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Abstract

Advances in molecular biology, microfluidics and bioinformatics have empowered the study of 

thousands or even millions of individual cells from malignant tumours at the single-cell level of 

resolution. This high-dimensional, multi-faceted characterization of the genomic, transcriptomic, 

epigenomic and proteomic features of the tumour and/or the associated immune and stromal cells 

enables the dissection of tumour heterogeneity, the complex interactions between tumour cells and 

their microenvironment, and the details of the evolutionary trajectory of each tumour. Single-cell 

transcriptomics, the ability to track individual T cell clones through paired sequencing of the T 

cell receptor genes and high-dimensional single-cell spatial analysis are all areas of particular 

relevance to immuno-oncology. Multidimensional biomarker signatures will increasingly be 

crucial to guiding clinical decision-making in each patient with cancer. High-dimensional single­

cell technologies are likely to provide the resolution and richness of data required to generate such 

clinically relevant signatures in immuno-oncology. In this Perspective, we describe advances made 

using transformative single-cell analysis technologies, especially in relation to clinical response 

and resistance to immunotherapy, and discuss the growing utility of single-cell approaches for 

answering important research questions.

Tumours are a complex mixture of malignant, immune and stromal cells, which 

often have substantial levels of intratumour and intertumour heterogeneity. The tumour 

microenvironment (TME) comprises an amalgam of tumour-promoting and anti-tumour 

signals that are able to modulate tumour growth and influence tumour evolution. Bulk 

genomic and transcriptomic analyses have provided valuable insights into these processes, 

but the averaging of signals from large numbers of cells rendered by these methods often 
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obscures specific subpopulations and/or cellular states. Indeed, rare and unique cellular 

subtypes or states that might be instrumental in disease biology, such as potential ‘cancer 

stem cells’ or immune cells crucial for a therapeutic response, might not be detected in 

bulk analyses derived by averaging data from millions of cells. For cancer immunotherapy, 

in particular, single-cell analyses can provide unique insights into the tumour-intrinsic and 

tumour-extrinsic mechanisms that drive responses, as well as primary or acquired resistance 

to novel immunotherapeutics1,2.

The genomic, transcriptomic, epigenomic and/or proteomic examination of individual cells 

overcomes many of the limitations of bulk analysis, enabling a more refined dissection of 

the cellular and molecular basis of cancer. The tremendous power of single-cell analysis 

has been recognized for decades, as shown by the fact that immunohistochemistry, in situ 

hybridization and flow cytometry have all been indispensable tools in investigating the 

differences between non-malignant cells and cancer cells, both in the laboratory and in the 

clinic. These classic methods, however, often only detect a limited number of analytes in any 

given experiment or test, and this limitation reduces the power to distinguish the diversity of 

cellular subtypes and states present in the TME.

Breakthroughs in sequencing technologies, cell-isolating microfluidics and analytical 

bioinformatics have led to a rapid proliferation of single-cell analysis methodologies, and 

have been reviewed extensively elsewhere3–6. These techniques enable the detection of 

many analytes at single-cell resolution in a large number of cells (initially a few hundred, 

but now thousands to hundreds of thousands of cells) in an increasingly cost-effective 

manner. The concomitant blossoming of the availability of bioinformatic tools has enabled 

researchers to interrogate the massive datasets provided by such methods in order to 

exploit the covariate power at the heart of single-cell data, visualize the diversity of 

cellular subtypes and elucidate the interactions between cells. Continual improvements in 

single-cell methodological workflows and analytics, including the ascertainment of single 

cells, reduction of high-dimensional data, unsupervised clustering, phylogeny modelling, 

harmonization of multiple datasets, trajectory inference, RNA velocity, lineage tracing 

and ligand–receptor interaction mapping, have been crucial to the success of single-cell 

approaches and have been reviewed in detail elsewhere7–11. Single-cell approaches are 

uniquely poised to help answer many of the questions that persist in immuno-oncology, 

including: the role of tumour and immune-cell heterogeneity (including heterogeneity in 

expression of the antigen-presenting machinery); the relationship between T cell clonotype 

and phenotype; the network of immune-checkpoint interactions present in the TME; 

and the spatiofunctional relationships between tumour cells and immune cells, as well 

as between different immune cell types. Herein, we focus on how high-dimensional 

single-cell analysis has been leveraged to investigate the interplay between tumour cells 

and their microenvironment, and especially how this relates to response to anti-cancer 

immunotherapy.

In this Perspective, we first examine how single-cell transcriptomic, proteomic, epigenomic 

and genomic technologies have transformed our understanding of responsiveness and 

resistance to anti-cancer immunotherapy, before exploring analytical approaches that 

integrate multiple modalities. Next, we consider the critical importance of single-cell T cell 
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receptor (TCR) analysis. We then survey emerging technologies enabling single-cell spatial 

analysis, with a focus on their applicability to immuno-oncology. Finally, we discuss the 

future directions of single-cell technologies and their possible prospective roles in advancing 

the field of immuno-oncology.

Single-cell omics

Transcriptomics

Single-cell RNA sequencing (scRNA-seq) refers to a collection of techniques that enable the 

untargeted quantification of the transcripts present in individual cells. Svensson et al.12 have 

reviewed the remarkable technological advances over the past decade that culminated in the 

Human Cell Atlas project adopting scRNA-seq as the definitive method for classifying cell 

types and states13. As an untargeted approach to surveying the transcriptome, scRNA-seq 

can identify novel cell types (such as the pulmonary ionocyte fundamentally responsible 

for the disease biology of cystic fibrosis14), interrogate rare cell populations, and define a 

spectrum of cellular states and phylogenies (such as the reclassification of human dendritic 

cells (DCs) and monocytes in the peripheral blood15) (FIG. 1). After dissociating a tumour 

into individual cells, scRNA-seq can be used to analyse the single-cell suspension either 

without enrichment or after fractionation into defined subsets of cells. In the following 

subsections, a few illustrative examples of the value of scRNA-seq are discussed in detail. 

Additional examples highlight the key insights derived from scRNA-seq — especially those 

that are relevant to the involvement of immune cells in cancer in general and in the response 

to immunotherapy in particular (TABLE 1).

Tumour cells and immunotherapy response.—The heterogeneous nature of cancer, 

both between and within individual tumours, is the predominant feature highlighted by 

scRNA-seq analysis of tumour cells. When clustering malignant cells from multiple patients, 

authors have noted that transcriptional profiles of individual cells group primarily by patient 

of origin in those with glioma16, melanoma17,18, head and neck squamous cell carcinoma19 

and ovarian cancer20, among others. This observation is perhaps not surprising and attests 

to the fact that each tumour has a unique evolutionary trajectory. This patient-to-patient 

heterogeneity can complicate the use of scRNA-seq analysis of single tumour cells to study 

response to therapy. Consequently, single-cell analysis of immune and stromal cells has 

been more fruitful when applied to the identification of cell types and states associated with 

immunotherapy response that are shared among patients.

