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Abstract

Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of

which can possess individual natural configurations, material properties, and rates of turnover. For

this reason, mixture-based models of growth (changes in mass) and remodeling (change in

microstructure) are well-suited for studying tissue adaptations, disease progression, and responses

to injury or clinical intervention. Such approaches also can be used to design improved tissue

engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as

archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years

ago and explores its usage since by contrasting simulations of diverse vascular conditions. The

discussion is framed within the concept of mechanical homeostasis, with consideration of solid-

fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and

future opportunities as we seek to understand better the evolving composition, geometry, and

material behaviors of soft tissues under complex conditions.
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1. INTRODUCTION

Many point to the mid-1960s as the beginning of the modern field of biomechanics [1].

Notwithstanding early work on the mechanics of tissue growth [2] and seminal work on

adaptive elasticity in bone [3], it was the 1981 paper by R. Skalak that provided critical

insight into methods for studying and modeling the growth of soft tissues using methods of

nonlinear elasticity [4]. This work eventually led, in particular, to the widely used theory of

finite volumetric growth [5]. It was twenty years after Skalak’s seminal work that we

introduced (submitted August 2001) a theory of constrained mixtures [6] as an alternate

approach for modeling together growth (changes in mass) and remodeling (changes in

microstructure). Our approach was motivated by Y.C. Fung’s call for “mass-stress”

constitutive relations [7], but more so by observations that soft tissues comprise diverse

structurally significant constituents that have individual natural configurations, material

properties, and rates of turnover.

The goal of this paper is to review and illustrate constrained mixture models (CMMs) for

describing growth and remodeling (G&R) of blood vessels, which serve as an archetype for

soft tissues, particularly given that they exhibit nonlinearly anisotropic material behaviors

under finite deformations that depend on both a passive extracellular matrix and contractile

capacity; blood vessels also experience complex fluid-solid interactions, with multiple

interacting cell types dictating the evolving immunomechanics in many cases. The

importance of G&R simulations is revealed further by the many different forms of G&R that

drive or are driven by diverse vascular adaptations, diseases, and injuries as well as the

success in modeling the in vivo development of tissue engineered vascular grafts, which are

now in clinical trials. The goal of this review is to note some of the fundamental concepts

and highlight progressive advances while providing insights into opportunities for further

development and use of the theory of constrained mixtures in soft tissue mechanics.

2. MECHANOBIOLOGY and HOMEOSTASIS

Mechanobiology can be defined as the study of biological responses to mechanical stimuli.

It has long been appreciated that the structure and function of biological tissues depend in

large part on the mechanical loads to which they are exposed, with early recognition dating

back at least to Galileo Galilei (1564-1642) and fundamental concepts advanced by Henry

Gassett Davis (1807-1896), Julius Wolf (1836-1902), Wilhem Roux (1850-1924), and

D’Arcy Thompson (1860-1948), among others. Nevertheless, it was not until the mid-1970s

that cell culture studies revealed that multiple cell types respond directly to changes in

mechanical loading via changes in gene expression, which in turn result in gene products

that range from chemokines, cytokines, growth factors, proteases, and vasoactive molecules

to structural constituents such as glycoproteins, glycosaminoglycans,and proteins, including

the fibrillar collagens that endow most soft tissues with their tensile stiffness and strength.

Importantly, many such responses stem from a mechanical homeostasis that exists at sub-

cellular, cellular, and tissue levels, as revealed well in blood vessels [8].

The concept of homeostasis was advanced by Walter Cannon in the 1920s; it states that

many biological and physiological processes tend to maintain key regulated variables within
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a defined range via negative feedback. Clearly, Cannon was careful in his choice of the

prefix “homeo,” meaning similar to, rather than “homo,” meaning the same. In this way he

emphasized that, when key variables are perturbed from homeostatic targets, or set-points,

homeostasis tends to restore the regulated value toward, not necessarily to, the set-point.

Hence, homeostasis tends to regulate quantities via proportional control, modulated by

associated gains. Any theory of soft tissue G&R should seek to capture such homeostasis.

3. A CONSTRAINED MIXTURE THEORY

3.1 Guiding Remarks.

The first attempt to model the evolving mechanical behavior of a soft tissue by considering a

constrained mixture with matrix deposition and degradation necessarily focused on a simple

boundary value problem and simple conditions [9]. Foundations for a general CMM were

proposed later [6], at which time we put forth six guiding statements that surprisingly ring

true twenty years after:

1. Mathematically modeling growth and remodeling requires that one track local

balances or imbalances in the continual production and removal of individual

constituents, the thermomechanical state in which the constituents are formed,

and how these constituents are organized.

2. Rates of production and removal of individual constituents are likely coupled to

those of other constituents. Not only do these rates change from their normal/

baseline values in response to changes in the mechanical environment, the

baseline values may change during development and aging or due to functional

adaptation.

3. Normal growth and remodeling tend to be a stable dynamical process, one that

seeks to optimize structure and function with respect to yet unidentified

parameters. In comparison to processes during development, there appear to be

genetic and perhaps epigenetic constraints on this process during maturity.

4. New constituents are likely deposited under stress, but this stress need not equal

the stress in the neighboring, pre-existing constituents. As this “deposition-

stress” has yet to be identified, it must be hypothesized, the validation of which

may be found via an examination of the associated natural configurations.

5. Within the continuum assumption, each neighborhood can have a different

natural configuration κn. If all sufficiently small neighborhoods have the same

natural configuration, the body will be stress-free when traction-free; if not, the

traction-free body will be stressed provided that the gradients in the mappings

that take particles from the abstract body and place them in the gross natural

configuration ℬn do not equal the identity tensor or result from rigid body

motions.

6. As each constituent within a neighborhood (about a point) can have a different

natural configuration, soft tissues are materially nonuniform in general although

on a macro-scale they may be considered to be homogenous. Since each of these
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natural configurations can evolve in response to changes in the mechanical

environment, the non-uniformity, material symmetry, and material stiffness are

expected to evolve in general.

These remarks were motivated by myriad observations in the literature on mechanobiology

and they inspired the theoretical framework suggested, which admitted for the first time

evolving natural configurations for individual structurally significant constituents that are

deposited within extant matrix at individual pre-stresses and thereafter begin to degrade at

different rates.

3.2 Wall Properties, Wall Mechanics.

It is emphasized, however, that CMMs need not be used only to quantify G&R. Rather they

also prove useful in studying soft tissue mechanics in the traditional manner. Regarding

Remark 4, for example, we used a CMM of the common carotid artery to account for the

different properties of the primary structurally significant constituents of the medial layer

(consisting mainly of elastic fibers, smooth muscle cells, and reticular collagens) and

adventitial layer (consisting mainly of fibrillar type I collagen and fibroblasts). We found

advantages of selecting the current, rather than traction-free or stress-free, configuration as a

computational reference, and that appropriate choices of constituent-specific pre-stresses (or

associated pre-stretches) yield good descriptions of the experimentally measured bulk

mechanical behavior as well as good predictions of the traction-free and nearly stress-free

configurations [10]. Hence, supporting Remarks 5 and 6, it is the different natural

configurations of individual constituents that give rise to residual stresses in the materially

non-uniform artery. This interpretation is consistent with experimental findings through

development [11] and avoids the need to prescribe residual stress-related opening angles a

priori [12], which are never available from in vivo observation. It similarly avoids the need

to conceptualize incompatible growth of neighborhoods within a materially uniform body

through successive fictitious stress-free states as in the theory of finite volumetric growth.

