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Summary
Objective: The current observational research literature shows 
extensive publication bias and contradiction. The Observational 
Health Data Sciences and Informatics (OHDSI) initiative seeks to 
improve research reproducibility through open science. 
Methods: OHDSI has created an international federated data 
source of electronic health records and administrative claims that 
covers nearly 10% of the world’s population. Using a common 
data model with a practical schema and extensive vocabulary 
mappings, data from around the world follow the identical for-
mat. OHDSI’s research methods emphasize reproducibility, with a 
large-scale approach to addressing confounding using propensity 
score adjustment with extensive diagnostics; negative and 
positive control hypotheses to test for residual systematic error; a 
variety of data sources to assess consistency and generalizability; 
a completely open approach including protocol, software, models, 
parameters, and raw results so that studies can be externally 
verified; and the study of many hypotheses in parallel so that the 

1   Introduction
The Observational Health Data Sciences 
and Informatics (OHDSI) initiative [1] is a 
multi-stakeholder, interdisciplinary, inter-
national collaborative whose mission is to 
improve health by empowering a community 
to collaboratively generate the evidence 
that promotes better health decisions and 
better care. With a coordinating center at 
Columbia University, OHDSI has over 300 
registered, voluntary collaborators from 30 
countries and six continents and over 3,000 

the literature or other knowledge bases. The 
need for large populations comes from the low 
rate of important outcomes. Given a specific 
indication, treatment, population subgroup, 
and side effect, a database with millions of 
persons may have only a handful of events.

Furthermore, the literature is replete 
with contradictions. For example, two 
groups studied the association of oral 
bisphosphonates with esophageal cancer 
using the same observational database and 
published in two different top journals a 
month apart; they came to different con-
clusions on whether or not there was an 
effect [2, 3]. OHDSI took a deep dive on 
the observational study literature, parsing 
almost 30,000 observational research re-
sults [4]. The exploration found that 85% 
of exposure-outcome pairs were positive at 
standard levels of statistical significance, 
pointing to severe publication bias that was 
not explainable even if researchers were 
perfect at predicting which hypotheses 
would be positive; the drop at p=0.05 was 
too steep (see Figure 1, and see the original 
publication for methods details [4]). OHDSI 
also looked at the over-optimism of p-values 
and confidence intervals [5]. Replicating 
four published studies and using 50 negative 
control hypotheses, this examination found 
that “95% confidence intervals” generated 
by using the studies’ methods covered only 
30%, 47%, 60%, and 88% of true values. The 
consequence of both over-calling positive 
studies and hiding negative studies is con-

operating characteristics of the methods can be assessed.
Results: OHDSI has already produced findings in areas like 
hypertension treatment that are being incorporated into practice, 
and it has produced rigorous studies of COVID-19 that have aid-
ed government agencies in their treatment decisions, that have 
characterized the disease extensively, that have estimated the 
comparative effects of treatments, and that the predict likelihood 
of advancing to serious complications.
Conclusions: OHDSI practices open science and incorporates 
a series of methods to address reproducibility. It has produced 
important results in several areas, including hypertension therapy 
and COVID-19 research.
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participants on its open fora. Participants 
include experts in informatics, statistics, 
epidemiology, and clinical sciences with 
roles in academia, industry, and government. 
Its federated database holds records on about 
600 million unique patients in over 100 data-
bases. At the current rate, OHDSI will soon 
be at 10% of the world population.

The need for such an initiative comes 
from several sources. Only a tiny fraction of 
all possible questions that a clinician could 
ask about the benefits and risks of drugs and 
other interventions have been answered in 
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flicting, unreliable evidence. The publication 
process effectively becomes a data-dredging 
machine, resulting in the literature represent-
ing a biased evidence base with no comment 
on most hypotheses and the wrong answer 
on many others. Evidence becomes subject 
to comedian Woody Allen’s famous quip, 
“Boy, the food at this place is really terrible”; 
“Yeah, I know; and such small portions.” 
Such limitations lead editors to force authors 
to sign each paper with the caveat that, “since 
it is only observational research, the evidence 
cannot be used for causal assessment.”

