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Summary
Objective: To identify and highlight research papers representing 
noteworthy developments in signals, sensors, and imaging 
informatics in 2020.
Method: A broad literature search was conducted on PubMed 
and Scopus databases. We combined Medical Subject Heading 
(MeSH) terms and keywords to construct particular queries for 
sensors, signals, and image informatics. We only considered pa-
pers that have been published in journals providing at least three 
articles in the query response. Section editors then independently 
reviewed the titles and abstracts of preselected papers assessed 
on a three-point Likert scale. Papers were rated from 1 (do not 
include) to 3 (should be included) for each topical area (sensors, 
signals, and imaging informatics) and those with an average 
score of 2 or above were subsequently read and assessed again 
by two of the three co-editors. Finally, the top 14 papers with the 
highest combined scores were considered based on consensus.
Results: The search for papers was executed in January 2021. 
After removing duplicates and conference proceedings, the 
query returned a set of 101, 193, and 529 papers for sensors, 
signals, and imaging informatics, respectively. We filtered 
out journals that had less than three papers in the query 
results, reducing the number of papers to 41, 117, and 333, 
respectively. From these, the co-editors identified 22 candidate 

Introduction
Sensors, signals, and imaging informatics 
(SSII) continues to be a rapidly growing 
research field. One could see three indepen-
dent parts, or at least two, if imaging and 
signal informatics are considered similar to 
a biomedical signal as one-dimensional and a 
medical image as a two- or more-dimensional 
stream. However, the methods applied here 

are similar. In contrast, the sensor’s part could 
be seen as more device-oriented. Picard & 
Wolf define “sensor informatics” as new tech-
nologies and applications for medical services 
incorporating wearable sensors, signal pro-
cessing, machine learning, and data mining 
techniques [1]. In our view, the technological 
development of a sensing device is not part 
of medical informatics but the integration of 
such devices in medical information systems 

papers with more than 2 Likert points on average, from which 
14 candidate best papers were nominated after intensive 
discussion. At least five external reviewers then rated the 
remaining papers. The four finalist papers were found using the 
composite rating of all external reviewers. These best papers 
were approved by consensus of the International Medical Infor-
matics Association (IMIA) Yearbook editorial board.
Conclusions. Sensors, signals, and imaging informatics is a 
dynamic field of intense research. The four best papers repre-
sent advanced approaches for combining, processing, model-
ing, and analyzing heterogeneous sensor and imaging data. 
The selected papers demonstrate the combination and fusion 
of multiple sensors and sensor networks using electrocardio-
gram (ECG), electroencephalogram (EEG), or photoplethys-
mogram (PPG) with advanced data processing, deep and 
machine learning techniques, and present image processing 
modalities beyond state-of-the-art that significantly support 
and further improve medical decision making.
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and their application in research, clinical 
trials, and medical care. Unobtrusive health 
monitoring in private spaces such as the car 
or the home is based on various sensors and 
is expeditiously growing in research and 
applications [1-3]. Witte et al. see “signal 
informatics” as an advanced integrative con-
cept in the framework of medical informatics 
[4]. Again, data integration is emphasized. 
In the medical field, semantical integration 
is particularly important. In a recent review, 
Cook defines “imaging informatics” via the 
imaging informaticist as a unique individual 
who sits at the intersection of clinical radiol-
ogy, data science, and information technology 
[5]. Imaging informatics, however, is the 
most common term of these three. In 2020, 
we observed three new reviews in this field 
[5-7]. Furthermore, the first standardized 
curriculum for imaging informatics fellow-
ships suggested by the Society for Computer 
Applications in Radiology (SCAR) in 2004 
[8] has been updated [9].

In this variety, we faced the daunting task 
of identifying notable research. Furthermore, 
thousands of research papers have applied 
deep learning approaches to well-documented 
SSII problems – mostly outperforming the 
classical state of the art. On the one hand, we 
faced a needle in the haystack problem given 
the large number of papers, but simultaneous-
ly, on the other, we felt as if we were sorting 
through genetically modified strawberries, 
where all looked alike. In summary, identi-
fying real novelty among papers in SSII is 
not easy if considering solely the title or the 
abstract. As van Ooijen, Nagaraj & Olthof 
[10] point out, SSII is more than ‘just’ deep 
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learning. As such, our objective was to catch 
the spectrum of work—both deep learning and 
other machine learning techniques—that best 
represent the developments in SSII in 2020. 