3.3 Mass Balance.

Remark 1 strongly suggests that a theory of soft tissue G&R should be founded on a

continuum theory of mixtures statement of mass balance, which can be written in spatial

form as

∂ρα

∂s + div ραvα = mα ∀ α = 1, 2, …, N, (1)

where ρα are apparent mass densities (mass of constituent α per current mixture volume),

vα are velocities (no sum on α), and mα are so-called mass exchange terms, interpreted here

as net rates of change of mass density, each for up to N different structurally significant

constituents α (e.g., collagen fibers, elastin, and glycosaminoglycans). Importantly, mα can

have any signed value, negative (as in atrophy), zero (as in maintenance), or positive (as in

growth). Regardless, it must be prescribed constitutively. Based on mechanobiological

observations, mα should depend on changes in the mechanical state from homeostatic,

among other factors. It proves convenient to account for this net rate of change in one of two
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ways. First, one can let mα(s) = mα(s) − rα(s), where mα > 0 is the true rate of mass density

production and rα > 0 is the true rate of removal; this approach is useful when formulating a

rate-based approach. Second, one can pursue a heredity integral-based formulation.

As in the original formulation, the focus herein is on the heredity integral-based approach,

which stems from the three key assumptions of CMMs. Assumption 1: Let the motion of

each structurally significant constituent α be constrained to equal that of the mixture, that is,

let xα = x despite differences in natural configurations and thus original positions (i.e., Xα ≠

X). For this reason, velocities of the individual constituents similarly equal that of the

mixture (vα = v) while the constituent-specific deformation gradient tensors necessarily

differ (i.e., Fn τ
α s ≠ F s , where n(τ) denotes a possibly evolving natural configuration κn

α(τ)

for constituent α that is produced at G&R time τ and survives at current G&R time s).

Importantly, relative to time scales associated with mechanical loading, including that due to

the cardiac cycle, G&R tend to occur continually, but slowly; it is thus reasonable to neglect

vα in most cases. We thus find that equation 1 can be integrated directly in spatial or

referential form, leading to Assumption 2: Account for mass exchanges in heredity integral

form by considering a true rate of production function mα(τ) > 0 and a non-dimensional

survival function qα(s, τ) ∈ [0,1], both of which are to be prescribed constitutively. Hence,

equation 1 yields [13]

ρα s = ρα 0 Qα s +
0

s
mα τ qα s, τ dτ ∀ α = 1, 2, …, N, (2)

where Qα(s) ∈ [0,1] is another survival function, with Qα(0) = 1. This form of mass balance

arises when integrating from the distant past (at which time it is assumed that mass density

was zero) to the current G&R time s well into maturity, with G&R time τ = 0 marking a

time of interest in maturity at which the tissue is perturbed from its homeostatic state. Note,

too, that the mixture mass density is ρ(s) = ∑ρα(s). Assumption 3: The mass density of many

soft tissues does not change appreciably during most cases of G&R, hence let ρ(s) = ρ(0),

which is to say that G&R related changes in mass are proportional to changes in volume.

3.4 Linear momentum balance.

Although the classical continuum theory of mixtures similarly provides a relation in terms of

constituent stresses and a momentum exchange, prescribing such exchanges can be

problematic in soft tissues as they grow and remodel. For this reason, we adopt a rule-of-

mixtures relation for the stresses and satisfy the classical linear momentum balance,

typically in the absence of body forces. Consistent with the aforementioned assumption that

G&R tend to be slow processes that can be studied quasi-statically at all G&R times s, let

div t = ρa div t = 0, (3)

where t is the Cauchy stress tensor, also to be prescribed constitutively. Consequently, the

G&R problem can be solved in strong or weak form using methods of finite elasticity,

consistent with the original ideas of R. Skalak and Y.C. Fung.
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3.5 Constitutive Relations.

As in all cases in nonlinear continuum mechanics, one of the greatest challenges is

identification of appropriate constitutive relations. In heredity integral-based CMMs, there is

need for three classes of relations: one for the true rate of mass density production (i.e.,

mα(τ) > 0 for each constituent), one for mass removal (i.e., survival qα(s, τ) ∈ [0,1] of each

constituent), and one for Cauchy stress (for a rule-of-mixtures). In finite elasticity, the

continuum-level Cauchy stress can be determined given a stored energy function W, defined

per unit reference mixture volume, namely

t s = 2
detF s F s ∂W s

∂C s FT s , (4)

where F(s) is the deformation gradient tensor for the mixture at G&R time s and C(s) =

FT(s)F(s) is the associated right Cauchy-Green tensor; detF is constant only during transient

loading at a fixed G&R time since mass and volume can both evolve in general.

Conceptually, in a simple rule-of-mixtures one can write W = ∑ϕα Wα, where ϕα are

constituent-specific mass fractions. Yet, consistent with Remark 6 above, the constituent-

specific mass fractions and stored energies can evolve in response to diverse stimuli; there

was a need for more generality.

Constitutive relations can be identified in one of three ways: theoretically, experimentally, or

simply postulated. Although theoretically determined relations are the best in principle, few

such relations have proven useful; although experimentally determined relations are robust,

there exist few situations wherein response functions can be identified directly from data.

Consistent with these caveats, we postulated constituent-specific stored energy functions of

the form [e.g., 13–15]

ρWα s = ρα 0 Qα s Wα Fn 0
α s +

0

s
mα τ qα s, τ Wα Fn τ

α s dτ, (5)

for each constituent α = 1,2, …, N, where ρ is the mass density of the tissue (mixture) per

current volume and Wα are constituent-specific stored energy functions, per reference

volume of the mixture, that depend on constituent-specific deformation gradients Fn(τ)
α (s),

with τ ∈ [0, s] the G&R time at which that constituent was deposited in maturity, typically

after a perturbation to the homeostatic state. It can be shown [13] that

Fn τ
α s = F s F−1 τ Gα τ , where F(s) and F(τ) are tissue-level deformation gradients and,

consistent with the aforementioned Remark 4, Gα(τ) is a “deposition stretch” at which the

new constituent was deposited within extant matrix at G&R time τ (Figure 1). Note the

special case at G&R time τ = s, at which Fn(s)
α (s) = Gα s , consistent with Gα being a

deposition stretch tensor (with R = I in the polar decomposition theorem at that time).

This constitutive postulate (equation 5) is best appreciated by considering two special cases

[14]. First, at s = 0, the time in maturity just prior to a perturbation, we find
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ρWα 0 = ρα 0 Qα 0 Wα Fn 0
α 0 Wα 0 = ρα 0

ρ 0 Wα 0 = ϕα 0 Wα 0 , (6)

which recovers the desired rule-of-mixtures relation with W 0 = Wα 0 = ϕα 0 Wα 0 .

Second, consistent with Remarks 1 and 4, consider a situation wherein tissue turns over in

an unchanging (homeostatic) configuration whereby Fn τ
α s = Fn 0

α s , which is to say that

neither the constituent-specific deformation nor the associated stored energy function

depends on G&R time τ. As a result, equation 5 can be written (using equation 2)

ρWα s = ρα(0)Qα(s) +
0

s
mα(τ)qα(s, τ)dτ Wα Fn(0)

α (s) = ρα(s)Wα Fn(0)
α (s) , (7)1

whereby

Wα s = ρα s
ρ s Wα Fn 0

α s = ϕα s Wα s , (7)2

which, again recovers the desired rule-of-mixtures relation at each G&R time s with

W s = ϕα s Wα s . The most important validation of the utility of any postulated

constitutive relation is, however, the experimental test, examples of which are discussed

below. First, however, note that various forms of equation 5 can be postulated similarly when

letting Wα be defined per mixture volume (strain energy function), per mixture mass

(Helmholtz function), per constituent volume, or per constituent mass. Equivalencies can be

realized via use of the Jacobian of the deformation gradient and/or the true constituent mass

density (constituent mass defined per constituent volume, not mixture volume). From a

practical perspective, differences in these many definitions manifest primarily as differences

in the values of the dimensioned material parameters in the energy function, which are

determined via best-fits to appropriate data. We are thus reminded that, albeit structurally

motivated, the current CMM framework is yet phenomenological because experimental

details on many microstructural features (e.g., different types of cross-links, physical

entanglements, secondary bonds) remain lacking.

