coefficient β j and the p-

value Pj based on single SNP analysis) may be preferred because of the easier access to large

GWAS consortia. The simplest and most widely used PRS [7] incorporates independent

SNPs achieving genome-wide significance in the form: PRSi = ∑ j = 1
K β jgi j where i indexes

an individual and β j is the association coefficient for SNP j obtained from typical marginal

association analysis of the SNPs. A more sophisticated PRS was proposed to include SNPs

below genome-wide significance threshold in the form: PRSi p0 = ∑ β jgi jI P j < p0 , where

the optimal p-value threshold p0 was selected based on the validation GWAS data [8]. This

approach is typically implemented with linkage disequilibrium (LD)-based pruning to

remove the noise due to correlated SNPs but may result in loss of underlying independent

signals.

Recent work has shown that PRS can be improved by modelling LD explicitly [9],

incorporating functional annotation data [10, 11] or modelling genetic pleiotropy [10, 12–

14], i.e., leveraging information from traits that are genetically related with the primary trait.

However, no unified statistical framework is available to incorporate functional annotation

data and many secondary traits to maximize the predictive performance of PRS, particularly

when only summary statistics are available.

Lasso and various other extensions based on L1-regularization [15] is a powerful algorithm

for building sparse prediction models when the number of predictors far exceeds the number

of subjects. When individual genotypic and phenotypic data are available, these methods

have been used for building PRS for complex diseases [16, 17]. The Bayesian interpretation

of Lasso provides a natural way to incorporate functional annotation data by using SNP-
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specific regularization parameter. In addition, group Lasso type methods have been

developed to regularize multiple predictors or the same predictor across many phenotypes

[18]; thus, they have the potential to improve PRS performance by incorporating traits that

are genetically related with the primary trait. Although the Lasso algorithm is powerful and

flexible, it requires individual level data, which are difficult and often impossible to access.

Importantly, we and others have earlier shown that the sample size of the GWAS training

data set is the most important factor for improving prediction accuracy [1, 3]. Often, the

GWAS consortia for complex traits/diseases perform meta-analysis including most of the

existing GWAS data sets. The GWAS summary statistics can be accessed from these

consortia to build PRS models. Thus, it would be desirable to develop PRS methods using

the GWAS summary statistics based on a large sample size to achieve a high predication

accuracy.

Mat and colleagues [19] developed an algorithm lassosum for fitting a panelized linear

regression model based on summary statistics that are derived based on linear regressions. It

is not clear how to directly use the algorithm to summary statistics derived based on logistic

regression for a binary trait. We herein develop a comprehensive statistical framework by

incorporating Pleiotropy and ANnotation information into PRS (PANPRS) development

through suitable formulation of penalty functions based on GWAS summary statistics with

the flexibility to both quantitative and binary traits. We first develop a Lasso regression

model for a single trait, either a quantitative trait or a binary trait, based on GWAS summary

statistics. This approach uses local LD matrices estimated based on external genotypic data

with relevant ancestry. We show that the Lasso model based on summary statistics and local

LD information well approximates that based on raw genotypic data. Second, we modify

regularization parameters to incorporate multiple functional annotation data, implicitly

assuming that SNPs annotated with more functional categories are more likely to be

associated with the trait/disease. Third, we adapt our recently developed penalty function

[20] to jointly penalize multiple secondary traits/diseases that are genetically related with the

primary trait. Finally, we present a unified framework to incorporate local LD pattern,

multiple functional annotations and genetic pleiotropic information. The framework works

for quantitative traits, binary traits or a combination of both. The R code is available at

https://github.com/lsncibb/PANPRS.

The manuscript is organized as follows. Section 2 presents the statistical framework of

PANPRS for quantitative traits. Section 3 extends the framework to binary traits. Simulation

results are presented in Section 4. In Section 5, we exemplify PANPRS by building PRSs for

type 2 diabetes and melanoma. Limitations and future directions are discussed in the final

section.

2. PRS for quantitative traits using GWAS summary statistics

In this section, we propose methods for building PRSs for quantitative traits by fitting Lasso

regression models using GWAS summary statistics. The parallel development of PRS for

binary traits or a combination of quantitative and binary traits will be presented in Section 3.
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2.1 Fitting the Lasso using GWAS summary statistics for a quantitative trait

Consider a GWAS for a quantitative trait with n unrelated subjects and M SNP markers. Let

Y = y1, ⋯, yn ′ be the phenotypic values. Let X = xi j  be the genotypic matrix, where xi j

denotes the genotype for subject i and SNP j. Without loss of generality, we assume that the

phenotype and the genotype for each SNP have been normalized to have mean zero and unit

variance across subjects. When individual level data (X, Y) are available from a training

GWAS data set, one can develop a linear, additive PRS by solving the following

optimization problem:

βLasso(λ) = argminβ
1
2n ∑i = 1

n yi − ∑ j = 1
M xi jβ j

2
+ ∑ j = 1

M λ β j , (1)

where β = β1, ⋯, βM  are the effect sizes of M SNPs. The l1 penalty shrinkages most of

coefficients to zero and thus produces a sparse prediction model with an appropriately

chosen λ.

The Lasso estimates can be obtained by the coordinate descent algorithm, which solves the

single-variate Lasso problem sequentially and iteratively [21]. Assume that β1
(t), ⋯, βM

(t)  are

the coefficients at iteration t. Define

z j
(t) = 1

n ∑i = 1
n xi jyi − 1

n ∑i = 1
n ∑l ≠ j xi jxilβl

(t) = 1
n ∑i = 1

n xi jyi

− ∑l ≠ j βl
(t) 1

n ∑i = 1
n xi jxil .