2   Paper Selection Process
The process of searching the literature for 
candidate best papers by the SSII section 
remained a challenging task, given the broad 
nature of the SSII category. This year, we 
overhauled the queries that were applied over 
the last years [11-13]. First, we developed 
similar queries to search PubMed and Scopus. 
We focused on research articles in the English 
language and excluded all others. We did not 

include review papers. Then, we built the que-
ries separately for sensors, signals, and imag-
es. Each of the six queries was built from two 
blocks. For sensors, the first block captures 
all relevant terms for the sensing device, and 
the second term lists keywords for biomedical 
signals and vital signs. For signals and images, 
we used modality names (e.g., computed to-
mography, magnetic resonance angiography) 
and processing techniques. In addition, we 
significantly decreased the number of results 
for the imaging query by applying the MeSH 
term “medical informatics”. The queries are 
listed completely in Appendix 2.

In mid-January 2021, we executed the 
final query. After removing duplicates and 
conference proceedings, the query returned 

a set of 101, 193 and 529 papers for sensors, 
signals, and imaging informatics, respective-
ly (Table 1). Given these numbers, we sought 
to further reduce the number of papers 
needed to be reviewed. During the initial 
review of abstracts, we noted that several 
excluded papers were published in journals 
that were only tangentially related to the 
topic. We started exploring whether setting a 
threshold of the minimum number of papers 
in the results per journal would help. Figure 
1 illustrates the effect of setting different 
thresholds and the number of papers remain-
ing in the imaging informatics set. If we 
set the threshold to be at least three papers, 
333 papers remained. Furthermore, we also 
discussed focusing on official International 
Medical Informatics Association (IMIA) 
journals, impact factors, or the set of journals 
that are linked to “medical informatics” in 
MEDLINE or Index Medicus. However, as 
new open access journals are broadly estab-
lishing themselves with broad acceptance 
by scientists, we kept on the contribution 
model. Next year, we plan to normalize the 
threshold by the annual number of papers 
that were published in the journal.

Table 1   Number of articles recovered from the databases

Topic Pubmed Scopus Duplicates + conference Merged unique Journal selection

Sensor

Signal

Imaging

97

200

182

9

30

397

5

37

50

101

193

529

41

117

333

Fig. 1   Number of papers remaining according to the number of papers published in the particular journal.
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We reviewed the titles and abstracts and 
independently, ranked them on a three-point 
Likert scale. Papers were rated from 1 (do 
not include) to 3 (should be included) for 
each topical area (sensors, signals, and 
imaging informatics). Each paper was as-
sessed by two of the section co-editors. In 
doing so, we identified 22 candidate papers 
with more than 2 Likert points on aver-
age. These papers were read entirely and 
rescored by all co-editors. After intensive 
discussion, we nominated 14 candidate best 
papers. At least five external reviewers then 
rated the papers. The four finalist papers 
were were identified based on the composite 
rating of all external reviewers. These best 
papers were approved by consensus of the 
IMIA Yearbook editorial board.

3   Emerging Trends and 
New Directions
This year’s literature yielded a number of 
interesting developments in the field of SSII. 
We highlight three emerging trends, partic-
ularly in light of the COVID-19 pandemic.

3.1   Extracting Additional 
Information from Existing Data 
Sources
One trend has been the use of machine 
learning to extract additional physiological 
information from existing measurements. 
For example, measurements from a pho-
toplethysmogram (PPG), which measures 
blood volume changes using a pulse oxim-
eter, can potentially provide systolic and 
diastolic blood pressure measurements. Hsu 
et al. [14] showed using a fully connected 
deep neural network trained on the MIMIC 
(Multi-parameter Intelligent Monitoring 
for Intensive Care) II cohort achieves low 
mean absolute error and root mean squared 
error when estimating blood pressure from 
PPG compared to reference measurements 
using a cuff. Miao et al. [15] proposed 
continuous blood pressure measurement 
using electrocardiogram (ECG) signals us-
ing a fusion of a residual network and long 

short-term memory model. Their methods 
were trained and evaluated using data from 
the MIMIC III cohort as well as patients 
from their institution. Another interesting 
application is the interpretation of ECG 
signals to predict hypoglycemic events. 
Using a commercially available wearable 
ECG monitor, Porumb et al. [16] demon-
strated one approach using a combined 
convolutional and recurrent neural network. 
The outbreak of COVID-19 reinforced the 
utility and importance of using data from 
wireless sensors and consumer wearables to 
track infections. Wearable health monitors 
such as PPGs have played an important role 
in providing markers of respiratory health 
(cough frequency/intensity, respiratory 
rate/effort). Novel sensing materials and 
fabrication techniques are yielding ways 
to unobtrusively monitor symptoms, record 
lung sound, and measure the respiratory 
rate. Ding et al. [17] provide a review of 
these developments in greater depth, while 
Wang et al. analyze unobtrusive health 
monitoring in vehicles [2] and homes [3].