OHDSI seeks to improve the current state 
with an open-science effort in observational 
research. All aspects of every study other 
than access to patient-level data are open to 
the public. Software is open source, work-
flows are standardized and transparent, and 
analytic parameters are derived systemati-
cally and are published. Every aspect of a 
study is made available.

2   Observational Research 
Infrastructure
OHDSI achieves its large data source by using 
a federated (distributed) data model, in which 
each participating organization converts 
its own data to the OHDSI Observational 
Medical Outcomes Partnership (OMOP) 
Common Data Model [6]. Research questions 
are translated into analytic code and are dis-
tributed over GitHub and run locally, and the 
aggregate summary results—not patient-level 
data—are collated centrally (see Figure 2). 
Researchers collaborate to interpret and pub-
lish the findings. The OMOP Common Data 
Model (CDM) is a deep information model, 
laid out to optimize analysis of extremely 
large databases, organized with a relatively 
flat structure such that a novice researcher 
can comprehend the model quickly, and re-
taining a flexible table to accommodate new 

data that are not yet explicitly modeled. The 
OMOP CDM is maintained by its own work-
group whose deliberations are open to the 
public. OHDSI maintains a comprehensive 
vocabulary that includes over 150 source 
vocabularies from around the world with 
over nine million concepts that are mapped 
to a small set of standard vocabularies with 
which data are stored in the databases. 
Some examples include the Systematized 
Nomenclature of Medicine Clinical Terms 
(SNOMED CT) for conditions (diagnoses), 
Logical Observation Identifiers Names & 
Codes (LOINC) for laboratory tests, and 
RxNorm for prescription drugs.

Agreeing on a database schema and a vo-
cabulary are rarely sufficient to get different 
sites to actually encode data the same way. 
There are usually differences in how the 
data are interpreted and coded. For example, 
nested results like bacterial culture antibiotic 
sensitivity can be stored in several ways, and 
there is more than one way to indicate that 
a diagnosis is a cause of death. Therefore, 
OHDSI launched a collaborative effort to 
develop conventions for how to encode data in 
the model. The community now has hundreds 
of specific conventions that are effectively 
recipes for specific data and contexts. OHDSI 
also supplies extensive tools to facilitate data 
conversion. WhiteRabbit profiles the source 
data to determine where source data fit in the 
OMOP model. RabbitInAHat maps source 
structure to OMOP tables and fields, and 
Usagi maps source codes to OMOP vocab-
ulary. ATHENA provides the vocabularies 
themselves, including handling licensing 
issues. ACHILLES profiles the OMOP data to 
review the progress of the conversion, and the 
Data Quality Dashboard provides explicit data 
quality assessments. All of this is supported by 
the OHDSI online fora for CDM implementers 
and developers. Some health care data begin 
as natural language. The OHDSI community 
has applied natural language processing to 
translate text into OMOP tables and fields 
[7-10], but much work remains.

Once the data are in the OMOP CDM, 
extensive tools facilitate analysis [11]. AT-
LAS [12] provides a graphical user interface 
to build, visualize, and analyze cohorts. This 
usually begins with phenotyping, where the 
user selects the appropriate concepts from 
the vocabulary to create a concept set that 