(2)

By solving the single-variate Lasso problem given current estimates, one can update β j as

β j
(t + 1) =

0 if z j
(t) ≤ λ

sign z j
(t) z j

(t) − λ if z j
(t) > λ1 .

This procedure continues until convergence is achieved.

Apparently, the key step of fitting the Lasso is to calculate z j
(t) in (2) for each iteration.

Fortunately, z j
(t) can be approximated using GWAS summary statistics and local LD

information. Remember that xi j and yi are normalized to have unit variance. For the first item

in (2), we have 1
n ∑i = 1

n xi jyi = β j, the marginal coefficient of SNP j based on single SNP

linear regression. For the second item, ρ jl: = 1
n ∑i = 1

n xi jxil is the empirical correlation

between two SNPs (j, l). Ideally, ρ jl would be calculated based on the genotype of the

training data set. As an approximation, we can calculate ρ jl based on the existing genotype

data with relevant ancestry. For SNPs on different chromosomes or on the same

chromosome but more than 5 mega base pairs (MB) away, we set ρ jl = 0. Thus, we only
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need to account for LD in local regions, which greatly simplifies the calculation of z j
(t). For

SNP j, let A j denote the set of its neighboring SNPs less than 5 MB. We approximate z j
(t) as

z j
(t) ≈ 1

n ∑i = 1
n xi jyi − ∑l ∈ A j

βl
(t) 1

n ∑i = 1
n xi jxil ≈ β j − ∑l ∈ A j

βl
(t)ρ jl . (3)

The framework of the algorithm proposed here is similar to lassosum [19]. The main

difference is how to account for LD between SNPs. lassosum regularizes the estimated

genotypic correlation matrix to achieve a stable solution to (1). We accounted for local LD

while setting ρ jl = 0 for SNPs far away to make the algorithm computationally fast.

2.2 PANPRS with multiple functional annotations

Recent studies have reported that functional annotation data may improve accuracy of PRS

[10, 11]. Intuitively, SNPs annotated with functional importance may be prioritized as truly

associated SNPs and thus included in PRS with less stringent threshold [10]. Examples of

functional annotations include expression quantitative trait loci (eQTL), methylation QTL

(meQTL), cis-regulatory regions determined by Chromatin Immunoprecipitation Sequencing

(ChIP-Seq) and genome conserved regions. It is biologically plausible that SNPs annotated

with more functional categories are more likely to be causal. Existing methods (e.g., [10])

classify SNPs as functional or non-functional and do not fully leverage the information

provided by multiple functional annotations. In this section, we extend PANPRS to

incorporate multiple functional annotation data.

We assume r functional annotation categories. For SNP j and annotation s, we define a

binary variable R js, where R js = 1 if the SNP is not annotated for category s and R js = 0

otherwise. We can define R js based on a continuous annotation data after an appropriate

transformation, e.g., sigmoid transformation. We propose to minimize the following cost

function to derive regularized estimates of effect sizes:

β = argminβ
1
2n ∑i = 1

n yi − ∑ j = 1
M xi jβ j

2
+ ∑ j = 1

M λ0 + ∑s = 1
r λsR js β j . (4)

Here, λ0, λ1, ⋯, λr > 0. For SNP j, the total penalty is Γ j: = λ0 + ∑s = 1
r λsR js, where λ0 is the

baseline penalty applying to all SNPs and the second term is SNP-specific penalty related

with functional annotation information. Intuitively, if a SNP is annotated for more functional

annotations, it is more likely to be causal for a trait and thus is less penalized in our

framework.

Remark: The annotation-specific regularization parameters λ1, ⋯, λr  selected based on

independent GWAS data may help identify annotation categories that are informative for

prioritizing SNPs for PRS. In fact, λs ≫ 0 indicates that the annotation category s is

informative while the annotation is not informative if λs ≈ 0.
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Similarly, we can minimize the cost function (4) by the coordinate descent algorithm based

on the GWAS summary statistics. Let z j
(t) in (3) be calculated at the tth iteration. At the

(t + 1)th iteration, we update β j as

β j
(t + 1) =

0 if z j
(t) ≤ Γ j

sign z j
(t) z j

(t) −Γ j if z j
(t) > Γ j .

(5)

2.3 PANPRS incorporating multiple traits

Genetic pleiotropy is the phenomenon by which individual genetic variants are associated

with multiple traits. A variety of association tests have been proposed to identify SNPs that

are modestly associated with multiple traits by modelling pleiotropy [22–24]. It has been

recently reported that PRS performance can also be improved by modelling pleiotropy [12],

i.e., incorporating GWAS data for traits that share genetic basis with the primary trait. In this

section, we aim to extend PANPRS to model genetic pleiotropy by introducing a group-

Lasso type penalty, which is more sensitive to select SNPs modestly associated with

multiple traits.