Despite this heterogeneity, identifying malignant cells with specific transcriptional states 

that are shared across patients is possible. Studies of the transcriptomes of single tumour 

cells have refined the classification of tumour types and their cellular hierarchies16,19,21–24, 

and have also enabled the identification of transcriptome-wide signatures associated 

with therapeutic response or resistance. The powerful potential of this capability is 

illustrated by data from an scRNA-seq-based analysis of samples from 31 patients with 

melanoma receiving immune-checkpoint inhibitors (ICIs), in which the authors defined 

a transcriptional programme expressed in malignant cells that was associated with T 

cell exclusion and intrinsic resistance to therapy18. This programme resulted in increased 

Gohil et al. Page 3

Nat Rev Clin Oncol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression of CDK4 with concomitant reductions in the expression of genes encoding 

proteins involved in antigen processing and presentation (such as B2M, HLA-A, HLA-B and 

HLA-E), interferon signalling or components of the complement system. Iterative multiplex 

immunofluorescence using tissue-based cyclic immunofluorescence (t-CyCIF) (BOX 1) 

confirmed the association of this programme with T cell exclusion in situ. By applying 

single-cell insights to bulk RNA-seq data, the researchers showed that the resistance 

programme was expressed prior to therapy in a longitudinal cohort of 26 patients with 

metastatic melanoma, was associated with inferior survival in 473 patients with melanoma 

included in The Cancer Genome Atlas and was predictive of poor response to anti-PD-1 

in an independent cohort of 112 patients. These observations collectively showcase the 

potential of single-cell analyses of a small cohort to aid in the deconvolution of bulk data 

from larger cohorts and to identify cellular subpopulations that are amenable to therapy. 

Testing of these single-cell insights in a mouse model18 suggested that CDK4/6 inhibition 

might be a tractable target to reverse the resistance programme and sensitize melanomas to 

immune-checkpoint inhibition.

Immune and/or stromal cells and immunotherapy response.—Overall, a 

comprehensive understanding of immune cell composition and state is crucial to 

understanding responsiveness and resistance to current immunotherapies, and to the rational 

design of novel immune-modulating therapies and combinations. Initial efforts in this 

area were focused on creating detailed immune atlases of the cells that reside within non­

malignant tissues and then applying those atlases and methods to the neoplastic setting. For 

example, Szabo et al.25 generated a reference map of non-malignant human T cell activation 

by analysing >50,000 resting and activated T cells from the lungs, lymph nodes, bone 

marrow and blood. The authors then projected published scRNA-seq profiles of tumour­

associated T cells from patients with non-small-cell lung cancer26, colorectal cancer27, 

breast cancer28 or melanoma29 onto their map of non-malignant T cell activation states, 

and thereby demonstrated that tumours harbour activated CD8+ T cells, but not functionally 

activated CD4+ T cells25. Furthermore, intratumour CD8+ T cells expressing exhaustion 

markers also expressed genes associated with conventional CD8+ T cell effector functions 

and ongoing proliferation.

Extending single-cell transcriptional mapping to the TME across a range of tumour types 

has revealed several intriguing insights into the heterogeneity and diversity of immune 

responses in cancer (TABLE 1). An important finding is that clusters based on untargeted 

transcriptional assessments of cellular states often do not cleanly segregate into conventional 

immune cell subsets based on cell-surface protein expression, thus leading to a more 

nuanced understanding of the roles of immune cells in the TME.

Applying these approaches to the immune and stromal cells present in the TME in the 

context of immunotherapy has enabled the elucidation of the transcriptional states that 

underlie response and resistance to immunotherapies, such as ICIs. In a prototypical 

example, Sade-Feldman et al.29 analysed 16,291 immune cells from 48 well-annotated 

tumour biopsy samples from 32 patients with metastatic melanoma treated with ICIs and 

identified 11 immune cell clusters. Focusing on CD8+ T cells revealed two broadly defined 

cellular states that correlated with response and resistance. Features of the cellular state 
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enriched in responders included increased expression of genes associated with memory, 

activation and cellular survival (including TCF7) and reduced expression of genes associated 

with co-inhibitory effects. By contrast, the cellular state enriched in non-responders included 

increased expression of genes associated with T cell exhaustion (such as ENTPD1, BATF, 

HAVCR2, PDCD1, LAG3 and CTLA4). Notably, this distinction between responders 

and non-responders was observed in tumour-infiltrating lymphocytes (TILs) from both 

pretreatment and post-treatment samples, suggesting that these signatures have predictive 

potential. Indeed, conventional multiplex immunofluorescence analysis of tissue sections 

from an independent cohort of 33 patients confirmed the association of TCF7 expression 

with a response. Additionally, the finding that CD8+ TILs in non-responders are enriched 

with cells that co-express CD39 and TIM3 prompted the testing of targeted inhibitors of 

these proteins in a mouse model of melanoma29. Enhanced levels of tumour control were 

observed when inhibiting CD39 in combination with antibodies targeting TIM3, PD-1, 

or PD-1 and CTLA-4, thus illustrating the potential of single-cell transcriptomics, when 

combined with protein-level confirmation, to identify new co-expressed targets for novel 

immunotherapy combinations.

Importantly, analyses designed to map the immune landscapes of a diverse range of tumour 

types have identified a nascent, but growing portfolio of transcriptional states associated 

with responsiveness to immunotherapy across lymphocyte, DC, monocyte, macrophage and 

fibroblast compartments, many of which are now being studied as putative biomarkers 

(TABLE 1). Having gained a better understanding of the transcriptional landscapes of 

tumours and their microenvironmental constituents, investigators can now examine how the 

tumour and immune system co-evolve in concert over the course of treatment and relapse, at 

the single-cell level of resolution.

Interaction analysis.—Many studies have explored the roles of either tumour cells or 

immune and/or stromal cells in isolation, despite complex interactions between and within 

these cell types having a crucial role in cancer biology. Information on these important 

cell–cell interactions can be inferred from scRNA-seq data by correlating the expression 

of ligand–receptor pairs between different cell types30,31. For example, assessments of the 

interactome by Zhang et al.32 have provided insights into the interplay between tumour­

associated DCs and peripheral T cells. In this study involving 16 treatment-naive patients 

with hepatocellular carcinoma, leukocytes from the tumour, adjacent liver, hepatic lymph 

nodes, blood and ascites were analysed using scRNA-seq. Lineage analysis revealed a novel 

class of LAMP3+ DCs capable of migrating from tumours to lymph nodes. These LAMP3+ 

DCs expressed many putative inhibitory ligand–receptor pairs and were associated with 

multiple T cell subsets, suggesting a role in promoting the dysfunction of peripheral T cells. 