3.2   Providing Access to Larger 
Datasets for Algorithm Development 
Advances in SSII have also been driven by 
the availability of large, diverse, publicly 
available patient data. MIMIC [18] remains 
an important resource for developing and 
testing algorithms on signals and sensors 
data collected in an intensive care en-
vironment. The UK Biobank is another 
rich open-access resource that collected 
multi-modal imaging data on a subset of 
100,000 participants [19]. The pandemic 
has also spurred the establishment of new 
resources, focusing on COVID-related 
diagnosis and treatment. In the Unit-
ed States, the national COVID Cohort 
Collaborative is building a national data 
resource to accelerate the development of 
therapeutics [20]. Informatics challenges 
related to indexing, security, standardiza-
tion, data provenance, and linked clinical 
outcomes will need to be addressed. The 
RSNA International COVID-19 Open 
Radiology Database is another example 
of annotated and de-identified chest com-
puted tomography (CT) and radiography 

data on COVID-19-positive patients [21]. 
Complementing efforts to collect larger re-
al-world patient datasets and techniques for 
introducing reasonable simulated data to 
improve model training are also examined. 
Augmentation is being pursued to generate 
additional synthetic examples. Shi et al. 
[22] proposed a knowledge-guided adver-
sarial augmentation approach to generate 
additional training exams for training a 
model for classifying thyroid ultrasound as 
benign or malignant. Leveraging standard-
ized terms describing nodules extracted 
from radiology reports, the authors showed 
that their knowledge-guided auxiliary 
classifier generative adversarial network 
outperforms other deep learning-based 
comparison methods. 

3.3   Ensuring Reliable and 
Reproducible Results 
Despite the large numbers of Artif icial 
Intelligence/Machine Learning (AI/ML) 
models being published, the translation of 
these works to clinical practice is slow. One 
hurdle is the differences between charac-
teristics of the target population relative 
to the population that the models were 
trained on. Fu et al. investigated the impact 
of differences in dose and reconstruction 
kernel on AI-based detection of simulated 
pulmonary nodules in chest phantoms 
scanned using CT [23]. The authors found 
that while differences in dose did not affect 
the volume measurements using the four 
evaluated AI algorithms, the kernel had a 
significant effect. Moreover, some models 
were more adversely impacted than others, 
but transparency regarding model training 
(e.g., population characteristics used for 
training) is generally lacking. With the 
rapid pace of research into COVID-19, a 
well-documented concern has been that 
most published models are poorly reported 
and at high risk of bias [24]. Similarly, in 
signals and sensors research, most research 
studies are based on data from a single 
institution, which raises concerns about 
bias, and many studies do not report perfor-
mance on an external test cohort [25]. We 
anticipate that as the field moves towards 
clinical translation, the requirements for 
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standardized reporting of AI/ML studies 
and characterization of model generaliza-
tion in different target populations will 
become increasingly important.

4   Summary and Conclusion
In summary, SSII remains a rapidly growing 
field that increasingly combines a broad 
range of available imaging and sensor 
technologies with a significantly rising 
number of innovative machine learning and 
AI-based approaches. The main emerging 
trends can be traced back to the extraction 
of new or additional information from SSII 
applications by providing access to larger 
data sources and repositories, which are 
urgently needed for the development and 
validation of new image and signal process-
ing tools. Translating methods into clinical 
application remains a challenge as new 
algorithms and tools need to demonstrate 
their clinical validity by proving scientific 
validity, analytical validity, and clinical per-
formance, in particular when approaching 
regulatory approval as software as medical 
device. This year, we also optimized the 
process of searching the literature for can-
didate best papers, which – in our opinion 
– led to a further increase in the quality 
of selected papers. This is, of course, an 
ongoing process and we strive to improve 
it year on year. Last but not least, 2020 was 
mainly shaped by the light of the COVID-19 
pandemic. Numerous innovations in SSII 
in the f ight against the pandemic have 
already contributed to improved patient 
management in this globally unique and 
challenging situation.
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Appendix 1: Content Summa-
ries of Selected Best Papers 
for the 2021 IMIA Yearbook, 
Section Sensors, Signals, and 
Imaging Informatics (CB)