Consider Q quantitative traits, each of which has nq subjects in GWAS. All studies are

assumed to share the same set of M SNPs. For the qth trait, let Yq = yq1, …, yqnq
 be the

phenotypic values and Xq = xqi j  for nq subjects. Let βq = βq1, ⋯, βqM ′ be the coefficients

for M SNPs and for trait q. Let B = β1, ⋯, βQ ′ be the coefficient matrix for all traits. We

propose to obtain a sparse PRS by solving the following penalized least squares problem:

B = argminB∑q = 1
Q 1

2nq
‖Yq − Xqβq‖2

2 + ∑q = 1
Q ∑ j = 1

M λ0 βq j

+ ∑ j = 1
M λ1log(∑q = 1

Q βq j + τ),
(6)

where λ0( > 0), λ1( > 0) and τ( > 0) are tuning parameters. The group-wise log penalty was

proposed in our previous work [25], which aims to select the variables that are associated

with multiple traits with modest effects. Parameter τ > 0 is introduced to avoid indefinite

values for log ∑q = 1
Q βq j

(t)  when all β1 j, ⋯, βQ j  are penalized to 0 for SNP j. More

discussions on the statistical properties of τ can be found in [25].

The solution to (6) can be obtained by applying a local linear approximation and the

coordinate descent algorithm. Let Bt = βq j
(t)  denote the estimate at the tth iteration. Define

uq j
(t) = βq j − ∑ℓ ∈ A j

ρ jℓβqℓ
(t) , (7)
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where βq j is the marginal regression coefficient from the GWAS summary data, βqℓ
(t)  is the

updated coefficient at the tth iteration and Aj is the neighboring SNP set for SNP j. Thus, uq j
(t)

can be calculated using GWAS summary statistics βq j and the SNP correlation coefficients

estimated based on external genotype data. In Supplementary Materials, we derive the

following updating rule:

βq j
(t + 1) =

0 if uq j
(t) ≤ Tq j

sgn uq j
(t) uq j

(t) −Tq j if uq j
(t) > Tq j

. (8)

Here, the threshold

Tq j = λ0 +
λ1

∑q = 1
Q βq j

(t) + τ
(9)

depends on the estimated total effects of the SNP across all Q traits. When the estimated

total effects ∑q = 1
Q βq j

(t)  is bigger, Tq j is smaller and thus the SNP is more likely to be

estimated as non-zero. Therefore, the SNP-specific and data-driven threshold Tq j allow to

select SNPs with modest individual effect but strong total effects across multiple traits.

2.4 PANPRS incorporating functional annotations and pleiotropic information

Finally, we extend PANPRS to incorporate both functional annotation data and multiple

secondary traits that are genetically related with the primary trait. Based on the work in

previous sections, we now derive the regularized estimates of effect sizes by minimizing the

cost function:

∑q = 1
Q 1

2nq
‖Y − Xqβq‖2

2 + ∑q = 1
Q ∑ j = 1

M λ0 + ∑s = 1
r λsR js βq j

+ ∑ j = 1
M λlog ∑q = 1

Q βq j + τ .
(10)

For the (t + 1)th iteration, we derive the update for βq j given the rest of parameters:

βq j
(t + 1) =

0 if uq j
(t) ≤ Tq j′

sgn uq j
(t) uq j

(t) −Tq j if uq j
(t) > Tq j′

, (11)

where uq j
(t) is given in (7) and

Tq j′ = λ0 + ∑s = 1
r λsR js + λ

∑q = 1
Q βq j

(t) + τ
. (12)
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Here, the first penalty is for multiple functional annotations and the second penalty is for

multiple traits. Details are described in Supplemental Materials.

2.5 Selecting tuning parameters

For practical reasons, most of published PRS methods selected tuning parameters and

reported performance of the corresponding PRS based on the same validation dataset, which

makes assessment of predictive performance bias upward. Here, we select tuning parameters

to make the assessment of PRS performance unbiased for both simulation studies and

analyses of real data. For simulations, we simulated three data sets, one as the training data

set, one for choosing tuning parameters and the third one for assessing PRS performance.

For real data analysis, the independent “validation” data set was split into two data sets: one

for selecting tuning parameters and the other for assessing PRS performance.

3. PRSs for binary traits using GWAS summary statistics

Let yi be binary phenotypic value, where yi = 1 represents a case and yi = 0 represents a

control. Let β = β0, β1, ⋯, βM
T denote the intercept and the effect sizes for M SNPs. Define

πi(β) = P yi = 1 ∣ xi1, ⋯, xiM = e
β0 + ∑ j = 1

M xi jβ j

1 + e
β0 + ∑ j = 1

M xi jβ j
.

When individual level data are available, one obtains a regularized estimate of β by

minimizing

U0(β) = − ∑i = 1
n yilogπi + 1 − yi log 1 − πi + ∑ j = 1

M λ β j (13)

using a similar coordinate descent algorithm proposed for non-convex penalty functions

[27].

When only GWAS summary data, i.e., marginal coefficients β j estimated based on the single

variant logistic regression, are available for M individual SNPs, we derive an updating rule

in Appendix. Let β1
(t), ⋯, βM

(t)  be the coefficients at the tth iteration. We calculate

z j
(t) ≈ β j − ∑l ∈ A j

ρ jlβl
(t), (14)

where ρ jl is the correlation between a SNP pair (j, l) and Aj represents the set of SNPs in LD

with SNP j. We update β j as

β j
(t + 1) =

0 if z j
(t) ≤ λ

sgn z j
(t) z j

(t) − λ if z j
(t) > λ

.
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Note that formula (14) approximating Z j
(t) for a binary trait is identical to that for a

quantitative trait (3) although the marginal coefficients β j are based on univariate logistic

and linear regression, respectively. This observation makes the parallel extensions (i.e.,

incorporating functional data and modelling genetic pleiotropy) of the PANPRS framework

straightforward for binary traits or for a combination of binary and quantitative traits.

As we will show in the Appendix, the algorithm works well when the resulting PRS explains

a small fraction of phenotypic variance, which holds for most of complex diseases given the

current sample sizes in the discovery sample set. Thus, we expect the algorithm to well

approximate the true Lasso-based PRS in real situations.