Novel technologies are also being developed that enable the exploration of physical cell–cell 

interactions — including spatially resolved scRNA-seq methods (BOX 1) — in an attempt to 

better understand the intricately choreographed interactions between tumour cells and those 

of the TME.

Limitations of scRNA-seq.—scRNA-seq has revolutionized the delineation of cell types 

and cellular states, although this technique also has several notable drawbacks. First, 
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scRNA-seq data are intrinsically noisy because eukaryotic transcription does not take place 

at a consistent basal rate; it occurs in pulses33,34. For example, monoallelic expression in 

single cells is predominantly the result of burst-like stochastic transcription35,36. Thus, a 

failure to detect a transcript from a particular gene in a cell at a single specific point in 

time is an ambiguous result: it could mean that the gene is inactive in that cell, that the 

gene is active, but the transcript was not detected owing to burst kinetics and the timing of 

sampling, or that technical deficiencies meant that expression of the gene was not detected. 

This challenge in substantiating negative findings is particularly relevant for genes with 

lower levels of expression. Analytical approaches that consider the entirety of the cellular 

transcriptome (such as those involving clustering by differentially expressed genes) have 

helped to overcome this limitation of scRNA-seq. Consequently, the interpretation of results 

should focus on pathway analysis and gene-set enrichment, rather than the expression or 

effects of any single gene.

Second, the use of transcriptome data alone to establish correlations between genotype 

and phenotype remains challenging. For example, scRNA-seq data have been used to 

infer somatic copy number variants (commonly referred to as sCNVs)37,38, although this 

only applies to relatively large deletions or amplifications. The larger number of somatic 

single-nucleotide variants (sSNVs) present in tumour cells enables the assessment of their 

genetic architecture at a higher level of resolution than sCNVs; nonetheless, the ability to 

confidently detect sSNVs within scRNA-seq data remains limited. For example, sSNVs in 

transcripts with low levels of expression are detected only in a minority of cells owing 

to the combined challenges of transcriptional bursting and technical dropout. Additionally, 

because the highest-throughput methods involve end counting (by sequencing just the 3′ 
or 5′ end of the RNA molecule, rather than the full transcript), sSNVs located away from 

the end of a transcript are often poorly captured and thus under-represented in the data. 

Several new approaches, including TARGET-seq39, genotyping of transcriptomes40 and the 

approach described by van Galen et al.41, have incorporated primers for known mutations 

into otherwise untargeted scRNA-seq protocols in an attempt to address this limitation, but 

these approaches require a priori knowledge of the variants to target. As a result, scRNA-seq 

approaches are a suboptimal method of evaluating the implications of somatic mutations in 

individual tumour cells for therapeutic response or resistance.

In addition to these inherent limitations of scRNA-seq, specific details relating to sample 

procurement and processing can also confound results, with important implications for 

the clinical applicability of these technologies. Indeed, scRNA-seq has relied upon viable 

single-cell suspensions, which are readily available from peripheral blood and/or lymph 

nodes, but are often more difficult to obtain from solid tumour tissues. Differences 

in dissociation methods and cryopreservation conditions can also induce considerable 

transcriptome-wide changes42. Even with blood samples, the amount of time blood draws 

are kept at room temperature before cryopreservation substantially alters the transcriptional 

profile of individual cells, including a pronounced downregulation of immune cell type­

specific genes, in the absence of a loss of RNA fidelity after storage for >2 hours at 

room temperature43. In an attempt to address these issues, a large group of researchers 

with an interest in single-cell genomic analysis of tumours has begun developing protocols 

designed to standardize tissue dissociation and the preparation of single-cell suspensions44. 
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Investigators studying tissue development have found that single-nucleus RNA sequencing 

(snRNA-seq) enables a more streamlined workflow that is applicable to many different 

tissue types, is compatible with frozen samples and can sometimes provide less-biased 

cellular coverage compared with scRNA-seq45–48. This method is beginning to be applied 

to tumour samples and should substantially improve the clinical utility of single-cell 

approaches44.

Finally, batch effects can occur owing to the processing of samples on different days with 

even slight technical variations, as often happens when comparing samples obtained over 

a time course. Multiple methods of correcting such batch effects have been developed49, 

although the use of these corrections must be balanced with the risk of obscuring true 

biological differences.

Proteomics

Mass cytometry.—Untargeted detection of proteins using mass spectrometry lacks 

sufficient sensitivity to be relevant to single-cell analysis50. Therefore, single-cell 

proteomics studies rely predominantly on selective target detection using antibodies or 

similar affinity reagents (such as affibodies or aptamers)51–55. Flow cytometry has been the 

longstanding workhorse for investigators seeking to assess protein expression at the single­

cell level of resolution, although the number of epitopes that can be detected concurrently 

is limited by spectral overlap between fluorophores. The advent of mass cytometry56, which 

involves the use of metal isotopes to label antibodies, has greatly expanded the number 

of markers that can be analysed simultaneously, thereby enabling the high-dimensional 

detection of proteins expressed on single cells. For example, Wagner et al.57 used a 35­

marker immune cell-centric panel and a 38-marker tumour cell-centric panel to generate a 

comprehensive single-cell atlas of breast cancers.

In general, the analytical precision of single-cell proteomics methods is greater than that 

of current scRNA-seq methods. Furthermore, the longer half-life of proteins compared with 

RNA means that protein measurements are less prone to the fluctuations often observed 

in scRNA-seq data. Antibody-targeted approaches also provide additional detection 

capabilities, such as the detection of post-translational modifications58 or the assessment 

of morphological features via cell morphometry59. Similar to flow cytometry, however, 

the targeted nature of mass cytometry analysis requires the prospective selection of 

analytes, which can bias the identification of cellular groups compared with the untargeted 

simultaneous detection of hundreds to thousands of RNA transcripts using scRNA-seq.