Next, consider possible functional forms for the three key constitutive relations: production

mα(τ), removal qα(s, τ), and mechanical properties of that which persists Wα Fn τ
α s ,

subject to useful guiding principles such as determinism, material frame indifference, and so

forth. Recalling Remark 1, many cells and structurally significant constituents are

continually produced and removed in the vasculature, with cells involved in matrix turnover

including smooth muscle cells, fibroblasts, and resident macrophages. This continual, albeit

typically slow, turnover is intuitive since all biological materials – cells and extracellular

matrix – have a finite half-life and typically are replaced unless there is a physiological

constraint against such (cf. Remark 3). One such constraint in the vasculature is that

functional elastin appears to be produced, organized, and cross-linked early in life; that is,

there is a biological constraint against such production later in life. Fortunately, the normal
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half-life of elastin is on the order of 50+ years, hence endowing the wall with the requisite

resilience for long periods except in cases of particular mutations or disease states [16].

Copious experimental studies reveal baseline rates of production of structurally significant

constituents (e.g., fibrillar collagens I and III as well as glycosaminoglycans) in maturity,

denoted here as m0
α with subscript o denoting an original, homeostatic, value. Consistent

with Remark 2, one can allow m0
α to evolve in cases such as development or aging, though it

is typically constant under normal conditions in maturity. Many studies report increases in

production in maturity, as a function of biochemical or biomechanical stimuli, as evolving

(non-dimensional) fold-changes, as, for example, mα(τ)/m0
α at G&R time τ. These fold-

changes often appear to follow sigmoidal relations (Figure 2), saturating as the mechano-

stimulus increases or decreases. Two of the primary hemodynamically induced stresses in

the vasculature can be represented by the mean flow-induced wall shear stress τw and the

mean pressure-induced circumferential stress σθ, thus to first approximation consider the

fold-changes in production to scale linearly with differences in mean values of these

intramural and shear Cauchy stresses relative to original homeostatic target values, as, for

example,

mα τ = m0
α 1 + Kσ

αΔσ τ − Kτw
α Δτw τ , (8)

where the parameters Ki
α are constituent-specific gains that capture the sensitivity of the

proportional response. Note that increases in intramural stress above baseline tend to

increase rates of matrix production due in part to local production of the cytokine

transforming growth factor-beta; conversely, increases in flow-induced wall shear stress tend

to decrease these rates due to endothelial production of the biomolecule nitric oxide (NO)

whereas decreases in wall shear stress tend to increase these rates due to endothelial

production of endothelin-1 (ET-1). That is, NO is both a potent paracrine vasodilator and

attenuator of matrix production; ET-1 has opposite effects [8,12]. It is for these reasons that

the negative sign precedes the shear stress term.

It proves convenient to consider normalized stress differences in equation 8 by dividing the

actual differences by the original homeostatic values because of the orders of magnitude

differences in these two stresses. Wall shear stresses are on the order of 1.5 Pa and

intramural (circumferential and axial) stresses on the order of 150 kPa (though values differ

across species, including ~6.5 Pa and 250 kPa, respectively, in the mouse). It also proves

convenient to use a coordinate invariant measure of the multiaxial intramural stress, as, for

example, the first invariant of the Cauchy stress. Yet, given that the (compressive) radial

stress is significantly lower (~ −6 kPa) than both of the in-plane (tensile) components (~ 150

kPa), it is often neglected. Hence, consider the following stress-differences at the time of

deposition τ of the form,
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Δσ τ =
1 − δ σθ τ + σz τ − σθ

0 + σz
0

σθ
0 + σz

0 , Δτw τ =
1 − ξ τw τ − τw

0

τw
0 , (9)

where quantities with a superscript o represent original (homeostatic) values, or set-points in

the parlance of homeostasis. The parameters δ and ξ remind us that, from the perspective of

mechanobiology, it is actually not the value of the stress that is important but rather the value

of stress that is perceived (i.e., sensed) by the cell. Here, δ = 0 and ξ = 0 for perfect

mechanosensing (e.g., by intramural and endothelial cells, respectively, in blood vessels); δ
∈ (0,1] and ξ ∈ (0,1] for compromised mechanosensing. Whereas specific values of the non-

dimensional gain parameters Ki
α in equation 8 are determined from experimental data, one

must enforce the condition that the true mass density production mα(τ) > 0. This condition

is satisfied by Kσ
α = Kτw

α = 0 as long as m0
α > 0, but then there is no mechano-regulation. We

previously showed that lack of mechano-regulation results in an inability of a numerical

vessel to adapt to even modest perturbations in flow or pressure [14], consistent with

empirical observations that vascular cells are highly sensitive to changes in mechanical

stimuli. Hence, these gains must be strictly positive. Conversely, note that the stress

differences in equation 9 go to zero when current stresses equal the homeostatic values, thus

returning rates of production to baseline values via equation 8 as they should. Following the

great adage of A. Einstein that “Everything should be made as simple as possible, but no

simpler,” recall that the typical sigmoidal dose response curves (Figure 2) are only

approximated by equation 8 near the homeostatic values and the stresses in equation 9 are

mean, not pointwise, values. Both assumptions can be relaxed, yet that this simple relation

surprisingly captures many actual vascular responses, as noted more below.

Next, consider the survival function qα(s, τ) ∈ [0,1]. Again, recall that all biological

materials have a finite half-life, often with natural death (apoptosis) of cells and degradation

(proteolysis) of matrix following a first-order type of kinetics. Hence, consider

qα s, τ = exp −
τ

s
kα t dt , (10)

where kα(t) is a possibly evolving constituent-specific rate parameter (not constant) having

units of inverse time. In the special case where kα(t) is constant for constituent α, say k0
α, we

see that qα s − τ = exp −k0
α s − τ , thus yielding the desired first order decay, with qα(τ − τ)

= qα(0) = 1 as it should, meaning that all material produced at any G&R time τ yet survives

at time τ. In general, however, these rate parameters depend on various biochemical and

biomechanical stimuli. Consider a simple case of the effect of intramural stress alone.

Experiments reveal that degradation / death rates can increase both for increases (due to

damage) and decreases (due to teleologically favorable atrophy) in stress. Hence, let

kα t = k0
α 1 + ωαΔσ t 2

(11)
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where ωα is a non-dimensional weight parameter, often set to unity for simplicity and lack

of sufficient data to determine its value. Again, this relation recovers the homeostatic rate k0
α

parameter when the stress difference is driven to zero.

At this point it is useful to consider further the special case wherein the stress differences are

zero, that is, when cells and tissues turnover at constant rates within an unchanging

homeostatic state. In this case the rates of production and removal reduce to their

homeostatic values, and equation 2 can be written,

ρα s = ρα 0 e
−k0

αs
+

m0
α

k0
α e

−k0
αs

0

s

e
k0
ατ

k0
αdτ =

m0
α

k0
α + ρα 0 −

m0
α

k0
α e

−k0
αs

∀s, (12)

with the constraint that ρα(s) ≡ ρα(0) because apparent mass densities remain the same

within an persistent homeostatic state. Hence, ρα s ≡ m0
α/k0

α in this state, which is to say that

tissue maintenance requires balanced rates of production and removal, here related via the

original constituent-specific apparent mass density. This finding is particularly useful

because rates of degradation (half-lives) can be easier to determine experimentally than rates

of production. Table 1 summarizes various functional forms for production and removal,

illustrating how they have evolved over the years and how they can be specialized for

different vascular conditions.