4. Numerical studies

4.1 Genotypes for simulation studies

We conduct simulation studies by simulating phenotypic values conditioning on the

genotypic data available from a GWAS of lung cancer [28]. This data set included 11,924

subjects of European ancestry after quality control.

4.2 Concordance between Lasso and PANPRS

For a set of M SNPs and a quantitative trait, we assume yi = ∑k = 1
M βkgik + εi. For a given λ,

we assume B0(λ) = β1
0, ⋯, βM

0  to be the estimates of the effect sizes based on the standard

Lasso using individual level data. Similarly, we denote B1(λ) = β1
1, ⋯, βM

1  as the estimates

based on the PANPRS. We investigate the concordance between B0(λ) and B1(λ). Phenotypic

values were simulated conditioning on the genotype data in the lung cancer GWAS.

In the first numerical experiment, we generated data using M = 200 SNPs in a region

selected from the first chromosome. Because of the small number of SNPs, the full LD

matrix can be calculated and incorporated for PANPRS. In this scenario, B0(λ) and B1(λ)
were nearly identical (Figure 1A). In the second experiment, we used M = 213,240 SNPs on

the 22 autosomal chromosomes after LD-pruning with pairwise r2 = 0.5. We randomly

selected 500 causal SNPs to generate phenotypic values. For this experiment, we adjusted

only the local LD for PANPRS. Results show that B0(λ) and B1(λ) were highly concordant for

sparse models (Figures 1B and 1C) and reasonably concordant for dense models (Figure

1C). For PRS in real GWAS, the prediction models are typically sparse with several

thousand SNPs at most; thus, we expect B0(λ) and B1(λ) to be highly concordant.

Next, we performed numerical experiments for binary traits. Because PANPRS only

provides an approximation to Lasso for logistic regression (see Section 3), we do not expect

B0(λ) and B1(λ) to be identical even when the full LD matrix is adjusted (when M = 200

SNPs were used; Figure 1D). In fact, results for binary traits are very similar to those for

quantitative traits. In particular, for sparse models, B0(λ) and B1(λ) are highly concordant

even when we only adjusted for local LD instead of the full LD matrix. Results are in

Figures 1E and 1F.
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4.3 Performance comparison of PRS methods for one phenotype

We partitioned the genome into segments of 1 Mb. Let M1 be the number of causal SNPs.

We randomly selected M1/20 segments and selected 20 SNPs as causal SNPs for each

segment. This procedure selected M1 causal SNPs (denoted as V) to maintain modest LD. A

quantitative trait was simulated as yi = ∑k ∈ V βkgik + εi with βk ∼ N 0, σ2 . The heritability is

calculated as h2 = ∑i, j ∈ V βiβ jρi j with ρi j being the correlation between two SNPs. In all

simulations, we set the residue variance Var εi = 0.5 and chose σ2 numerically to have h2 =

0.5. We performed two sets of simulations with either M1 = 1250 or 2500 causal SNPs.

Because of the fixed heritability 50%, the effect sizes are stronger with M1 = 1250 causal

SNPs compared to the setting with 2500 causal SNPs.

For each simulation, we randomly selected 8,424 (out of 11,924) subjects as the training

data set to generate GWAS summary data, randomly selected 1750 subjects for choosing the

tuning parameter and used the remaining 1750 subjects as the validation data set to calculate

R2, the fraction of phenotypic variance explained by the PRS.

We compared the performance of PANPRS to three previously published methods: p-value

thresholding after LD-clumping [8] (denoted as PT), PT coupled with winner’s curse

correction [10] (denoted as PTWC) and LD-Pred [9]. The PT method defines PRS as

PRSi p0 = ∑ β jgi jI P j < p0 , where β j is the marginal regression coefficient and Pj is the p-

value for SNP j in the training data set. The threshold p0 is chosen based on a validation data

set. PTWC replaces β j with a version that reduces the bias due to the winner’s curse caused

by the selection event P j < p0 LD-Pred uses summary statistics and external LD information

to infer the posterior distribution of effect sizes to build PRS. For each setting, we performed

200 simulations. The simulation results are summarized in Table 1. Given heritability h2 =

0.5, the number of causal SNPs has a huge impact on the predictive performance for all

PRSs, which is concordant with our previous findings [1]. The PT method performed poorly

compared to other methods. This is expected because all three other methods correct for

winner’s curse implicitly or explicitly [10]. PTWC, LD-Pred and PANPRS performed

similarly. Supplementary Tables 1 and 2 summarize the statistical significance of comparing

each pair of methods.

4.4 Improving risk prediction by incorporating functional annotation data

In simulations, 70% of SNPs are set not to belong to any annotation category; 15%, 10% and

5% of SNPs (randomly selected) are annotated with one, two and three functional

categories, respectively. The motivation of the simulations is that functional SNPs are more

likely to be enriched for truly associated SNPs. For the M1 causal SNP to be selected, we

denote pj as the proportion of causal SNPs annotated with j functional categories. Here,

∑i = 0
3 pi = 1 and p0 is the proportion of causal SNPs not annotated with any functional

category. In simulations, we set p0, p1, p2, p3 = (20%, 30%, 30%, 20%). For example, 20% of

simulated causal SNPs are annotated with three functional annotations. Comparing this

distribution to (70%, 15%, 10%, 5%) suggests that SNPs annotated with functional
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annotations are enriched for causal SNPs, with enrichment fold change 2, 3 and 4,

respectively. Thus, SNPs annotated with more functional categories are more likely to be

associated with the trait. Simulation results are summarized in Table 2 and Supplementary

Tables 1 and 2. Incorporating functional data improved R2 from 11.53% to 13.10% for M1 =

1250 and from 4.89% to 6.27% for M1 = 2500.