Mass cytometry is a particularly useful method of characterizing the specific phenotypes 

of cells involved in responses to immunotherapy at the single-cell level, as illustrated by 

the results of two investigations of responses to ICIs in patients with melanoma. In the 

first study60, investigators used mass cytometry to demonstrate that a high frequency of 

circulating classic monocytes before treatment is a strong predictor of a response to anti­

PD-1 antibodies, which was confirmed by analysing samples from a validation cohort of 31 

patients using targeted flow cytometry. In the second study, Gide et al.61 analysed melanoma 

biopsy samples obtained from a subset of patients who received either anti-PD-1 antibodies 

as monotherapy or in combination with anti-CTLA-4 antibodies. Dimensionality reduction 
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analysis of a 43-marker mass cytometry panel identified 14 immune cell clusters, including 

three distinct T cell clusters. Key markers of activation, differentiation and exhaustion were 

found to co-cluster with a CD45RO+EOMES+ T cell population, including markers of 

recent activation and tissue residency (CD69), tissue-resident memory (CD103) and effector 

memory (T-BET, HLA-DR and low CCR7). This subpopulation expressed the inhibitory 

receptors PD-1 and TIGIT, but had only low levels of CD57 expression, suggesting they 

are not terminally exhausted. Responders to combination therapy had a higher proportion 

of this CD45RO+EOMES+ subpopulation among both the CD4+ and CD8+ cells compared 

with non-responders, but no difference was observed among patients receiving monotherapy. 

When the insights gained from mass cytometry were used to examine a larger cohort of 140 

samples from 73 patients with melanoma using bulk RNA-seq analysis, a memory T cell 

phenotype featuring high levels of CD4 or CD8, EOMES, CD69 and CD45RO expression 

corresponded with responsiveness to both ICI regimens and was predictive of a longer 

progression-free survival duration in those receiving anti-PD-1 antibodies as monotherapy. 

These observations underscore the importance of evaluating immune cell phenotypes at the 

single-cell level.

As noted previously, the ability to detect post-translational modifications is a distinct 

advantage of antibody-targeted approaches, such as mass cytometry. This capability was 

utilized in a study analysing chimeric antigen receptor (CAR) T cells using a mass 

cytometry panel that focused on the detection of phosphoproteins with roles in maintaining 

T cell function53. The single-cell resolution provided by mass cytometry enabled a more 

sophisticated analysis of network dynamics. Analysis of second-generation CD19–28ζ CAR 

cells indicated that tonic signalling, resulting in antigen-independent CAR activation, is 

predominantly associated with the CD3ζ, but not the CD28, endodomain. Tonic signalling 

can affect the efficacy of therapy by inducing CAR T cell exhaustion. On the basis of these 

single-cell findings, the authors explored an alternative CAR design that circumvents tonic 

signalling by using γδT cells expressing a chimeric costimulatory receptor. By separating 

the CD3ζ domain in the γδTCR from the CD28 domain in the chimeric costimulatory 

receptor, this modified CAR design enabled efficient cytotoxic responses to CD19-positive 

leukaemic cells without evidence of activation of tonic signalling. The single-cell analysis 

of post-translational modifications will continue to be of particular benefit to understanding 

the signalling pathways associated with effectiveness and/or resistance of adoptive cellular 

therapies and native immune cells in the context of immunotherapy.

Emerging technologies for single-cell proteome analysis.—Next-generation 

spectral analysers promise to extend the capabilities of fluorescence-based flow cytometry 

to a level that rivals that of mass cytometry. An advantage of these systems over mass 

cytometry is the ability to utilize the vast number of fluorescence-labelled antibodies that are 

already available and, because they do not destroy cells like mass cytometry does, enable the 

sorting and isolation of cells for subsequent experiments. As another emerging technology, 

tagging antibodies with barcode oligonucleotides, instead of fluorophores or heavy metal 

ions, obviates the constraints placed on the number of simultaneously resolvable targets.

Additional antibody-targeted single-cell strategies include tissue-based cytometry (BOX 1), 

which adds an improved level of spatial resolution, and microfluidic cytometry, which is 
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exemplified by chipcytometry62,63 wherein cells are immobilized on a microfluidic chip 

instead of being analysed in a flow stream. Chipcytometry enables iterative staining; 

therefore, scores of markers (up to 110) can be detected and quantified on the same 

sample of cells. Another innovation based on single-cell barcode chip technology64,65 is 

the IsoLight system66, which enables the detection of secreted proteins from single cells. 

The system utilizes microfluidic chips to capture information from 200 to 2,000 single 

live cells and sandwich-ELISA-like assays to measure >30 cytokines, chemokines, growth 

factors and other secreted ligands over a multi-hour incubation period. This system also 

has the flexibility to incorporate additional analytes, such as metabolites. The preliminary 

utility of the IsoLight system has been demonstrated in a phase 1 trial in which patients 

with advanced-stage melanoma received adoptive cell transfer supported by pegylated 

IL-2, which resulted in enhanced levels of cytokine polyfunctionality among circulating 

T cells and natural killer cells67. These new platforms of spectral analysers and microfluidic 

systems are still in the early stages of development and need to be validated in additional 

clinical settings. Nonetheless, the early successes thus far suggest that they will increasingly 

have a key role in immuno-oncology.

Genomics

Methods enabling whole-genome and whole-exome sequencing of single cells have been 

developed (reviewed extensively elsewhere by Gawad et al.68), although these methods 

have not yet made the transition to high-dimensional analysis, largely because the high 

costs of such sequencing preclude scaling to sizeable numbers of cells per patient. A more 

efficient approach is to first use deep sequencing of bulk tumour DNA samples to identify 

sSNVs, then use targeted sequencing of DNA from single cells to detect putative driver 

mutations or mutations implicated in clonal structure. By combining microfluidics with 

the ability to merge droplets, the Tapestri system uses a two-step process whereby robust 

lysis and liberation of DNA occurs in a first droplet followed by merging with a second 

droplet to perform PCR amplification and cell-specific barcoding of target genomic loci69. 

Although not yet applied in the context of immunotherapy, this system has been used to 

analyse hundreds of thousands of single cells to track specific mutations through diagnosis, 

remission and relapse in patients with acute myeloid leukaemia70–74 — thus demonstrating 

the promise of this technology.