Gemein LAW, Schirrmeister RT, Chrabąszcz 
P, Wilson D, Boedecker J, Schulze-Bonhage 
A, Hutter F, Ball T

Machine-learning-based diagnostics of EEG 
pathology
Neuroimage 2020 Oct 15;220:117021

The analysis of clinical electroencepha-
lograms (EEGs) is a time-consuming and 
demanding process and requires years of 
training. The development of algorithms 
for automatic EEG diagnosis, such as 
machine learning (ML) methods, could 
be a tremendous benefit to clinicians in 
analyzing EEGs. In this work, end-to-end 
decoding using deep neural networks was 
compared with feature-based decoding us-
ing a large set of features. Approximately 
3,000 recordings from the Temple Univer-
sity Hospital EEG Corpus (TUEG) study 
were used, representing the largest publicly 
available collection of EEG recordings 
to date. For feature-based pathology 
decoding, Random Forest (RF), Support 
Vector Machine (SVM), Riemannian 
geometry (RG), and Auto-Skill Classifier 
(ASC) were used, while three types of 
convolutional neural networks (CNN) 
were applied for end-to-end pathology 
decoding: the 4-layer ConvNet architecture 
Braindecode Deep4 ConvNet (BD-Deep4), 
Braincode (BD) and TCN. The main result 
of this study was that the EEG pathology 
decoding accuracy is in a narrow range of 
81-86%, also compared to a wide range 
of analysis strategies, network archetypes, 
network architects, feature-based classi-
fiers and ensembles, and datasets. Based 
on the feature visualizations, features 
extracted in the theta and delta regions 
of temporal electrode positions were con-
sidered informative. Feature correlation 
analysis showed strong correlations of 
features extracted at different electrode 

positions. Besides the fact that there is no 
statistical evidence that the deep neural 
networks studied perform better than the 
feature-based approach, this work presents 
that a somewhat elaborate feature-based 
approach can be used to achieve similar de-
coding results as deep end-to-end methods. 
The authors recommend decoding specific 
labels to avoid the consequences of label 
noise in decoding EEG pathology. This 
work provides a remarkable and objective 
comparison between deep learning and 
feature-based methods based on numerous 
experiments, including cross-validation, 
bootstrapping, and input signal perturba-
tion strategies.

Karimi D, Dou H, Warfield SK, Gholipour A

Deep learning with noisy labels: Exploring 
techniques and remedies in medical image 
analysis

Med Image Anal 2020 Oct;65:101759
Label noise is unavoidable in many 
medical image datasets. It can be caused 
by limited attention or expertise of the 
human annotator, the subjective nature 
of labeling, or errors in computerized 
labeling systems. This is especially con-
cerning for medical applications where 
datasets are typically small, labeling 
requires domain expertise and suffers 
from high inter- and intra-observer vari-
ability, and erroneous predictions may 
influence decisions directly impacting 
human health. The authors reviewed the 
state-of-the-art label noise handling in 
deep learning and investigated how these 
methods were applied to medical image 
analysis. Their key recommendations to 
account for label noise are: label cleaning 
and pre-processing, adaptions on network 
architectures, the use of label-noise-robust 
loss functions, re-weighting data, label 
consistency checks, and the choice of 
training procedures. They underpin their 
findings with experiments on three med-
ical datasets where label noise was intro-
duced by the systematic error of a human 
annotator, the inter-observer variability, 
or the noise generated from an algorithm. 
Their results suggest a careful curation of 
data for training deep learning algorithms 

for medical image analysis. Furthermore, 
the authors recommend integrating label 
noise analyses in development processes 
for robust deep learning models.

Langner T, Strand R, Ahlström H, Kullberg J

Large-scale biometry with interpretable 
neural network regression on UK Biobank 
body MRI