4.5 Improving risk prediction by modelling pleiotropy

We performed simulations for one quantitative trait (the primary trait) and K (K = 2, 4)

secondary quantitative traits that share genetic component with the primary trait. The goal is

to assess the efficiency gain by incorporating the information of secondary traits. We

assumed the same number (M1) of causal SNPs for all traits. For each secondary trait, we

assumed that this trait and the primary trait shared γM1 causal SNPs. Two traits share no

genetic component if γ = 0. We set γ = 0.3 and 0.7 in simulations. For a causal SNP shared

by two traits, we let ρ as the correlation between the effect sizes. We set ρ = 0.6 and 0.8 in

simulations. Results are based on 200 sets of simulations.

Simulation results are summarized in Table 2 and Supplementary Tables 3-10. As expected,

modelling pleiotropy improves PRS prediction. The extent of improvement is positively

associated with the number of secondary traits and the strength of shared genetic component

characterized by γ and ρ. Furthermore, the method incorporating both functional annotation

and pleiotropic information has the best performance. As a numerical example, when M1 =

1250, γ = 0.7, ρ = 0.8 and K = 4 (the number of secondary traits), PANPRS improved R2

from 11.53% to 15.02% when modelling pleiotropy and further improves R2 to 16.26%

when incorporating functional annotation data.

5. Real Data Analysis

5.1 Type-2 diabetes polygenic risk prediction

Type-2 diabetes (T2D) is a complex disease affecting about 8.5% population with age ≥ 18

worldwide. The heritability of T2D has estimated to range from 20% to 80% based on

different populations and study designs. GWAS has identified and replicated more than 100

SNPs, that together explain a small fraction of the heritability [29, 30]. Even based on very

large GWAS training datasets, the PRS based on established T2D SNPs typically can only

explain approximately 2% of the phenotypic variance at the observational scale [30]. We

analyzed a large scale T2D GWAS to compare the performance of different PRS methods.

Our analyses were based on two T2D GWAS datasets: the DIAGRAM (DIAbetes Genetics

Replication And Meta-analysis) consortium with 12,171 cases and 56,862 controls; the

GERA (Genetic Epidemiology Research on Adult Health and Aging) study with 7131 cases

and 49,747 controls. The training dataset included the DIAGRAM data and a randomly

selected fraction of GERA samples (3631 cases and 46247 controls), which were meta-

analyzed to create the summary statistics. For all methods, we randomly split the remaining

3500 cases and 3500 controls from GERA and used the first half to choose optimal tuning

parameters and the second to assess model performance. The final R2 for each method was

the average of 500 random splits.

Chen et al. Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We used three functional annotation data sets to prioritize causal SNPs in the PRS: a blood

cis-eQTL data combining two large-scale eQTL studies [31, 32], the histone mark

H3K4me3 in the pancreatic islet cell line and methylation QTLs (meQTLs) based on

adipose tissues [33]. A SNP was considered as functional if the SNP or its LD SNP (r2 ≥

80%) is a cis-QTL SNP, a meQTL SNP, or located in one of the H3K4me3 peak regions. We

observed that SNPs annotated with these functional features are strongly enriched with T2D

GWAS signals, suggesting the potential of improving PRS using these functional annotation

features. More details can be found in our previous paper [10].

To further improve PRS prediction, we used the GWAS summary statistics from 16 T2D

related traits as the secondary traits. The data for body mass index and waist circumference

were downloaded from the GIANT consortium website. The data for glycaemic traits

including Stumvoll Insulin Sensitivity Index, fasting glucose, fasting insulin, indices of β-

cell function (HOMA-B) and insulin resistance (HOMA-IR), HbA1c, fasting proinsulin

values, 2-hour glucose and 6 traits for insulin secretion were downloaded from the MAGIC

(the Meta-Analyses of Glucose and Insulin-related traits Consortium) website. The quantile-

quantile plot in Supplementary Figure S1 demonstrated that genetic signals of these traits

were strongly enriched for T2D associations, suggesting the shared genetic component

between these traits and T2D.

The overlapping SNPs with minor allele frequencies ≥ 5% for T2D and the 16 secondary

traits were extracted for analysis. The set of the regression coefficients of each trait was

standardized by the Z scores and sample sizes so that the coefficients are comparable across

multiple traits. This step is important for modelling pleiotropic effects when studies have

different sample sizes.

Prediction R2, standard error and 95% confidence intervals (based on 100,000 bootstraps)

are summarized in Table 3. Supplementary Table 11 reports the significance of comparing

each pair of methods based on bootstrap sampling. The standard PT method had R2 =

1.98%. When no functional data or pleiotropic information was used, PANPRS improved R2

to 3.25%, similar to PTWC (R2 = 3.22%) and LD-Pred (R2 =3.18%). Modelling pleiotropy

and incorporating multiple functional annotation data led to R2 = 4.22%, which was

significantly better compared to other methods.

5.2 Polygenic risk prediction for melanoma

We obtained the GWAS summary statistics as the training data set from the Melanoma

Meta-Analysis Consortium that included 12,874 cases and 23,203 controls of European

ancestry [34]. The individual-level GWAS data for melanoma from the MelaNorstrum

consortium [35] were used for choosing tuning parameters and comparing performance.