Finally, we note that functional forms for the constituent-specific stored energy functions are

more straightforward to postulate, as, for example, neo-Hookean type forms for vascular

elastin and Fung-Exponential forms for fibrillar collagens. We thus refer the reader to the

original papers for these forms. It is important to note, however, that these constituent-

specific relations depend on the constituent-specific deformation gradient (or more precisely

the right Cauchy-Green tensor), thus the deposition stretch becomes a constitutive parameter

(cf. Remark 4 above). That is, Wα Fn τ
α s = Wα F s F−1 τ Gα τ .

Figure 3 illustrates the overall G&R formulation described here for blood vessels, with the

regulated variables in the homeostatic system often being hemodynamically induced

intramural and wall shear stresses, which are determined computationally in strong or weak

form given information on the evolving geometry, material properties, and applied loads,

and which then dictate subsequent changes (if appropriate) in mass production via the

constituent-specific gain parameters Kα. Note that the constituents incorporated within the

extant matrix at particular deposition stretches Gα, and in some cases particular orientations

αα, will begin to degrade via first order type kinetics according to the associated rate

parameters kα. Such turnover can, of course, evolve the material composition, and thus

geometry and properties, which then feedback to alter the stress stimulus, which in a

homeostatic process will be returned toward normal thus ensuring a stable system.

4. VASCULAR APPLICATIONS

At the time that we were finalizing our ideas on a CMM for soft tissue G&R (summer of

2001), I was similarly finalizing a manuscript for a book to be published by Springer on
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Cardiovascular Solid Mechanics [12]. In it, I noted many different manifestations of vascular

G&R (Figure 9.34 therein) with the hope that a common framework would be able to

describe and eventually predict such diverse situations. Only from a common approach did I

feel that we could achieve general understanding. Here, I briefly review multiple papers that

have appeared over the past twenty years, which show that CMMs provide such a framework

when enriched with problem-specific constitutive relations (Figure 4).

4.1 Adaptations – Axial Extension, Flow, Pressure.

Arteries exhibit a remarkable ability to adapt to modest sustained alterations in blood flow Q
and blood pressure P, the former by adjusting luminal radius a and the latter mainly by

adjusting wall thickness h [17,18]. Indeed, given simple relations for mean stresses, both

flow-induced wall shear τw = 4μQ/πa3 (with μ the viscosity) and pressure-induced

circumferential stress σθ = Pa/h, it is easy to show that τw τw
0  and σθ σθ

0 require a

mechanoadaptation whereby a → ε1/3a0 and h → γε1/3h0 if ε = Q/Q0 and γ = P/P0 denote

fold-changes in flow and pressure, respectively. The key question, however, is how do the

cells effect such changes? This question can only be answered with an understanding of the

mechanobiology and a theory of G&R. Early on we used a simplified version of the CMM

given the assumption that there were only two states, original homeostatic and that

associated with a constant sustained alteration in hemodynamics [19,20], which was

particularly appropriate for bioreactor applications. This work revealed the importance of the

physiologic constraint that functional elastin cannot be produced in maturity; that is,

responses to altered flow and pressure cannot be perfect in maturity because elastin does not

turnover, though in the spirit of mechanical homeostasis the adaptations tend to drive

stresses back toward homeostatic values. We also used a heredity integral-based formulation

to account for the continuous turnover of matrix in evolving states while introducing the

concept of deposition stretches [21] consistent with the postulate of Fung [7] that “At

homeostasis, all collagen fibers have the same stress, all elastin fibers have another

stress…”. Whereas we initially assumed that mass density production could be described by

the form mα = m0
α + mn

αΔσθ, with mn
α potentially depending on wall shear stress, we

subsequently adopted the form in equation 8, or equivalently in terms of ratios of

vasoconstrictors-to-vasodilators [14]. Importantly, we confirmed numerically the importance

of Rodbard’s [22] observation that “Deviations of drag [wall shear stress] from this set-point

initiate negative feedback mechanisms that return the magnitude of the drag to its set-point.

In blood vessels, these effects appear to operate through two related mechanisms: an

immediate physiological adjustment in vascular tone induced by the change in flow, and a

delayed anatomical change that develops when the flow rate persists.” In other words,

changes in smooth muscle cell tone and turnover of matrix in vaso-altered mechanical states

are fundamental to effective mechanoadaptations (cf. Remark 1). Similarly, we confirmed

numerically the essential role of mechano-sensing and mechano-regulation of matrix; the

gains need to be strictly positive and deposition stretches need to be greater than unity to

ensure physiologically meaningful predictions [14].
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4.2 Aneurysms – Intracranial and Aortic.

Aneurysms are local dilatations of the arterial wall. The three most prevalent sites are the

cerebral circulation (mainly saccular lesions) and aorta (fusiform lesions), both thoracic and

abdominal [23–25]. Although lesions in these three sites share some histo-mechanical

characteristics, particularly loss of elastic fiber integrity, loss of smooth muscle cells or at

least their contractile function, and collagen remodeling, the etiologies and biomechanics are

distinct. Initial studies of intracranial saccular aneurysms confirmed the importance of these

three key histo-mechanical characteristics, but also the importance of the magnitude of the

gains that model the mechano-sensitivity – simulated lesions had unbounded behaviors for

small gains but stable bounded behaviors for larger gains [26]. Because of the severity of the

insult that leads to rapidly enlarging aneurysms, the basal production rate was pre-multiplied

by a term accounting for increasing numbers of synthetic cells. This work used a prescribed

nonlinear survival function (Table 1), but demonstrated that the heredity integral-based

CMM was amenable to nonlinear finite element implementation, albeit for axisymmetric

membranes in this case. Also shown was the importance of the orientation of the newly

deposited fibrillar collagen in controlling the rate of aneurysmal expansion [13].

A rate-based mixture model of G&R was first published by a group at Glasgow studying

G&R of abdominal aortic aneurysms (AAAs), which were predicted to have an unbounded

enlargement [27]. We subsequently showed that data from human AAAs could be captured

well with a heredity integral-based CMM, with mass production depending on constituent-

specific stress differences and inclusion of evolving anisotropy. Rates of enlargement

depended in part on the age of onset, which is to say the initial degree of damage to the

elastic fibers [28,29]. We showed further that AAA enlargement could be bounded and

stable, particularly with increases in the rate of production of fibrillar collagen [30].

Importantly, the computational prediction that increased rates of collagen deposition can

slow and bound lesion expansion preceded an experimental finding in a mouse model [31]

that used a microRNA antagonist (antago-miR29b, which increases matrix synthesis), thus

demonstrating utility of G&R models in generating and testing hypotheses. Importantly this

work motivated studies of mechanobiological stability [32], which is discussed more below.

Thoracic aortic aneurysms (TAAs) are distinct in that they have a strong genetic

predisposition and they appear to initiate independent of inflammation. Rather, multiple

mutations that predispose to TAAs, including defects in the actomyosin apparatus or in

microfibrils that connect the smooth muscle cells to the elastic laminae, suggest that

dysfunctional mechano-sensing or mechano-regulation of matrix help drive the aneurysmal

enlargement [33,34]. We used a new 3D finite element implementation (see below) of the

CMM to contrast competing hypotheses regarding rates of enlargement of these lesions if

any of the following were compromised: elastic fibers, collagen cross-links, smooth muscle

contractility, mechano-sensing, or mechano-regulation [35]. Whereas compromised

mechano-sensing can be modeled easily by the parameters δ or ξ in equation 9,

compromised mechano-regulation can be modeled, in part, via altered deposition stretches

Gα, which is to say that compromised cells may not be able to endow the newly deposited

matrix with appropriate pre-stress. Importantly, the model confirmed that compromised

mechano-sensing can have as devastating consequences on overall lesion enlargement as

Humphrey Page 12

J Elast. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



loss of elastic fiber integrity; by contrast, loss of vessel-level smooth muscle contractility

had less severe consequences.