Epigenomics

Epigenomic analysis methods, such as the assay for transposase-accessible chromatin using 

sequencing (ATAC-seq, which enables the detection of open segments of chromatin), 

bisulfite-based DNA methylation sequencing, chromatin immunoprecipitation sequencing 

(ChIP-seq, which detects DNA–protein interactions) and chromosome conformation capture 

(such as 3C and Hi-C), have all been adapted for single-cell analysis (reviewed in 

detail elsewhere75–77). Of these methods, single-cell (sc)ATAC-seq is currently the only 

one with sufficiently high throughput and is thus widely adopted for this purpose. For 

example, application of this method to pretreatment and post-treatment samples obtained 

from patients with advanced-stage basal cell carcinoma revealed expanded populations of 

exhausted CD8+ T cells and CD4+ T follicular helper cells after treatment with anti-PD-1 

antibodies78. In these cells, the PDCD1 locus contained a +5 kb cis-element with specific 
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accessibility, suggesting that post-treatment CD8+ T cells and T follicular helper cells have a 

shared enhancer that drives persistent PD-1 expression. Single-cell epigenomics is a rapidly 

developing field that, particularly when integrated with single-cell transcriptomics79,80, is 

likely to be one of the next major advances in single-cell analysis in oncology. In this regard, 

single-cell reduced representation bisulfite sequencing81 for DNA methylation analysis and 

CUT&Tag82 for single-cell ChIP-seq, are particularly notable, and these methods should 

further expand the ability to analyse epigenetic changes at the level of individual cells.

Multimodal analysis

Interest in integrating distinct modalities of single-cell analysis into consolidated 

technologies is increasing83,84. The application of such multimodal approaches to 

investigating responses to immunotherapy has been limited thus far, although several 

promising methods with broad applicability are briefly reviewed here.

RNA or DNA plus protein.—Techniques incorporating single-cell detection of proteins 

into scRNA-seq protocols (such as CITE-seq85 and REAP-seq86) use antibodies conjugated 

with barcode oligonucleotides to enable the detection of protein-based markers via the 

cDNA sequencing steps of scRNA-seq, thereby enabling protein detection to proceed 

without the constraints imposed by spectral overlap or the number of resolvable metal ions. 

For example, the proximity extension assay87 that uses barcoded antibodies has enabled 

the development of commercial 96-plex panels for the detection of proteins present in 

serum and plasma samples. The ability to add the antibody-based detection of tens to 

hundreds of proteins to untargeted transcriptome analysis will substantially improve the 

ability to assess the TME by defining transcriptional clusters within the framework of 

traditional immunology and diminishing ambiguities caused by transcript dropout. The 

use of oligonucleotide-tagged antibodies has also been incorporated into the Tapestri 

workflow for single-cell DNA sequencing, providing a direct method of linking genotype 

and phenotype88.

Lineage tracing.—scATAC-seq data contain sequencing reads from the mitochondrial 

genome. Although these signals were originally treated as an experimental nuisance, this 

feature enables the detection of mitochondrial mutations that can be used to perform 

clonal tracing89,90. Thus, scATAC-seq enables the simultaneous measurement of cell lineage 

(via the mitochondrial genome) and cell fate (via the nuclear epigenome). Mitochondrial 

mutations can also be detected in scRNA-seq data84, although not as robustly as in scATAC­

seq data owing to lower and less consistent coverage of the mitochondrial genome. Such 

lineage tracing analysis could be applied in the future to better understand which tumour cell 

clones expand or contract in response to a specific treatment, and thus which clones might 

be linked to therapeutic resistance.

Single-cell T cell receptor analysis

T cells are the main arm of the adaptive immune system responsible for anti-tumour 

immunity and are thus the primary focus of most FDA-approved cancer immunotherapies 

(such as ICIs, adoptive cell therapies, peptide or RNA vaccines, cytokine-based therapies 
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and oncolytic virotherapies). Owing to this focus, the analysis of individual T cell 

clonotypes is currently of increasing research interest. The TCR is a heterodimer comprising 

two chains, for which genetic recombination creates a diverse TCR repertoire. The majority 

of T cells (95%) carry individual TCR α and β subunits, which together recognize a 

cognate peptide–MHC antigen91. On the basis of this TCR–peptide–MHC interaction, 

naturally occurring TILs in immunogenic tumours have the potential to eliminate tumours92. 

Determining whether a T cell is capable of targeting a tumour cell requires single-cell paired 

TCR α and β subunit sequences for TCR reconstruction and specificity testing. Furthermore, 

in order for immunotherapies to generate an effective antigen-specific anti-tumour immune 

response, tumour antigens must ultimately be presented as antigen–MHC complexes and 

recognized by cognate TCRs present on tumour-infiltrating T cells. A growing body of 

evidence suggests that many tumour-infiltrating T cells are simply ‘bystanders’ that are 

incapable of recognizing and attacking tumour cells93. Therefore, a tumour might appear to 

be highly infiltrated by immune effector cells, but nonetheless be ‘qualitatively cold’ owing 

to a lack of tumour-specific T cells capable of anti-tumour activity94. Beyond quantifying 

cellular composition and characterizing transcriptional states, single-cell approaches also 

enable the identification of paired α and β TCR subunits, which is a crucial step in 

determining the specificity of infiltrating T cells. Such information might not only help 

explain resistance to current immunotherapies (such as a lack of tumour specificity), but 

also facilitate the discovery of high-avidity anti-tumour TCRs that can be utilized in novel 

engineered TCR-based cellular therapies.

Bulk TCR sequencing cannot assign paired TCR subunits to individual T cells; therefore, 

this information was historically obtained by isolating TILs using in vitro culture 

methods, then subcloning cells through a low-throughput, labour-intensive process of 

creating homogeneous populations of T cells that could then be sequenced to determine 

individual TCR αβ subunit combinations. In the subsequent years, numerous PCR-based 

techniques were developed to enable sequencing of individual T cell TCR–complementarity 

determining region (CDR3) sequences in order to unambiguously assign TCR αβ subunits 

to individual T cells in a tumour95–98. Paired αβ sequences can now be obtained at higher 

throughput using droplet-based methods. Moreover, the identified TCR sequences can be 

reconstituted in native T cells or reporter cell lines using viral transfection to deduce antigen 

specificity99–101. Combining scRNA-seq with single-cell TCR sequencing (scTCR-seq) 

links T cell phenotypes, such as activation, memory and exhaustion, with the specific TCR 

clonotypes of individual T cells. The ability to unambiguously assign TCR sequences to 

single T cells has led to the development of microfluidic and flow cytometry-based methods 

designed to directly identify antigen-specific T cells from TIL, tissue and peripheral blood 

samples102–104. Together, the integration of scTCR-seq, antigen specificity determination 

and the single-cell analysis approaches described previously have enabled more detailed 

investigations of several important topics in immuno-oncology, such as the roles of clonal 

replacement versus clonal expansion and of T cell clonotypic phenotypes in immunotherapy 

responses.

scTCR-seq of mRNA had a key role in the analysis of samples obtained in a phase 1 

trial involving personalized vaccination with neoantigen peptides to treat patients with 

glioblastoma105. In one patient, scTCR-seq enabled the identification of clonotypes shared 
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between TILs and peripheral blood T cells. Cloning and expression of the shared TCRs 

demonstrated the presence of TILs within the tumour that were specific for a vaccinating 

peptide, thus highlighting the power of these techniques to track and evaluate individual T 

cell clonotypes during an immunotherapy response. Tumour material from other patients in 

this study was not analysed in this manner owing to difficulties in obtaining TILs as single­

cell suspensions from clinical samples, which is a persistent issue in applying scTCR-seq to 

the management of patients with solid tumours.