Sci Rep 2020 Oct 20;10(1):17752

This work presents a novel neural network 
approach for image-based regression to 
infer 64 biological metrics (beyond age) 
from neck-to-knee body MRIs with rel-
evance for cardiovascular and metabolic 
diseases. Image data were collected from 
the UK Biobank study, linked to exten-
sive metadata comprising non-imaging 
properties such as measurements of body 
composition by dual-energy X-ray absorp-
tiometry (DXA) imaging, patient-related 
parameters, i.e., age, sex, height and 
weight, and additional biomarkers for 
cardiac health including pulse rate, accu-
mulated fat in the liver and grip strength. 
The authors adapted and optimized a 
previously presented regression pipeline 
for age estimation using a ResNet50 
architecture, not requiring any manual 
intervention or direct access to reference 
segmentations. Based on 31,172 magnetic 
resonance imaging (MRI) scans, the neural 
network was trained and cross-validated 
on simplified, two-dimensional represen-
tations of the MR images and evaluated by 
generated predictions and saliency maps 
for all examined properties. The work is 
noteworthy for its extensive validation of 
both the whole framework and predictions, 
demonstrating a robust performance and 
outperforming linear regression baseline 
in all applied cases. Saliency analysis 
showed that the developed neural network 
accurately targets specific body regions, 
organs, and limbs of interest. The network 
can emulate different modalities, including 
DXA or atlas-based MRI segmentation, 
and on average, correctly targets specific 
structures on either side of the body. The 
authors impressively demonstrated how 
convolutional neural network regression 
could effectively be applied in MRI and 



156

IMIA Yearbook of Medical Informatics 2021

Hsu et al.

offer a f irst valuable, fully automated 
approach to measure a wide range of 
important biological metrics from single 
neck-to-knee body MRIs.

Saito H, Aoki T, Aoyama K, Kato Y, Tsuboi 
A, Yamada A, Fujishiro M, Oka S, Ishihara 
S, Matsuda T, Nakahori M, Tanaka S, Koike 
K, Tada T

Automatic detection and classification 
of protruding lesions in wireless capsule 
endoscopy images based on a deep 
convolutional neural network
Gastrointest Endosc 2020 Jul;92(1):144-
151.e1
Wireless capsule endoscopy (WCE) is an 
established examination method for the di-
agnosis of small-bowel diseases. Automated 
detection and classification of protruding 

lesions of various types from WCE images is 
still challenging because it takes 1 to 2 hours 
on average for a correct diagnosis by a phy-
sician. In this work, a deep neural network 
architecture, termed single shot multibox 
detector (SSD) based on a deep convolution-
al neural network (CNN) structure with 16 
or more layers, was trained on 30,584 WCE 
images from 292 patients collected from 
multiple centers and tested on an indepen-
dent set of 17,507 images from 93 patients, 
including 7507 images of protruding lesions 
from 73 patients. All regions showing pro-
truding lesions were manually annotated 
by six independent expert endoscopists, 
representing the ground truth for training 
the network. The CNN performance was 
evaluated by a ROC analysis, revealing an 
AUC of 0.911, a sensitivity of 90.7%, and 
a specificity of 79.8% at the optimal cut-off 
value of 0.317 for the probability score. In a 

subanalysis of the categories of protruding 
lesions, the sensitivities appeared between 
77.0% and 95.8% for the detection of pol-
yps, nodules, epithelial tumors, submucosal 
tumors, and venous structures, respectively. 
In individual patient analyses, the detection 
rate of protruding lesions was 98.6%. The 
rates of concordance of the labeling by the 
CNN and three expert endoscopists were 
between 42% and 83% for the different 
morphological structures. A false posi-
tive/negative error analysis was reported, 
indicating some limitations of the current 
approach in terms of an imbalanced number 
of cases, color diversity, and variation of 
structures in the images. The work is no-
table for its excellent clinical applicability 
using a new computer-aided system with 
good diagnostic performance to detect 
protruding lesions in small-bowel capsule 
endoscopy.
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Notable Papers and New Directions in Sensors, Signals, and Imaging Informatics 

Appendix 2: Queries Used for Candidate Paper Retrieval
The queries used to retrieve literature from PubMed and Scopus differ slightly, as the databases do not use the same data fields and query 
syntax. A separate query was performed for sensors, signals, and imaging informatics.