4.3 Thrombus – Extravascular and Intramural.

Thrombus is responsible for significant morbidity and mortality, including via myocardial

infarction, ischemic and hemorrhagic stroke, and pulmonary embolism, among other

conditions. Thrombus develops via a complicated series of chemical reactions, but

phenomenological simulations provide some insight. Importantly, in addition to the rapid

formation of a thrombus, there is a complex longer term process of resolution or maturation,

the latter of which is part of normal wound healing wherein the fibrin-based thrombus

transitions into collagen-based tissue [36]. The CMM is ideally suited to consider such

evolution involving multiple constituents. We initially considered a generic case of thrombus

maturation as observed in vitro [37], but later modeled in vivo data from a mouse model of

venous occlusion by a maturing thrombus [38]. In these cases, it was seen that the standard

CMM coupled easily with descriptions of the kinetics of chemical reactions (reaction-

diffusion) involving non-structurally significant constituents as well as with modest fluid

transport within a thrombus with evolving permeability. Methods of considering reactive

constrained mixtures have been developed much further by others [39,40].

We also modeled two different cases whereby thrombus affects the underlying wall

mechanics: extravascular thrombus in cerebral vasospasm and intraluminal thrombus in

AAAs. Extravascular blood from a ruptured cerebral aneurysm or arteriovenous

malformation enters the cerebrospinal fluid whereby it can contact adventitial collagen of

nearby normal arteries, thus initiating and forming an extravascular clot. Myriad substances

are released by such a clot, including vasoconstrictors such as thromboxane, serotonin, and

thrombin, which together cause both local smooth muscle contraction and accelerated matrix

turnover in evolving vasoconstricted states, thus entrenching the vessel at progressively

smaller lumens that are unresponsive to exogenous vasodilators. The CMM framework

allows one to model early clot-dominated effects on the wall followed by normal mechano-

dominated effects once the clot resolves (with mass density production depending on

differences in both wall stress and vasoconstrictors from homeostatic baseline values).

Moreover, these studies showed how a CMM of evolving wall mechanics can be coupled

easily to the hemodynamics, though based on a simple network pipe-flow analysis.

Predictions reflected well the actual short time-course of inward remodeling in cerebral

vasospasm and its resolution if the clot resolved [41,42].

Over 80% of AAAs contain a significant intraluminal thrombus (ILT), which can evolve into

a complex layered structure having diverse effects on the underlying wall – stress shielding

of intramural cells, reduced oxygen transport within the wall, and release of cytokines,

growth factors, proteases, and vasoconstrictors, all of which can affect wall structure and

function [24,43]. One can use computational fluid dynamics to predict where and to what

extent such ILTs form [44,45], but a key question relates to the evolving

biochemomechanical effects of the ILT on the wall, which may enlarge, arrest, or rupture.

Again, the CMM approach proved useful for accounting for lesion G&R in the presence of

an ILT [46,47]. In this particular application, the mass density production term depended on
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changes in the magnitude of the constituent-specific stress while separate production

equations were postulated to account for growth of the ILT (including, embedded platelets,

red blood cells, thrombin, plasmin, and fibrin) as the aneurysm expanded. As expected,

effects ILT can be dramatic and must be considered.

4.4 Vein Grafts.

Atherosclerosis remains a leading cause of morbidity and mortality, particularly as a

contributor to coronary and peripheral artery disease. Notwithstanding the widespread use of

vascular stents, coronary artery bypass grafts using autologous veins remains a mainstay in

clinical care. Yet, many venous bypass grafts fail, up to 50% within 10 years for coronary

artery bypass grafts. Such failures result in large part from maladaptive G&R by the veins

when placed in an arterial environment, which subjects these veins to marked step increases

in both blood pressure (from venous values of 3-5 mmHg to arterial values of 120/80 mmHg

or more) and blood flow. We used a CMM to study vein graft (mal)adaptation, with basic

relations for mass production and removal functionally similar to those for arteries, though

with different parameter values. These values were determined, in part, using formal

methods of optimization [48,49], which had previously been shown to be well-suited for

parameter estimations for CMMs [50]. Importantly, the numerical solutions suggested that

the veins maladapt due in part to the sudden, step increase in pressure and flow, whereas

more gradual loading could lessen the adverse G&R. A follow-up study showed that gradual

loading, and thus more favorable adaptation, could be achieved in a vein graft by using a

biodegradable external support that could initially off-load some of the hemodynamically

induced loads of the arterial circulation and thus allow the cells to respond to gradual

increases in stress [51].

4.5 Aging and Tortuosity.

Vascular aging is a dominant risk factor for diverse cardiovascular, renovascular, and

neurovascular diseases and thus all-cause mortality. Effects of aging on arteries are many,

including diffuse decreases in elastic fiber integrity, progressive endothelial dysfunction,

attenuated or lost smooth muscle function, and collagen remodeling, often with increased

cross-linking via non-enzymatic advanced glycation. Each of these effects are easily

captured within a CMM, as shown previously [52]. This model confirmed the detrimental

effects of compromised elastic fiber integrity and smooth muscle function, but suggested

that increased collagen stiffening can actually help offset the hemodynamic loads and reduce

diffuse enlargement, which is common in aging. Such locally favorable mechanobiological

responses can yet adversely affect global hemodynamics, in this case with increased

structural stiffness increasing the speed at which the pulse pressure wave travels, leading to

wave reflections earlier in the cardiac cycle with possible central pulse pressure

augmentation [53]. Such positive feedback loops must be identified and better addressed.

It has long been known that myriad conditions give rise to persistent abnormal bends, twists,

turns, and kinks within arteries that are referred to as tortuosity. These include vascular

aging as well as arterial tortuosity syndrome, genetic conditions that give rise to thoracic

aortopathies, and hypertension, among others [54,55]. Recent interest in tortuosity has

increased since it may be a biomarker for additional conditions. Regardless, most studies of
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tortuosity have been motivated by the common in vitro observation that a cylindrical

segment of an artery can bend when pressurized, depending on the length of the specimen,

the degree of fixed axial extension, and the pressure applied. This acute pressure-induced

bending can be understood as an elastic buckling instability [56], which has been suggested

by many to contribute to or underlie tortuosity, a persistent deviation from a normal straight

geometry. Numerical studies using a CMM suggest, however, that tortuosity appears to arise

from maladaptive G&R in the presence of local imperfections or irregularities in wall

geometry, properties, or perivascular support [57]. Importantly, these simulations suggested

further that multiple insults must coexist to drive tortuosity, which is to say that arteries are

otherwise surprisingly fault tolerant.

4.6 Inflammation – Homeostatic and Pathologic.

Inflammation plays fundamental roles in many vascular diseases, including atherosclerosis

[58], aortic and intracranial aneurysms [59,60], pulmonary and systemic hypertension

[62,62], and vascular aging [63]. Similarly detrimental inflammatory effects on the aorta

arise in obesity [64], diabetes [65], rheumatoid arthritis [66], and cystic fibrosis [67].

Notwithstanding the importance of each of these conditions, it is also becoming evident that

inflammation can play key roles in hypertension, which increasingly affects more and more

people. In this regard, it is important to note that immune processes evolved to protect

against life-threatening insults, particularly viral and bacterial, and thus are prioritized [68].