Integrated scRNA-seq and scTCR-seq provides a particularly effective method of analysing 

the phenotypic and functional characteristics of immune cells over the course of treatment 

with immunotherapy. For example, analysis of pretreatment and post-treatment biopsy 

samples from patients with advanced-stage basal cell carcinoma (n = 11) or squamous cell 

carcinoma (n = 4) receiving treatment with an anti-PD-1 antibody revealed an increase in 

the number of both activated and chronically activated (exhausted) CD8+ TILs following 

treatment106. Notably, the greatest degree of TCR clonality (implying the lowest level of 

diversity) was observed in post-treatment exhausted CD8+ TILs, and the overwhelming 

majority of these clonotypes consisted of expanded novel clones that were not detected 

prior to anti-PD-1 therapy. Exhausted TIL clones that were present before treatment did 

not expand upon treatment nor did they transition to non-exhausted phenotypes. Bulk 

repertoire analysis of pretreatment peripheral blood samples revealed that 11.8% of the 

post-treatment TILs were novel exhausted T cell clonotypes, even though these clonotypes 

were not detected in pretreatment TILs. These results suggest that pre-existing tumour­

specific TILs have only a limited ability to be reactivated and that ICIs can induce 

the influx and expansion of novel T cell clones (clonal replacement). Additionally, in 

an analysis of samples from eight primary uveal melanomas and three metastases107, 

scTCR-seq revealed expanded populations of specific T cell clonotypes, and scRNA-seq 

indicated that these expanded T cell clones were largely exhausted. The expression of genes 

encoding exhaustion-associated immune checkpoints was strongest for LAG3, with minimal 

expression of PDCD1 and CTLA4, which might contribute to the observed ineffectiveness 

of anti-PD-1 and anti-CTLA4 antibodies in this setting. The results of single-cell studies like 

these suggest that responsiveness to ICIs might depend on non-exhausted T cells and T cells 

recruited from the periphery (clonal replacement) rather than only on the reinvigoration of 

exhausted T cells in the tumour (clonal expansion).

By complementing single-cell phenotypic profiling of T cells (such as via scRNA-seq) 

with the identification of their respective TCR clonotypes, these integrated approaches add 

crucial information on T cell antigen specificity to the analyses of immune cells, thereby 

enabling finer dissection of the roles of antigen-specific T cells in immunotherapy responses. 

Furthermore, the non-invasive identification of expanded TCR clones in blood samples 

collected longitudinally over the course of treatment with immunotherapy might provide 

insights into the identity and functionality of clinically relevant TCRs in tumours. The 

development of a cost-effective method of identifying paired TCR αβ subunit clonotypes 

from peripheral blood108 will make the longitudinal analysis of blood samples obtained from 

patients receiving immunotherapy in clinical trials even more powerful.
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High-dimensional spatial analysis

Spatial variability in the tumour immune microenvironment is increasingly becoming 

recognized as contributing to the heterogeneous nature and variable therapeutic responses 

seen with most cancer types. Time-honoured spatial methods dating back to Coons et al.109 

(selective immunostaining of proteins by immunohistochemistry and immunofluorescence) 

and Gall and Pardue110 (in situ hybridization of nucleic acid sequences) have been 

indispensable for cancer diagnosis, classification, treatment selection and prognostication. 

Contemporary applications include the quantification of PD-L1 expression using 

immunohistochemistry and HER2 amplification using in situ hybridization, both of 

which are required by the FDA as companion diagnostics for certain anti-PD-(L)1 

checkpoint inhibitors and HER2-targeted monoclonal antibodies, respectively, in defined 

clinical indications. Over the past few years, these more traditional methods have been 

substantially expanded, multiplexed and coupled with advances in bioinformatics to enable 

the simultaneous visualization of multiple proteins, DNA and/or RNA molecules. Several 

approaches that combine spatial resolution with next generation sequencing are also being 

developed (BOX 1). Most published data relating to these new approaches are limited to 

preliminary studies designed to demonstrate proof-of-concept.

Multiplexing of immunohistochemistry and immunofluorescence has already demonstrated 

preliminary clinical utility in a few immunotherapy studies. A meta-analysis of data from 

8,135 patients across ten different cancer types treated with anti-PD-1 or anti-PD-L1 

antibodies demonstrated that multiplexed immunohistochemistry plus immunofluorescence 

strategies outperform tumour mutational burden, gene expression profiling and PD-L1 

immunohistochemistry expression biomarkers in predicting response to immunotherapy111. 

The diagnostic benefits of multiplexed imaging were not dependent on a large number 

of analytes — improved prediction was observed with as few as two or three markers 

— but from the incorporation of information on the spatial relationships and protein 

co-expression at the single-cell level of resolution. Indeed, in an investigation of tumour 

biopsy samples from patients with metastatic melanoma who received anti-PD-1 antibodies, 

tumours with both increased spatial interactions between PD-L1+ cells (both tumour and 

myeloid) and PD-1+ non-tumour cells (mostly immune) as well as those featuring higher 

proportions of tumour cells co-expressing HLA-DR and IDO-1 were most likely to respond 

to immunotherapy and were associated with improved survival outcomes112. These single­

cell level spatial findings reinforce the hypothesis that ample and proximal expression of 

both PD-1 in T cells and PD-L1 in tumour cells is needed to derive therapeutic benefit from 

anti-PD-1 or anti-PD-L1 antibodies.

High-dimensional protein detection methods have the potential to increase the multiplex 

capabilities of spatial analysis to a level of 20–100 markers, thus expanding the number of 

cell types and cell states that can be characterized (BOX 1). This increased dimensionality 

enables an unprecedented depth of analysis of the complex spatial interactions between 

networks of single-cell phenotypes, thereby spatially defining ‘communities’ of cells in 

the tumour and/or their microenvironment that might be better prognostic biomarkers 

than quantification of single-cell phenotypes alone113,114. Cytometry by time of flight 

(CyTOF) and scRNA-seq-based analyses implicated intratumoural B cell receptor diversity 
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and memory B cell phenotypes in responses to ICIs in patients with melanoma, with the 

addition of spatial methods indicating the importance of B cell localization to tertiary 

lymphoid structures (TLSs)115. By using the GeoMx DSP platform to quantify both the 

expression and location of 60 proteins in B cells, T cells and tumour cells in melanoma 

biopsy samples, Cabrita et al.116 found that B cells interact closely with CD4+ T cells in 

TLSs and are associated with increases in the numbers of TCF7+-naive and memory T cells. 