2.1   Sensors
2.1.1   PubMed Query
((“2020/01/01”[DP] : “2020/12/31”[DP])AND Journal Article [pt] AND English[lang] AND hasabstract[text] NOT Bibliography[pt] NOT 
Comment[pt] NOT Editorial[pt] NOT Letter[pt] NOT News[pt] NOT Review[pt] NOT Case Reports[pt] NOT Published Erratum[pt] NOT 
Historical Article[pt] NOT legislation[pt]NOT “clinical trial”[pt]NOT “evaluation studies”[pt]NOT “technical report”[pt]NOT “Scientific 
Integrity Review”[pt]NOT “Systematic Review”[pt]NOT “Retracted Publication”[pt]))AND( ( “sensor”[TI] OR “sensors”[TI] OR “sens-
ing”[TI] ) AND ( “vital sign”[TI] OR “vital signs”[TI] OR “biological signal”[TI] OR “biological signals”[TI] OR “biological parameter”[TI] 
OR “biological parameters”[TI] OR “physiological parameter”[TI] OR “physiological parameters”[TI] OR “physiological signal”[TI] OR 
“physiological signals”[TI] OR “blood pressure”[TI] OR “temperature”[TI] OR “heart rate”[TI] OR “heartbeat”[TI] OR “heartbeats”[TI] OR 
“pulse rate”[TI] OR “respiration rate”[TI] OR “respiratory rate”[TI] OR “breathing rate”[TI] OR “ECG”[TI] OR “electrocardiography”[TI] 
OR “electrocardiogram”[TI] OR “menstrual cycle”[TI] OR “oxygen”[TI] OR “oximetry”[TI] OR “glucose”[TI] OR “end-tidal”[TI] OR 
“emg”[TI] OR “electromyography”[TI] OR “electromyogram”[TI] OR “ppg”[TI] OR “photoplethysmography”[TI] OR “photoplethysmo-
gram”[TI] OR “pcg”[TI] OR “phonocardiography”[TI] OR “phonocardiogram”[TI] OR “bcg”[TI] OR “ballistocardiography”[TI] OR “bal-
listocardiogram”[TI] OR “scg”[TI] OR “seismocardiography”[TI] OR “seismocardiogram”[TI] OR “eog”[TI] OR “electrooculography”[TI] 
OR “electrooculogram”[TI] OR “eda”[TI] OR “electrodermal activity”[TI] OR “GSR”[TI] OR “Galvanic skin response” [TI] OR “eeg”[TI] 
OR “electroencephalogram”[TI] OR “bci”[TI] OR “brain computer interface”[TI] ) NOT ( “review”[TI] OR “survey”[TI] ))

2.1.2   Scopus Query
TITLE((“sensor” OR “sensors” OR “sensing”) AND (“vital sign” OR “vital signs” OR “biological signal” OR “biological signals” OR “bi-
ological parameter” OR “biological parameters” OR “physiological parameter” OR “physiological parameters” OR “physiological signal” 
OR “physiological signals” OR “blood pressure” OR “temperature” OR “heart rate” OR “heartbeat” OR “heartbeats” OR “pulse rate” OR 
“respiration rate” OR “respiratory rate” OR “breathing rate” OR “ECG” OR “electrocardiography” OR “electrocardiogram” OR “menstrual 
cycle” OR “oxygen” OR “oximetry” OR “glucose” OR “end-tidal” OR “emg” OR “electromyography” OR “electromyogram” OR “ppg” OR 
“photoplethysmography” OR “photoplethysmogram” OR “pcg” OR “phonocardiography” OR “phonocardiogram” OR “bcg” OR “ballistocar-
diography” OR “ballistocardiogram” OR “scg” OR “seismocardiography” OR “seismocardiogram” OR “eog” OR “electrooculography” OR 
“electrooculogram” OR “eda” OR “electrodermal activity” OR “GSR” OR “Galvanic skin response” OR “eeg” OR “electroencephalogram” 
OR “bci” OR “brain computer interface” ))AND PUBDATETXT( “January 2020” OR “February 2020” OR “March 2020” OR “April 2020” 
OR “May 2020” OR “June 2020” OR “July 2020” OR “August 2020” OR “September 2020” OR “October 2020” OR “November 2020” OR 
“December 2020”) AND LANGUAGE(english) AND SUBJAREA(MEDI) AND SRCTYPE(j) AND DOCTYPE(ar) AND DOCTYPE(re)