It is becoming increasingly clear that prioritized processes can over-ride homeostatic

processes, including mechanical, by changing the biological response by re-setting

homeostatic set-points, gains, and rates (cf. Figure 3). Indeed, we discovered using a CMM

that it was possible to describe the evolving geometry and properties of the thoracic aorta in

an angiotensin II-induced model of hypertension in normal wild-type (C57BL/6) mice using

standard relations for arterial G&R enhanced with inflammation-dependent stimuli [69], but

not in angiotensin II-induced hypertension in atheroprone (Apoe−/− on a C57BL/6

background) mice. In the latter, we needed to adjust gains and rate parameters [70]

consistent with the over-riding role of exuberant inflammatory cell infiltration. Indeed, it

was the model that first suggested this need, which was justified based on independent

findings in the immunobiology literature [71]. Although we have not studied atherosclerosis

using CMMs, it would be expected that mechanical effects could help explain the Glagov

phenomena but that inflammatory stimuli likely dominate since the development of an

occluding lesion is not mechanobiologically favorable.

4.7 Tissue Engineered Vascular Grafts (TEVGs).

Tissue engineering seeks to develop living constructs for replacing, repairing, or

regenerating diseased or injured tissues. Many different approaches have emerged, with

different TEVGs now in clinical trials. Importantly, there are two basic strategies for

developing such grafts. First, one can seed vascular cells on a biodegradable scaffold ex vivo

within a bioreactor environment and allow the cells to produce matrix to replace the

degrading polymer. Second, one can implant a similar biodegradable scaffold in the body

and allow the transition from polymeric scaffold to native tissue to occur in vivo. An

advantage of the former is that grafts can be made in large numbers and have off-the-shelf

availability, though they must be decellularized to prevent immuno-rejection if the synthetic
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cells were not autologous. An advantage of the latter is that it is the patient’s own cells that

personalize the graft under normal hemodynamic conditions, though implantation of a

biodegradable scaffold elicits a foreign body (inflammatory) response. In both cases, there

are myriad design parameters, and G&R modeling can play important roles in designing

these grafts and understanding their evolution, the latter with clear clinical benefit. We first

modeled the ex vivo situation, finding that the previously used periods of development

should be extended, hence revealing another key role for in silico studies [72]. It is important

to note, of course, that a mixture-based approach can easily handle the evolution of both the

degrading polymeric scaffold via Qα(s) and accumulating neotissue via mα(τ)qα(s, τ),

whether ex vivo or in vivo. We showed further that in vivo TEVG development could be

described [73] and predicted [74], demonstrating that early development is immuno-driven

while later development is mechano-mediated [75]. In particular, the mass production term

needed to account for these two phases, as, for example,

mα τ = 1 − e−τ m0
α 1 + minflam

α + mstress
α , (13)

where the first term on the right hand side accounts for the fact that tissue cannot begin to be

produced until synthetic cells infiltrate the scaffold. Note, too, that the inflammatory

contribution (inflam) was prescribed via a gamma function (based on experimental data),

capturing a rapid increase in response to the foreign body that progressively diminished as

the polymer degraded and the inflammation waned.

Finally, note that such G&R models can be used via parametric sensitivity studies to begin to

explore how scaffold design will affect the cell-mediated in vivo development of neotissue

[76] or coupled with formal methods of optimization to begin to identify improved design

parameters for the scaffolds (e.g., select optimal fiber diameters and pore sizes) based on

simulations [77]. Regardless, these CMMs predicted an unexpected natural history of

implanted TEVGs, namely, that an early narrowing (due to inflammation) would resolve

spontaneously (in part due to mechano-mediated turnover of matrix by stress-shielded cells),

which motivated a pre-clinical study and eventually led to FDA-approval of the use of a

particular TEVG in children born with congenital heart defects [78]. Again we refer to Table

1, but the reader is encouraged to consult the original papers for more details.

5. ADDITIONAL ADVANCES, CONTINUING NEEDS

5.1 Fluid-Solid-Growth (FSG).

Blood vessels are exposed to persistent hemodynamic loads and it can be critical to account

for solid-fluid interactions. In particular, changes in the hemodynamics can drive changes in

wall geometry and properties, which in turn can drive changes in the hemodynamics, and so

forth. As noted above, our first FSG model used a simple pipe-flow analysis of the blood in

a model of the circle of Willis in the brain to simulate cerebral vasospasm [42]. More

formally, however, FSG models can be built using full 3D Navier-Stokes solutions for the

hemodynamics [79]; indeed, a theory of “small deformations superimposed on large” can

facilitate such solid-fluid coupling [80]. FSG models have been used, for example, to study

evolving AAAs, with loose coupling between the hemodynamics and wall mechanics in part
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because of the very differing time scales – one second for a cardiac cycle and days-to-

months for wall G&R [81,82]. Such coupled models provide increased understanding of

vascular G&R and must be pursued with greater vigor. Theoretical advances will be needed,

however, to ensure computational efficiency within complex multiphysics models.

5.2 Multiscale Models.

Mechanisms that drive adaptations and disease progression necessarily arise at molecular

and cellular levels, yet manifest clinically at tissue and organ levels. There is, therefore, a

pressing need to develop models that couple mechanism and manifestation across spatial and

temporal scales. Much remains to be accomplished in this regard, but prior efforts provide

confidence to move forward. Among others, we previously showed that agent based models

(ABMs, often rule-based at the cellular level) and CMMs (continuum-based at the tissue

level) can be coupled efficiently [83]. Importantly, this work emphasized that different types

of models can be parameterized using the same data from either cells or tissues, both in vitro

and in vivo. Of course, one has much greater control over in vitro studies on cells, though

the results necessarily have less in vivo relevance. Conversely, one has much less control

over in vivo studies at the tissue level (e.g., one may be able to control pressure, though not

individual sympathetic or hormonal influences), but increased in vivo relevance. Hence, no

data are without limitations and no model informed by a particular type of data will be

without limitations. Yet, when the same data can be used to inform models at multiple scales

there is a unique opportunity to seek congruency across scales, namely to achieve

consistency via parameter estimation. This was shown when coupling ABMs and CMMs.

More recently, we showed further that logic-based cell signaling models and CMMs can be

coupled similarly, thus enabling models from transcript to tissue [84]. In particular, whereas

CMMs focus on phenomenological relations for the production of particular structurally

significant constituents, cell signaling models can estimate such production directly as a

result of the signaling that leads to transcriptional activity for particular gene products,

including structurally significant ones such as the collagens. Much more attention should be

directed towards such coupling. Of course, one should similarly seek to couple CMMs of

cell mechanics (e.g., [85,86]) with those at the tissue or organ level.

5.3 Computational Efficiency.

The heredity integral-based CMM has proven useful in describing and predicting many

different vascular adaptations, disease processes, and tissue engineered constructs (Figure 4).