Conversely, TILs present in tumours that lack TLSs were more likely to have molecular 

signatures associated with immunological dysfunction and/or exhaustion. By integrating 

these key spatial findings with scRNA-seq data, the authors derived a TLS gene signature 

that predicted an improved response to ICIs116.

Although still in their technological infancy, spatially-resolved multiplexed profiling 

approaches are reshaping the ability to interrogate both the intercellular interactions and the 

architectural relationships between tumour cells and cells of the TME that govern tumour 

immunology and responsiveness to immunotherapy in patients.

Future directions

scRNA-seq and its various multimodal incarnations are revolutionary research tools 

that are advancing both our understanding of human cancer immunology and the 

mechanisms driving responsiveness and resistance to immunotherapies in patients. Although 

immunotherapies have transformed the management of many advanced-stage malignancies, 

the majority of patients either do not respond to these agents or will ultimately acquire 

resistance1. Thousands of clinical trials exploring combination immunotherapy approaches, 

with other immunotherapy agents, with non-immunotherapy agents or both, have either been 

completed or are currently underway117; nonetheless, the design of rational immunotherapy­

containing combinations designed to overcome primary and/or acquired resistance will 

require the comprehensive characterization of the tumour immune microenvironment of 

each cancer type, and a detailed understanding of the determinants of effective anti-tumour 

immunity in the context of therapy. Single-cell technologies enable comprehensive profiling 

of the TME and are therefore especially well-suited to studying both tumour and immune 

cell heterogeneity and how such differences in tumour biology contribute to therapeutic 

resistance118,119.

In order to effectively leverage single-cell technologies to improve our understanding 

of mechanisms of immunotherapy response and resistance and to aid the development 

of novel therapeutics, clinical trials will have to be carefully designed to incorporate 

single-cell approaches in a feasible way. Many of the current technologies are costly and 

require the isolation of viable single cells from disaggregated tumour tissues, thus posing 

substantial financial and logistical challenges that preclude their routine use in clinical 

care. If clinical studies are carefully designed in collaboration with translational scientists, 

however, incorporating single-cell analysis is feasible in a subset of patients and could yield 

informative results that can be applied to larger cohorts. Careful consideration must be given 

to what types (among others, tumour tissue, non-malignant adjacent tissues and/or peripheral 

blood) and formats (including fresh, snap-frozen and/or formalin-fixed paraffin-embedded) 

of samples should be collected, the optimal timing of collection (pretreatment, on-treatment 
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and/or post-treatment) and how sample material will be rapidly processed for immediate 

single-cell analysis (or cryopreserved for later analysis). While challenging, the insights 

gleaned from an in-depth investigation of a relatively small number of patients (5–50) 

can inform the analysis of a larger sample set using a more cost-effective and logistically 

more straightforward method (FIG. 2). As indicated in a number of studies described in 

this Perspective, an emerging approach is to exploit published scRNA-seq data rather than 

to generate these data de novo. This type of resource has now been formalized in the 

establishment of the Human Tumor Atlas Network120.

Mining high-dimensional single-cell data to define low-dimensional panels of genes and/or 

proteins that show promise as predictive biomarkers provides a clear path towards clinical 

utility. Another avenue for exploiting data-rich single-cell information is provided by the 

use of bioinformatic algorithms to map bulk RNA-seq data onto the cell types defined by 

scRNA-seq and related techniques. The use of these in silico dissection approaches is less 

subject to the compromises inherent in using low-dimensional panels alone. A good example 

of this approach is provided by CIBERSORTx121, a machine learning-based method that 

takes a signature matrix generated from scRNA-seq data and applies it to bulk tissue 

RNA-seq profiles in order to estimate the composition and abundance of cell types in each 

tissue sample. Thus, highly refined cell types defined by whole-transcriptome data can be 

readily quantified in routine clinical samples that might be of limited quality, fixed and/or 

difficult to disaggregate into intact single cells — thereby helping to substantially reduce the 

barriers to implementation in future immuno-oncology studies.

High-dimensional single-cell techniques that could be more readily applied clinically 

include those that expand the information content of traditional methods, such as 

immunohistochemistry and flow cytometry. For samples from haematological malignancies 

and others that can be easily dispersed into single cells, mass cytometry and flow cytometry 

panels incorporating increased numbers of fluorescent markers (such as 20–50) have already 

begun to be successfully utilized in clinical trials (NCT03734198, NCT03915379 and 

NCT04181827). For solid tumours, spatially resolved multiplexed technologies (BOX 1) 

have the ability to add genotypic and phenotypic dimensions to our understanding of how 

cells interact in the tumour immune microenvironment, and constitute the next frontier 

in elucidating the mechanisms underlying resistance to immunotherapies. Devices that 

automate these technologies and are compatible with existing clinical laboratory workflows, 

such as the in situ sequencing microfluidic tissue processor122, indicate potential ways 

forward to the type of advances that will ease the adoption of these techniques.

Conclusions

Single-cell RNA sequencing and related modalities are increasingly becoming critical 

research tools for characterizing response and resistance to immunotherapy. Additionally, 

single-cell TCR analysis is required to determine T cell antigen specificity and provides 

crucial information on the role of the adaptive immune system in tumour formation, 

growth and treatment. The next frontier in single-cell analysis is the combination of high­

dimensional content with precise tissue localization. The clinical utility of high-dimensional 

single-cell analysis includes identifying high-dimensional biomarkers of immunotherapy 
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response, robustly informing the design of low-dimensional biomarkers, enabling refined 

analysis of bulk sequencing data and understanding the complex cell–cell spatial interactions 

in the TME that drive responses to immunotherapy. Given the growing matrix of possible 

immunotherapies coupled with the personalized nature of tumour heterogeneity and 

therapeutic resistance, the future of cancer treatment is combination therapy123–125. As 

a result, multidimensional biomarker signatures will be crucial to making the optimal 

management choices for each patient with cancer. High-dimensional single-cell technologies 

will provide the resolution and richness of data required to generate these signatures in 

immuno-oncology.
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Box 1 |

Methods of high-dimensional spatial analysis

Immunohistochemistry and in situ hybridization have long been used to localize one or 

a few proteins and RNAs, respectively, in tissue sections. Multiplex methods that have 

emerged over the past few years have dramatically increased the number of targets that 

can be detected.