Next, we downloaded the GWAS summary statistics of seven traits (http://

www.nealelab.is/uk-biobank) from the UK BioBank project. These traits are known to be

genetically related with melanoma: skin color, ease of skin tanning, childhood sunburn

occasions, other skin cancers, other malignant neoplasms of skin, carcinoma in situ of skin

and other benign neoplasms of skin. In addition, we used two functional data sets related

with melanoma biology: SNPs in the DNase I hypersensitive sites (DHSs) of a skin cell line

from the ENCODE project and expression QTL SNPs for skin tissues [36].
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Similar to the T2D analysis, we randomly partitioned the MelaNorstrum GWAS data 500

times; for each partitioning, we used one half for choosing tuning parameters and the other

half to calculate R2. Prediction R2 (averaged across 500 partitions), standard error and 95%

confidence intervals (based on 100,000 bootstraps) are summarized in Table 4.

Supplementary Table 12 reports the significance of comparing each pair of methods. We

observed similar performance for PANPRS and LD-Pred, which had a better performance

than the PT and PTWC methods. Incorporating the information of seven secondary traits and

two functional data sets into PANPRS significantly improved R2 from 4.87% to 5.50%.

6. Discussion

We developed PANPRS, a comprehensive and flexible statistical framework, for developing

polygenic risk score (PRS) prediction models by fitting Lasso regression models using

GWAS summary statistics, functional annotation data and genetic pleiotropic. By extensive

simulations based on real genotypic data, we show that PANPRS without functional data or

genetic pleiotropy performed similarly or better than existing PRS methods and substantially

improved PRS prediction when incorporating informative functional annotation data and

genetic pleiotropic information. We tested our method in large scale GWAS of T2D and

melanoma. Encouragingly, incorporating functional annotation data and modeling

pleiotropic information significantly improved prediction performance for both T2D (R2

from 3.25% to 4.22%) and melanoma (R2 from 4.87% to 5.50%). Notably, compared to the

standard PT method that has been frequently used in genetic risk studies, PANPRS improved

prediction from R2 =1.98% to 4.22% for T2D and from R2 =3.88% to 5.50% for melanoma.

Some features of PANPRS are summarized here. First, it applies to both quantitative and

binary traits. Second, it produces PRS highly concordant to that based on individual level

genotypic and phenotypic data. Third, it can incorporate multiple functional annotation data

and multiple secondary traits to boost predictive performance. Fourth, it has the potential to

maximize the predictive performance by using GWAS meta-analysis results based on large

consortia because it is based on GWAS summary statistics.

Fitting penalized regression models based on GWAS summary statistics has received much

attention recently. For example, Mat and colleagues [21] proposed to fit a Lasso regression

to build PRS; Ning and collogues [37] proposed to fit a Lasso model to fine map a genomic

region. However, both algorithms apply only to quantitative traits based on linear regression.

When the marginal association coefficients are derived based on logistic regression analysis,

our work provides theoretical justifications of using these algorithms.

In the current manuscript, we have evaluated the performance of PRS methods using criteria

that reflect how much of the phenotypic variance can be explained by the PRS in the

validation dataset. To apply PRS prediction models to clinical settings, it will be important

to calibrate the model to produce an unbiased estimate of risk for individuals with different

SNP profiles, which can be done by a simple regression analysis based on a relatively small

validation sample. Moreover, even a modest improvement in prediction may be clinically

meaningful by identifying more subjects at risk in a population. As an example, by

incorporating functional annotation and GWAS of 16 traits that are genetically related with
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T2D, PANPRS improved R2 from 3.25% to 4.22% for T2D. We calculated that 1.89% and

3.0%, respectively, of the population will be identified to have 2-fold risk for developing

T2D compared to the general population. The difference is more prominent when screening

for subjects with higher risk.

Finally, we point out some limitations and future directions. First, theoretical and empirical

work are needed to automatically decide whether and how to best incorporate functional

annotation data. Quantile-quantile plots are helpful for choosing informative functional

annotation data [10]. Second, including many traits genetically unrelated with the primary

trait may reduce PRS performance. Thus, additional work is needed to explicitly model

shared genetic architecture between the primary trait and the multiple secondary traits,

which may be useful to provide guidance to identify secondary traits and to best incorporate

them into the PANPRS framework. Third, like most other methods, our method needs an

independent GWAS data set to choose optimal tuning parameters. We have recently

developed a method for accurately approximating the area under the ROC curve of a PRS

model based on GWAS summary statistics [38] of an independent data set. Thus, we may

choose tuning parameters using summary statistics that are publicly available (e.g., UK

Biobank project and BioBank Japan project). In addition, we have r + 3 tuning parameters

when there are r functional categories; thus, it is computationally expensive to run the grid

search algorithm to search for the optimal tuning parameters. Finally, the performance of

PANPRS depends on many factors, including the genetic architecture of the disease, the

quality of the functional annotation data, the shared genetic architecture with secondary

traits and the sample size of the training data set. To successfully apply PANPRS to other

complex diseases, key steps will be to identify informative functional annotations and

GWAS summary statistics of secondary traits that are genetically related with the primary

trait.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: PANPRS for a binary trait

Fitting I1 regularized logistic regression using individual level data

Let yi be a binary phenotypic value with yi = 1 representing a case. Let Y = y1, ⋯, yn
T and

X denote the genotype matrix for n subjects and M SNPs. Let β = β1, ⋯, βM
T denote the

effect sizes for M SNPs and β0 be intercept. Given β and β0, we define
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πi β0, β = P yi = 1 ∣ xi1, ⋯, xiM = e
β0 + ∑ j = 1

M xi jβ j

1 + e
β0 + ∑ j = 1

M xi jβ j
. (A1)

When individual level data are available, one can obtain a regularized estimate of β by

minimizing

U0 β0, β = − ∑i = 1
n yilogπi + 1 − yi log 1 − πi + ∑ j = 1

M λ β j (A2)

using the coordinate descent algorithm proposed for non-convex penalty functions [27],

which we describe here. Let β0
(t), β(t)  be the coefficients at the tth iteration. Let 1 = (1, …, 1)T

be a vector of length n. Let πi
(t) denote the probability (13) calculated at β0

(t), β(t)  and

π(t) = π1
(t), ⋯, πn

(t) T
.