2.2   Signals
2.2.1 PubMed Query
((“2020/01/01”[DP] : “2020/12/31”[DP]) AND Journal Article [pt] AND English[lang] AND hasabstract[text] NOT Bibliography[pt] NOT 
Comment[pt] NOT Editorial[pt] NOT Letter[pt] NOT News[pt] NOT Review[pt] NOT Case Reports[pt] NOT Published Erratum[pt] NOT 
Historical Article[pt] NOT legislation[pt] NOT “clinical trial”[pt] NOT “evaluation studies”[pt] NOT “technical report”[pt] NOT “Scientific 
Integrity Review”[pt] NOT “Systematic Review”[pt] NOT “Retracted Publication”[pt] ) AND (( “biosignal”[TI] OR “biomedical signal”[TI] 
OR “physiological signal”[TI] OR “ecg”[TI] OR “electrocardiography”[TI] OR “electrocardiogram”[TI] OR “emg”[TI] OR “electromyog-
raphy”[TI] OR “electromyogram”[TI] OR “ppg”[TI] OR “photoplethysmography”[TI] OR “photoplethysmogram”[TI] OR “pcg”[TI] OR 
“phonocardiography”[TI] OR “phonocardiogram”[TI] OR “bcg”[TI] OR “ballistocardiography”[TI] OR “ballistocardiogram”[TI] OR “scg”[TI] 
OR “seismocardiography”[TI] OR “seismocardiogram”[TI] OR “eog”[TI] OR “electrooculography”[TI] OR “electrooculogram”[TI] OR 
“eda”[TI] OR “electrodermal activity”[TI] OR “Respiration”[TI] OR “Blood Pressure”[TI] OR “eeg”[TI] OR “electroencephalogram”[TI] 
OR “bci”[TI] OR “brain computer interface”[TI] ) AND ( “processing”[TI] OR “analytics”[TI] OR “analysis”[TI] OR “analyse”[TI] OR 
“analyze”[TI] OR “analysing”[TI] OR “analyzing”[TI] OR “enhancement”[TI] OR “enhancements”[TI] OR “segmentation”[TI] OR “feature 
extraction”[TI] OR “feature selection”[TI] OR “classification”[TI] OR “clustering”[TI] OR “measurement”[TI] OR “quantification”[TI] OR 
“registration”[TI] OR “recognition”[TI] OR “reconstruction”[TI] OR “interpretation”[TI] OR “retrieval”[TI] “augmentation”[TI] OR “data 
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mining”[TI] OR “computer-assisted”[TI] OR “computer-aided”[TI] OR “artificial intelligence”[TI] OR “machine learning”[TI] OR “deep 
learning”[TI] OR “neural network”[TI] OR “computer vision”[TI] OR “autoencoder”[TI] OR “auto-encoder”[TI] OR “Botzmann”[TI] OR 
“U-net”[TI] OR “support vector machine”[TI] OR “SVM”[TI] OR “random forest”[TI] ))

2.2.2   Scopus Query
TITLE(( “signal” OR “biosignal” OR “biomedical signal” OR “physiological signal” OR “ecg” OR “electrocardiography” OR “electrocar-
diogram” OR “emg” OR “electromyography” OR “electromyogram” OR “ppg” OR “photoplethysmography” OR “photoplethysmogram” 
OR “pcg” OR “phonocardiography” OR “phonocardiogram” OR “bcg” OR “ballistocardiography” OR “ballistocardiogram” OR “scg” OR 
“seismocardiography” OR “seismocardiogram” OR “eog” OR “electrooculography” OR “electrooculogram” OR “eda” OR “electrodermal 
activity” OR “Respiration” OR “Blood Pressure” OR “eeg” OR “electroencephalogram” OR “bci” OR “brain computer interface” ) AND 
( “processing” OR “analytics” OR “analysis” OR “analyse” OR “analyze” OR “analysing” OR “analyzing” OR “enhancement” OR “en-
hancements” OR “segmentation” OR “feature extraction” OR “feature selection” OR “classification” OR “clustering” OR “measurement” 
OR “quantification” OR “registration” OR “recognition” OR “reconstruction” OR “interpretation” OR “retrieval” “augmentation” OR “data 
mining” OR “computer-assisted” OR “computer-aided” OR “artificial intelligence” OR “machine learning” OR “deep learning” OR “neural 
network” OR “computer vision” OR “autoencoder” OR “auto-encoder” OR “Botzmann” OR “U-net” OR “support vector machine” OR 
“SVM” OR “random forest” ) ) AND PUBDATETXT( “January 2020” OR “February 2020” OR “March 2020” OR “April 2020” OR “May 
2020” OR “June 2020” OR “July 2020” OR “August 2020” OR “September 2020” OR “October 2020” OR “November 2020” OR “Decem-
ber 2020” ) AND LANGUAGE(english) AND SUBJAREA(MEDI) AND SRCTYPE(j) AND DOCTYPE(ar) AND NOT DOCTYPE(re)