Yet, such simulations can be computationally expensive, particularly for problems having

complex 3D geometry. For this reason early modeling focused on 2D or membrane

descriptions of the wall (e.g., [13,14,81]). Although direct 3D implementations have been

advanced [87,88], there have also been attempts to identify simplifications that afford greater

computational efficiency. First, temporal homogenization was introduced to combine

advantages of the CMM and the theory of finite volumetric growth [89,90]. Briefly, the basic

idea is to perform a temporal homogenization over all mass deposition for a single

constituent and to decompose the overall deformation into an elastic part and a G&R part,

considering separately that for changes in mass and changes in organization. It was found

that this rate-type approach can recover prior simulations using the full heredity integral-

based approach at a fraction of the computational time.
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Second, a concept of mechanobiological equilibrium was exploited to generate a rate-

independent approximation, one that again recovers well the full CMM predictions in

multiple cases [15]. Recall that mechanical homeostasis requires that mα(s) m0
α at the time

s when the adaptation is complete, which in terms of the constitutive assumption of equation

8 requires that the combined stress differences Kσ
αΔσ − Kτw

α Δτw 0 at that time (with Δσ →

0 and Δτw → 0 separately if the adaptation is ideal). A more stringent requirement,

however, is that mα(s) = m0
α at all times s during the adaptation, which in terms of equation 8

requires that Kσ
αΔσ = Kτw

α Δτw ∀s, which can be shown to be reasonable if a time-scale for the

stimulation is greater than a characteristic internal time-scale of G&R; that is, if the actual

“slow” adaptation is otherwise “fast” in relative terms. In this case, the heredity integrals can

be pre-integrated to yield evolving rule-of-mixture relations, resulting in a rate-independent

equivalent that holds provided that the time scales admit this assumption of quasi-

mechanobiological equilibrium. An associated finite element implementation thus becomes

as computationally efficient as standard solvers for nonlinear finite elasticity [91]. Full

CMMs remain preferred when details of the time-course of mass production and removal are

critical, particularly when degradation rates depend strongly on the cell phenotype or

extracellular milieu at the time the neotissue was originally incorporated within the extant

matrix. These, and future, approximations nonetheless promise considerable advantages,

especially when used in FSG simulations or formal methods of optimization given their

associated computational expense.

5.4 Mechanobiological Stability.

Consistent with Remark 3 above, many cases of vascular G&R stem from homeostatic

mechanisms, thus suggesting negative feedback that seeks to maintain stable, optimal

responses. We suggested that mechanical homeostasis can be considered via formal stability

analyses of G&R models [92], which motivated similar work by others [93]. Briefly, as in

classical mechanics, stability suggests robust, recoverable responses to perturbations, in this

case for those that affect cell and matrix turnover. In our first study, we showed that

deposition stresses are critical for promoting mechanobiological stability, consistent with

Remarks 1 and 4, with higher tissue stiffness and higher rates of mass production similarly

promoting stability. Recalling the prior findings on aneurysmal enlargement, particularly the

different findings in [27] and [29], it may be appropriate to think of unbounded aneurysmal

enlargement as a mechanobiological instability [32], though fortunately with guidance from

the theory as to how to stabilize such lesions. Importantly, this initial study of

mechanobiological stability in 2014 suggested that such stability was typically neutral,

namely, that adaptivity against perturbations is a natural response by such tissues. This

finding is consistent with the concept of adaptive homeostasis [94] as well as the possibility

that inflammation can over-ride homeostasis, resulting in some cases in new (possibly

adaptive) homeostatic states [95].

More recently, we reformulated the mechanobiological stability framework using a rate-

dependent CMM and found that neutral stability is indeed possible, but so too asymptotic

stability [96]. Again, increased material stiffness and increased rates of production promote
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such stability, but now with static and dynamic stabilities delineated similar to that in arterial

mechanics without G&R [12]. Importantly, particular to aneurysm research, we found that a

critical value of elastin degradation could induce an unbounded G&R response, consistent

with findings using our earlier approach [32].

5.5 Frontiers.

There remains a need for increased theoretical understanding of soft tissue G&R,

particularly with respect to constraints imposed by Clausius-Duhem type descriptions of the

entropy inequality, and continued development of improved computational methods,

particularly for coupled problems, both FSG and multiscale. With regard to vascular biology,

there remains a pressing need to understand vascular development and maturation, which

will require significantly more data but also conceptual advances. There have been a few

initial studies along these lines, using volumetric growth [97] and simplified CMMs [98],

but much remains unknown. Understanding vascular development is critical for advancing

many fields, including tissue engineering, designing interventions for congenital heart

defects, and understanding early onset and genetically triggered diseases, among others.

A general problem that demands increased study is the overall genotype-to-phenotype

relationship. As increasingly more information becomes available via advancing biological

assays, including bulk and single cell RNA sequencing, there will be increasing need to

model G&R from transcript to tissue. Related to this, most prior studies of vascular G&R

have focused on but a few of the key extracellular matrix constituents – elastic fibers,

collagen fibers, and perhaps bulk glycosaminoglycans. Yet, we know that the vascular wall

contains on the order of 100 different proteins, glycoproteins, and glycosaminoglycans and

increasing evidence reveals how mutations therein can have dramatic consequences on wall

composition, geometry, properties, and responses to altered loading. For example, mutations

in the gene that encodes the glycoprotein fibrillin-1 promote thoracic aneurysms; mutations

in the gene that encodes the protein collagen III promotes dissections. Similarly, mutations

in genes that encode cytokines such as TGFβ, or its receptors, lead to dramatic aortopathies;

mutations in genes that encode intracellular signaling molecules such as Smad3 result in

similar aortopathies. Mutations to the gene that encodes the nuclear envelop protein lamin-A

lead to rapid, unprecedented vascular aging. These and many, many examples like them

remind us that we must begin to include in our models the many different extracellular and

intracellular constituents that affect G&R, with due consideration to the role of matrix

homeostasis [99]. Only in this way will we truly understand many diseases, with hopes of

identifying new targeted methods of treatment, especially in the spirit of personalized

medicine.

6. CLOSURE

Can it really be twenty years after? Yes, and fortunately much has been learned and much

has been accomplished (Figure 4). Personally, I am particularly encouraged by our recent

CMM predictions that led to a 1.5 year confirmatory pre-clinical study and associated restart

of a clinical trial with promise to improve outcomes in children born with congenital heart

defects [78]. Indeed, a similar study of tissue engineered heart valves by a European group
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shows equal promise [100]. There is, therefore, considerable reason for optimism; we must

continue the work.

I focused herein on a single approach (CMM) and area of application (vascular) by one

group for two primary reasons: first, this focus allows a direct comparison of constitutive

equations that enabled diverse situations to be addressed within a single framework (Table 1)

and, second, it enabled a simpler historical perspective that I hope will be motivational to

those who seek to model the breadth of soft tissue G&R, particularly for non-vascular

tissues. In hindsight, it was interesting to realize that the constrained mixture theory was

initiated twenty years after R. Skalak’s seminal paper of 1981, and sobering that it is now

twenty years after our first submission (Figure 5). There are, of course, many other

applications of CMMs by others covering broader topics, including [82,85,86,101–121].

Moreover, there are other approaches for modeling G&R, some mixture-based [39,40,122–

124] but many based on the theory of finite volumetric growth [5] and extensions thereof.

Regarding the latter, the reader is referred to a few key reviews [125–131], but especially the

recent books by Goriely [132] and Taber [133].