The iteratively reweighted least squares algorithm [39] is used based on a quadratic

approximation of the likelihood function (A2) by the Taylor’s expansion at β(t):

U1 β0, β = 1
2n Y(t) − 1 ⋅ β0 + Xβ

T
W(t) Y(t) − 1 ⋅ β0 + Xβ + ∑ j = 1

M λ β j .

Here, W(t) is an n × n diagonal matrix with element wi
(t) = πi

(t) 1 − πi
(t)  and Y(t) = 1.

β0
(t) + Xβ(t) + W(t) −1

Y − π(t) .

Let X j denote the jth column of X and X− j be the submatrix of X without the jth column. By

letting

∂
∂β j

U1 β j ∣ β− j
(t) = 1

n X j
TW(t) Y(t) − 1 ⋅ β0

(t) − X− jβ− j
(t) − X jβ j

(t) + ∂
∂β j

λ β j = 0,

we can update β j as

β j
(t + 1) =

0 if z j
(t) ≤ λ

sgn z j
(t) z j

(t) − λ if z j
(t) > λ,

(A3)

where

z j
(t) =

X j
TW(t) Y(t) − 1 ⋅ β0

(t) − X j
TW(t)X− jβ− j

(t)

X j
TW(t)X j

= a j
(t) − b j

(t) . (A4)
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Here,

a j
(t) =

X j
TW(t) Y(t) − 1 ⋅ β0

(t)

X j
TW(t)X j

(A5)

and

b j
(t) =

X j
TW(t)X− jβ− j

(t)

X j
TW(t)X j

, (A6)

Remark.

The intercept β0 is not penalized. We can update β0 using the rule in (A3) assuming λ = 0.

More explicitly, we update β0 as 1TW(t) Y(t) − Xβ(t) /1TW(t)1.

Fitting I1 regularized logistic regression using GWAS summary level data

The key step of fitting an l1 regularized logistic regression model is to calculate Z j
(t) in (A4)

for each iteration, which requires to approximate a j
(t) and b j

(t) using GWAS summary data.

We first approximate b j
(t) in (A6). Remember that wi

(t) = πi
(t) 1 − πi

(t)  for subject i in the tth

iteration, where πi
(t) is calculated based on (A1) at β0

(t), β(t) . We here make an approximation

that wi
(t) = w0 for all n subjects so that W(t) = w0I with I being the identity matrix of n × n.

This approximation is accurate when the resulting PRS is sparse and explains a small

fraction of phenotypic variance, which is satisfied for most of complex diseases with current

sample sizes. With this approximation, X j
TW(t)X j = w0X j

TX j = w0n because Xj is

standardized. Thus, b j
(t) in (A6) can be derived as

b j
(t) ≈

∑i = 1
n ∑l ≠ j xi jwi

(t)xilβl
(t)

w0n = ∑l ≠ j
1
n ∑i = 1

n xi jxil βl
(t)

= ∑l ≠ j ρ jlβl
(t),

(A7)

where ρ jl = 1
n ∑i = 1

n xi jxil is the estimated correlation between SNP j and SNP l. Let Aj

denote the set of neighboring SNPs for SNP j. For SNPs not in Aj, we set ρ jl = 0. Thus, (19)

can be further approximated as

b j
(t) ≈ ∑l ∈ A j

ρ jlβl
(t) . (A8)
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Now we process a j
(t) in (A5). Let β j be the univariate logistic regression coefficient for SNP

j. To proceed, we review the algorithm to derive β j for SNP j using the iteratively reweighted

least squares algorithm. We first introduce notations for the univariate model with SNP j

only, denoted by ⋅ ∣ j. For the tth iteration, let Y ⋅ ∣ j
(t) = 1 ⋅ β0

(t) + X jβ j
(t) + W ⋅ ∣ j

(t) −1
Y − π ⋅ ∣ j

(t) ,

where W ⋅ ∣ j
(t)  is a diagonal matrix with element wi ∣ j

(t) = πi ∣ j
(t) 1 − πi ∣ j

(t)  and

π ⋅ ∣ j
(t) = π1 ∣ j

(t) , ⋯, πn ∣ j
(t) T

. With these notations, the cost function at the tth iteration is given as

L β0, β j = 1
2n Y ⋅ ∣ j

(t) − 1 ⋅ β0 + X jβ j
T

W ⋅ ∣ j
(t) Y ⋅ ∣ j

(t) − 1 ⋅ β0 + X jβ j .

By letting ∂
∂β j

Ln β0, β j = 0, we can update β j by

β j
(t + 1) =

X j
TW ⋅ ∣ j

(t) Y ⋅ ∣ j
(t) − 1 ⋅ β0

(t)

X j
TW ⋅ ∣ j

(t) X j

(A9)

until convergence to obtain β j.