2.3   Imaging Informatics
2.3.1   PubMed Query
((“2020/01/01”[DP] : “2020/12/31”[DP]) AND Journal Article [pt] AND English[lang] AND hasabstract[text] NOT Bibliography[pt] NOT 
Comment[pt] NOT Editorial[pt] NOT Letter[pt] NOT News[pt] NOT Review[pt] NOT Case Reports[pt] NOT Published Erratum[pt] NOT 
Historical Article[pt] NOT legislation[pt] NOT “clinical trial”[pt] NOT “evaluation studies”[pt] NOT “technical report”[pt] NOT “Scientific 
Integrity Review”[pt] NOT “Systematic Review”[pt] NOT “Retracted Publication”[pt]) AND(( “image”[TI] OR “imaging”[TI] OR “video”[-
TI] OR “X-ray”[TI] OR “X ray”[TI] OR “radiography”[TI] OR “orthopantomography”[TI] OR “fluoroscopy”[TI] OR “angiography”[TI] 
OR “tomography”[TI] OR “CT”[TI] OR “magnetic resonance”[TI] OR “MRI”[TI] OR “echocardiography”[TI] OR “sonography”[TI] OR 
“ultrasound”[TI] OR “endoscopy”[TI] OR “arthroscopy”[TI] OR “bronchoscopy”[TI] OR “colonoscopy”[TI] OR “cystoscopy”[TI] OR 
“laparoscopy”[TI] OR “nephroscopy”[TI] OR “laryngoscopy” [TI] OR “funduscopy”[TI] OR “thermography”[TI] OR “photography”[TI] 
OR “arthroscopy”[TI] OR “microscopy”[TI] ) AND ( “processing”[TI] OR “analytics”[TI] OR “analysis”[TI] OR “analyse”[TI] OR “an-
alyze”[TI] OR “analysing”[TI] OR “analyzing”[TI] OR “enhancement”[TI] OR “enhancements”[TI] OR “segmentation”[TI] OR “feature 
extraction”[TI] OR “feature selection”[TI] OR “classification”[TI] OR “clustering”[TI] OR “measurement”[TI] OR “quantification”[TI] OR 
“registration”[TI] OR “recognition”[TI] OR “reconstruction”[TI] OR “interpretation”[TI] OR “retrieval”[TI] “augmentation”[TI] OR “data 
mining”[TI] OR “computer-assisted”[TI] OR “computer-aided”[TI] OR “artificial intelligence”[TI] OR “machine learning”[TI] OR “deep 
learning”[TI] OR “neural network”[TI] OR “computer vision”[TI] OR “autoencoder”[TI] OR “auto-encoder”[TI] OR “Botzmann”[TI] OR 
“U-net”[TI] OR “support vector machine”[TI] OR “SVM”[TI] OR “r ANDom forest”[TI] )) AND (“medical informatics”[MH])

2.3.2   Scopus Query
TITLE( ( “image” OR “imaging” OR “video” OR “X-ray” OR “X ray” OR “radiography” OR “orthopantomography” OR “fluoroscopy” OR 
“angiography” OR “tomography” OR “CT” OR “magnetic resonance” OR “MRI” OR “echocardiography” OR “sonography” OR “ultra-
sound” OR “endoscopy” OR “arthroscopy” OR “bronchoscopy” OR “colonoscopy” OR “cystoscopy” OR “laparoscopy” OR “nephroscopy” 
OR “laryngoscopy” OR “funduscopy” OR “thermography” OR “photography” OR “arthroscopy” OR “microscopy” ) AND ( “processing” 
OR “analytics” OR “analysis” OR “analyse” OR “analyze” OR “analysing” OR “analyzing” OR “enhancement” OR “enhancements” OR 
“segmentation” OR “feature extraction” OR “feature selection” OR “classification” OR “clustering” OR “measurement” OR “quantifica-
tion” OR “registration” OR “recognition” OR “reconstruction” OR “interpretation” OR “retrieval” “augmentation” OR “data mining” OR 
“computer-assisted” OR “computer-aided” OR “artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network” 
OR “computer vision” OR “autoencoder” OR “auto-encoder” OR “Botzmann” OR “U-net” OR “support vector machine” OR “SVM” OR 
“random forest” ) ) AND PUBDATETXT( “January 2020” OR “February 2020” OR “March 2020” OR “April 2020” OR “May 2020” OR 
“June 2020” OR “July 2020” OR “August 2020” OR “September 2020” OR “October 2020” OR “November 2020” OR “December 2020” 
) AND LANGUAGE(english) AND SUBJAREA(MEDI) AND SRCTYPE(j) AND DOCTYPE(ar) AND NOT DOCTYPE(re)