In closing, although much has been accomplished, much remains to be done. In the near

term, there remains a need for continued study of the immuno-mechanical mechanisms by

which soft tissues grow and remodel and how to capture these mechanisms within

multiphysics (solid-fluid) and multiscale (molecular-cellular-tissue) models. There is a

continuing need for improved understanding of the theoretical foundations and limitations as

well as need for improved computational implementations. Finally, and most importantly,

there is a pressing need to address new frontiers, including the genotype-phenotype

connection, and to address more clinical scenarios, for it is only in this way that modeling

will truly have the impact that it should. The future is bright and one must now wonder what

will be achieved in another twenty years after.
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Figure 1.
Schema of finite deformations associated with growth and remodeling (G&R) of a soft tissue

in maturity using a constrained mixture model. Individual constituents α = 1,2, …, N are

assumed to be deposited within extant matrix at preferred deposition stretches Gα(τ) at

G&R time τ ∈ [0, s], each relative to individual evolving natural (stress-free) configurations

κn
α(τ). Thereafter, these constituents may deform further because they are constrained to

move with the tissue, the in vivo configuration of which evolves from κ(τ) at time τ to κ(s)

at time s. Note that the reference configuration κ(0) for the tissue need not be stress-free or

traction-free; indeed an in vivo configuration such as that near mean arterial pressure is often

convenient in vascular mechanics. Finally, it is the constituent-specific deformation

Fn τ
α s = F s F−1 τ Gα τ  that is most important because the associated constituent-specific

stored energy function depends on this deformation alone. Of course, at the time of

deposition, Fn τ
α τ ≡ Gα τ .
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Figure 2.
A. Schema of a mechanobiological response: a mechanical stimulus drives differential gene

expression, leading to different gene products that define the biological response. B. Typical

sigmoidal biological response to a mechanical stimulus, as, for example, production of

eNOS by endothelial cells in response to increased wall shear stress or production of

collagen by smooth muscle cells or fibroblasts in response to increased intramural stress.

Importantly, this nonlinear, saturating response can be approximated linearly for changes

about the homeostatic set-point, which is often sufficient if the biological response is fast

enough to prevent stresses from deviating too much from homeostatic.
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Figure 3.
Schema of negative feedback characteristic of mechanical homeostasis in blood vessels and

associated modeling via a constrained mixture model of N constituents. For illustrative

purposes, constituent N=1 is assumed to not degrade during the G&R period of interest, as,

for example elastic fibers under normal conditions in maturity. Importantly, the other

constituents are deposited at a rate modulated by gain Kα > 0 and they degrade at rate kα >

0, noting that deposition is at a homeostatic prestretch Gα >1 and particular orientation

defined by angle αα.
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Figure 4.
Chronological summary of implementations of the same constrained mixture model (CMM)

by one group to study vascular adaptations, diseases, and interventions. That one basic

theoretical framework, enriched with condition-specific constitutive relations for mass

production, removal, and constituent properties, can describe such diverse situations

provides some confidence in the general utility of the approach.
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Figure 5.
Simple timeline showing some key advances in modeling G&R, emphasizing in particular

the seminal paper of Skalak in 1981, the introduction of a general constrained mixture

theory twenty years after (submitted 2001, published 2002), and yet unimagined

opportunities (?) again twenty years thereafter. Notwithstanding the importance of the theory

of finite volumetric growth – formalized by Rodriguez and colleagues in 1994 and quickly

shown to be useful by Taber, Rachev, and others – consistent with the review herein this

timeline focuses primarily on key advances for the constrained mixture model (CMM),

including the first finite element implementations in 2005/2006, fluid-solid-growth modeling

first used in 2007 but advanced generally in 2009, the utility of such models in describing

tissue engineered constructs (introduced in 2009, advanced in 2014, shown to be useful for

scaffold design in 2015, and used to guide a clinical trial in 2020), the concept of

mechanobiological stability introduced in 2014 and extended in 2019, and finally the

computational efficiency engendered by the assumption of quasi-static mechanobiological

equilibria shown in 2020 as well as the importance of coupling across scales, including with

cell signaling models to appear in 2021. Note, too, some of the key reviews and books that

address broader approaches to G&R.
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Table 1.

The full (heredity integral based) constrained mixture theory requires three classes of constitutive relations for

each structurally significant constituent α = 1, 2, 3, …, N to capture the evolving composition and material

properties of a mature tissue for all G&R times τ ∈ [0, s]: constitutive-specific rates of mass density

production mα(τ) > 0, mass survival functions qα(s − τ) ∈ [0,1], and stored energy functions Wα Fn τ
α s > 0,

the latter of which include information on the deposition stretch and orientation. Although the basic

framework has persisted over the past 20 years, notation has evolved to increase clarity: for example, G&R

time t changed to time s, subscript or superscript h for homeostatic changed to o for original homeostatic (to

accommodate possible adaptive homeostasis), constituent index k changed to α, the rate parameter Kq
α

changed to kα, and dimensional rate-gain parameters Kg
α changed to non-dimensional gain parameters K j

α,

which can be subscripted to denote j = stress related or inflammation related. Of course, because these

functions are constitutive, they necessarily differ for different problems, depending on 2D versus 3D

formulations as well as, in some cases, on particular stresses of concern (constituent-specific versus tissue

level), the presence of blood clots, damage to or healing of the functional cells, and the presence of

inflammation. Listed here are a few of the key forms for the production and removal functions; the stored

energy functions tend to follow standard forms, as, for example, neoHooken or Fung exponential. To facilitate

comparisons here, some notations have been changed as appropriate for consistency with current conventions.

Year/Ref Production Functions Survival Functions

2005/2006
[13,26]

mα(τ) = ρ(τ)
ρ(0)m0

α(1 + Kg(σα(τ) − σo)) qα τ =

1 0 ≤ τ < t1

0.5 cos
π τ − t1
t2 − t1

+ 1 t1 ≤ τ ≤ t2

0 t2 < τ

--

General Form

        mα(τ) = m0
α f α(τ)

with

General Form

  qα s, τ = exp − τ
sk0

αgα t dt
with

2007 [42] f α(τ) = ρα(τ)
ρα(0)

(1 + Kσ
αΔσα + KC

α ΔC) gα t = 1 + ω < Tα t − Tc
α > 2

2009,2009
[14,103]

f α(τ) = 1 + Kσ
αΔσ + Kσ

αΔC gα(t) = 1 + (ΔTα(t))2

2012,2013
[28,29]

f α(τ) = ρα(τ)
ρα(0)

(1 + Kσ
αΔσα) gα(t) = 1 + ω(ΔTα(t))2

2014,2015
[73,76]

f α τ = 1 − e−τ 1 + Kσ
αΔσ + Kφ

αβτe−βτ
gα(t) = 1 (stress driven) or gα(t) = ω (inflammation)

2015,2017
[48,49]

f α τ = ρα τ

ρα 0
1 + Kσ

αΔσ − Kσ
αΔτw gα(t) = 1 + (ΔTα(t))2

2018,2020
[75,78]

f α τ = 1 − e−τ 1 + Kσ
αΔσ − Kσ

αΔτw + Kφ
αδβτβ − 1e−δτ gα t = 1 + kD

α
 (stress) or gα t = 1 + kD

φ

(inflam)

2019 [69]
f α τ = 1 + Kσ

αΔσ − Kσ
αΔτw + Kσ

αΔρφ, with

m0
α ρα τ kα τ

gα(t) = 1 + (Δσ)2
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Year/Ref Production Functions Survival Functions

2020 [70]

f α τ = 1 + ℱσ
α Δσ − ℱτw

α Δτw + ℱφ
α Δρφ , with

m0
α ρα τ kα τ

gα t = ℋα Δρφ 1 + Δσ 2

Note that ρ here represents a mass density having units of mass per reference or current volume (or area), depending on context, m0
α

 is a constant

basal production rate having units of mass per volume (or area, again reference or current) per time, and k0
α

 is a constant basal removal rate having

units of inverse time. Hence, fα and gα are nondimensional functions of time that vary spatially depending on that which they depend on – stress,
thrombus, inflammation, etc. Moreover, Δσ ≡ Δσ(τ) and Δτw ≡ Δτw(τ) are normalized differences in scalar measures (e.g., magnitude or first

invariant) of Cauchy stress from their homeostatic values, either intramural or wall shear, respectively, while ΔC ≡ ΔC(τ) is a difference in the ratio

of vasoconstrictors to vasodilators (including shear stress dependence) and Δρφ is a normalized measure of inflammation. Tα is a fiber tension.
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