Note that a j
(t + 1) in (A5) for the full model and the updating rule (A9) for univariate model

have similar expression except for the difference between the diagonal weight matrices W(t)

and W ⋅ ∣ j
(t)  and that between residues Y(t) and Y ⋅ ∣ j

(t) . When other SNPs have small effects on

yi, we expect the difference between W(t) and W ⋅ ∣ j
(t)  and the difference between Y(t) and

Y ⋅ ∣ j
(t)  to be small, which suggests using β j

(t + 1) in (A9) to approximate a j
(t + 1). Because

β j
(t + 1) in univariate logistic regression is unavailable, we propose to use β j (the converged

value of β j
(t + 1) to approximate a j

(t + 1). This proposal may not be accurate in the beginning of

the algorithm but may provide a reasonable approximation when the algorithm is near

convergence. Combining this argument together with the approximation in (A8), we

calculate Z j
(t) in (A4) as

z j
(t) ≈ β j − ∑l ∈ A j

ρ jlβl
(t) . (A10)
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Figure 1.
Concordance between Lasso and PANPRS. Figures A, B and C are for a quantitative trait

(linear regression). Figures D, E and F are for a binary trait (logistic regression). For Figures

A, B, D and E, the x-coordinate is the β values based on Lasso with individual level data; the

y-coordinate is the β values estimated based on PANPRS. For Figures C and F, the x-

coordinate is the number of nonzero estimates of regression coefficients of Lasso model; the

y-coordinate is the correlation between the β values estimated based on Lasso and PANPRS.

Figure A and D: Numerical experiment for M = 200 SNPs on chromosome 1. Df denotes the

number of non-zero coefficients in Lasso estimates. Figures B and E: Numerical experiment

for M = 213,240 SNPs.
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Table 1:

Compare performance of four PRS methods. Reported are the prediction R2 and the standard deviation in

parenthesis. M1 is the number of causal SNPs. Heritability h2 = 50% in all simulations.

M1 = 1250 M1 = 2500

PT 9.92% (0.08%) 3.60% (0.05%)

LD-Pred 11.69% (0.10%) 4.48% (0.06%)

PTWC 11.77% (0.08%) 4.56% (0.06%)

PANPRS 11.53% (0.08%) 4.89% (0.06%)
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Table 2:

Improve the performance of PANPRS by incorporating multiple functional annotation data and modelling

secondary traits that are genetically related with the primary trait. Reported are the prediction R2 and the

standard deviation in parenthesis.

M1 = 1250
b

M1 = 2500
b

Incorporating multiple annotation data

K 
a NO Yes NO Yes

No secondary traits

0
11.53%

e 13.10% 4.89% 6.27%

(0.08%
f
)

(0.08%) (0.07%) (0.07%)

With secondary traits

γ = 0.3
c

2 12.69% 14.10% 5.31% 6.58%

(0.08%) (0.09%) (0.07%) (0.07%)

ρ = 0.5
d

4 13.71% 15.02% 5.56% 6.78%

(0.09%) (0.09%) (0.07%) (0.07%)

γ = 0.3

2 13.63% 15.03% 5.42% 6.70%

(0.09%) (0.09%) (0.07%) (0.07%)

ρ = 0.8

4 14.63% 15.88% 5.87% 7.16%

(0.09%) (0.09%) (0.07%) (0.07%)

γ = 0.7

2 12.51% 13.58% 5.74% 7.07%

(0.09%) (0.10%) (0.07%) (0.07%)

ρ = 0.5

4 14.18% 15.64% 6.16% 7.42%

(0.09%) (0.09%) (0.07%) (0.07%)

γ = 0.7

2 13.31% 14.17% 6.38% 7.53%

(0.09%) (0.09%) (0.07%) (0.07%)

ρ = 0.8

4 15.02% 16.26% 7.45% 8.41%

(0.09%) (0.09%) (0.07%) (0.07%)

a:
The number of secondary traits that are genetically related with the primary trait.

b:
The number of causal SNPs.

c:
The fraction of causal SNPs shared between the primary and the secondary traits

d:
The correlation between the effect sizes for the causal SNPs shared by the primary and the secondary traits

e
Prediction R2 of PRS

f
Estimated standard deviation of R2.
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Table 3:

Prediction performance of PRS methods on type 2 diabetes

PRS Methods R 2 s.e. 95% C.I.

PT 1.98% 0.016% (1.95%, 2.02%)

PTWC 3.22% 0.020% (3.19%, 3.26%)

LD-Pred 3.18% 0.021% (3.14%, 3.23%)

PANPRS

Neither 3.25% 0.020% (3.21%, 3.29%)

Pleiotropy 3.48% 0.021% (3.44%, 3.53%)

Functional annotation 3.93% 0.022% (3.89%, 3.97%)

Pleiotropy & Functional annotation 4.22% 0.024% (4.17%, 4.27%)
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Table 4:

Prediction performance of PRS methods on melanoma

PRS Methods R 2 s.e. 95% C.I.

PT 3.88% 0.021% (3.84%, 3.93%)

PTWC 3.94% 0.022% (3.90%, 3.99%)

LD-Pred 4.88% 0.024% (4.82%, 4.92%)

PANPRS

Neither 4.87% 0.025% (4.84%, 4.93%)

Pleiotropy 5.26% 0.025% (5.19%, 5.28%)

Functional annotation 5.04% 0.025% (5.00%, 5.09%)

Pleiotropy & Functional annotation 5.50% 0.032% (5.41%, 5.54%)
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