Protein detection

• Iterative multiplexed immunofluorescence. The use of multiple rounds of 

labelling with fluorescent antibodies to detect 50–100 targeted proteins 

in tissue sections at subcellular resolution. The widespread availability 

of fluorescent antibodies and microscopy cores, and the use of routine 

formalin-fixed paraffin-embedded (FFPE) pathological specimens make these 

approaches relatively inexpensive and straightforward to apply in most 

immunotherapy studies. Examples include:

– multiplexed immunofluorescence (MxIF)134

– tissue-based cyclic immunofluorescence (t-CyCIF)135

– multiple iterative labelling by antibody neodeposition 

(MILAN)136,137

– cyclic multiplexed-immunofluorescence (cmIF)138

– chipcytometry for frozen, non-fixed tissue sections139

• Mass cytometry. Use of metal-tagged antibodies to detect 30–100 target 

proteins in FFPE tissue sections. Single-cell detection is possible, although 

resolution is typically lower than with fluorescence-based methods. These 

approaches require specialized core facilities and expertise, but enable 

simultaneous measurement across all targets. Examples include:

– multiplexed ion beam imaging (MIBI)140,141

– imaging mass cytometry (IMC)142–144

• Oligonucleotide barcoding. Use of oligonucleotide-tagged antibodies to detect 

up to 50 targeted proteins in fresh frozen sections at subcellular levels of 

resolution. Examples include:

– co-detection by indexing (CODEX)145

RNA Detection

• Iterative multiplexed in situ hybridization. Use of barcoded oligonucleotide 

probes to greatly expand the capabilities of conventional in situ hybridization 

in order to detect thousands of transcripts with subcellular resolution in FFPE 

tissue sections. These approaches require specialized analytics and expertise 

in order to localize individual mRNA transcripts below the optical diffraction 

limit. Examples include:
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– multiplexed error-robust fluorescence in situ hybridization 

(MERFISH)146

– sequential fluorescence in situ hybridization (seqFISH+)147

• Spatial barcoding with hybrid capture of mRNA. Use of barcoded reverse 

transcriptase primers attached to slides or beads to enable untargeted whole­

transcriptomic sequencing with the resulting resolution determined by spot or 

bead size. Unlike spatial protein detection methods, these early incarnations 

of spatial RNA methods are limited by transcript drop-out, overlapping 

capture of transcripts from neighbouring cells and the need for frozen, non­

fixed tissue. Largely amenable to processing by existing single-cell cores with 

relatively short turnaround times, but do require specialized analytics and 

expertise. Examples include:

– spatial transcriptomics with a 55-μm spot size (commercialized as 

the Visium system by 10× Genomics)148,149

– slide-seq150 with 10-μm beads

– high-definition spatial transcriptomics (HDST)151 with 2-μm beads

• Untargeted in situ sequencing. Use of tailed random hexamer reverse 

transcriptase primers followed by rolling-circle amplification of transcript 

sequences and in situ sequencing in frozen, non-fixed tissue sections. Capable 

of single-cell detection. Examples include:

– fluorescent in situ sequencing (FISSEQ)152,153

• Targeted in situ sequencing. Use of specific probes to initiate rolling-circle 

amplification of target transcripts followed by in situ sequencing in frozen, 

non-fixed tissue sections. Capable of single-cell detection. Examples include:

– spatially-resolved transcript amplicon readout mapping 

(STARmap)154

– in situ sequencing (ISS)122

• Protein and/or RNA detection. This targeted method uses antibodies labelled 

with oligonucleotide barcodes and barcoded probes for RNA followed by 

location-specific release of the barcodes. Detection and quantification of the 

barcodes is conducted using a separate instrument. Although the barcode­

releasing mechanism is capable of single-cell detection, current system 

sensitivity limits practical resolution to regions of interest at the level of 

10–100 cells. Examples include:

– digital spatial profiling (commercialized by Nanostring as GeoMx 

DSP)155,156
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Fig. 1 |. Workflow for single-cell analysis in immuno-oncology.
The tumour microenvironment (TME) is often complex and contains myriad cell types 

and states that can be disaggregated, with varying degrees of success, into a single-cell 

suspension. Cells can then be processed without further manipulation, or specific cell 

subsets can be isolated for downstream analysis. Single-cell analysis — most commonly 

by single-cell RNA sequencing (scRNA-seq) — enables the assessment of tumour, immune 

and/or stromal cells to yield high-dimensional information on tumour heterogeneity and 

an atlas of the immune and/or stromal microenvironment in relation to clinical stage, 

disease subtype and tumour location. Sampling before and after immunotherapy, especially 

if patients can be stratified based on their response, facilitates a detailed dissection of 

the mechanisms underlying response and resistance. The ability to track immune cell 

populations, specifically T cells through paired T cell receptor (TCR) α and β subunit 

sequencing, enables the detailed characterization of T cell clones involved in mediating 

response. These findings can be applied to a wider selection of patients, with the goals of 

improving prognostication and optimal treatment selection in the face of an ever-expanding 

range of therapeutic options, and enabling therapeutic monitoring through the identification 

of cellular populations or markers that can be monitored using high-throughput conventional 

technologies. Findings from within the TME might also be linked to changes in the 

peripheral circulation, which are more amenable to regular monitoring.
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Fig. 2 |. General biospecimen framework for incorporating single-cell analyses in clinical trials 
involving immunotherapies.
a | Discovery efforts for a limited subset of patients. In-depth characterization of pre­

treatment, on-treatment and post-treatment (resistance) tumour biopsies and peripheral 

immune cells using single-cell and bulk approaches enables the discovery of biological 

determinants of therapeutic response and resistance. These analyses are technically 

challenging and expensive, and so would only be performed in a limited number of patients. 

b | Validation using conventional technologies for a larger set of patients. For a larger set of 

clinical trial patients, more conventional sample collection (such as frozen or formalin-fixed 

paraffin-embedded (FFPE) tumour tissue at baseline, peripheral blood cells before and 

during treatment) is feasible. These samples can be used to validate proposed biological 

determinants of immunotherapy response and resistance (from the ‘discovery’ efforts 

depicted in part a) using standardized assays. PBMCs, peripheral blood mononuclear cells; 
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Hi-Dim, high-dimensional; IHC, immunohistochemistry; OCT, optimal cutting temperature 

compound; scRNA-seq, single-cell RNA sequencing; TCR, T cell receptor.
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