Fig. 1   Publication bias in the observational research literature. Based on extracting the statistical significance of 29,982 observational research 
results from the literature [4], we plotted (blue line) the relative number of results (y-axis) with a given two-tailed z-score (x-axis) for each study, 
with a negative z-score indicating that the outcome occurred less often in the primary intervention. The p-values for several z-scores are marked. 
Note the sharp drop in results for z-scores corresponding to p-values over 0.05. Part of the explanation for few non-significant studies may be 
that researchers are good at guessing which hypotheses will come out significant. We therefore also plotted (red line) the z-score distribution that 
one would get if only true hypotheses were studied. Even perfect knowledge cannot duplicate the sharp drop at p=0.05. Publication bias is the 
only reasonable explanation.
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represents the phenotype, which could, for 
example, represent the treatment or outcome 
being studied. The user then applies logic 
and timing to the concept sets to create a 
cohort, which defines the list of patients 
that match the criteria over some time span. 
The cohorts may then be examined patient 
by patient, summarized and visualized, or 
used in statistical analyses. Tools to diagnose 
potential errors in the cohort are provided.

To handle the very large sample sizes 
(over 100,000,000) with very large numbers 
of covariates (over 50,000), OHDSI has 
developed a library for large-scale statistical 
analysis called CYCLOPS [13]. It exploits 
the sparse nature of clinical data and allows 
inference on data sets with hundreds of mil-
lions of patients and hundreds of thousands 
of columns (variables). It uses cyclic coordi-
nate descent for logistic regression, Poisson 
regression, and survival analysis. Like all 
OHDSI tools, it is open source.

Using these tools, OHDSI generates 
evidence in three forms. (1) Clinical charac-
terization tallies cases to provide proportions 
and rates with few statistical assumptions. 
It answers the question, “how often does 
something happen?”, and it is used in stud-
ies such as natural history and quality im-
provement. An example clinical application 
of characterization could be answering the 
question could be “what proportion of dia-
betes patients start treatment on metformin, 
as recommended by clinical guidelines?” (2) 
Population-level estimation identifies asso-
ciations between exposures and outcomes 
and assesses causal effects using statistical 
methods to address bias. This includes 
comparative effectiveness and safety sur-
veillance. For example, a clinical question 
for population-level estimation would be, 
“does metformin cause lactic acidosis more 
than glyburide?” (3) Patient-level prediction 
applies machine learning algorithms to clas-

sify a target population into those who will 
or will not experience some future outcome, 
based on the patient’s baseline character-
istics. Patient-level prediction can be used 
to address clinical questions like “amongst 
patients initiating metformin, which are at 
highest risk of developing lactic acidosis?”, 
and “if my patient takes metformin, what is 
her probability of a lactic acidosis event?”

3   Generating Evidence
A concrete example of a characterization 
study is OHDSI’s first network study, on 
treatment pathways in three common chronic 
diseases, type 2 diabetes mellitus, hyper-
tension, and depression [14]. Motivated by 
a recognition that we do not actually know 
how often patients take different sequences 
of medications, OHDSI tallied medications 

Fig. 2   OHDSI research flow. Patient-level data remain private to the OHDSI data partners, but all other OHDSI work is shared publicly. (ETL is extract-transfer-load.)
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for those diseases in 12 databases, which 
included about 240 million patient records 
from five countries. The results showed that 
metformin was the predominant first-line 
diabetes drug with about a 75% prevalence 
in all databases except the one from Japan. 
Subsequent discussions with a Japanese 
diabetes physiologist indicated that Japanese 
doctors prescribe less metformin because they 
generally believe their patients are less subject 
to insulin resistance. Hypertension treatment 
revealed a moderate amount of agreement, 
with the primary drugs being hydrochloro-
thiazide and lisinopril, and depression showed 
the least agreement, with marked differences 
in drugs even among databases in the same 
country. The study illustrated the power of 
a common data model because most of the 
analyses were completed within three weeks 
of the conception of the study; this included 
design, engaging volunteer sites, running the 
analyses, and transmitting the results centrally.

Asserting causality with population-level 
estimation is much more difficult due to 
confounding and other biases. OHDSI takes a 
multi-pronged approach, recently enumerated 
as ten principles [15, 16], under an initiative 
called LEGEND. Confounding in compara-
tive research is addressed using propensity 
score adjustment [17] like many studies, but 
it differs in using a systematic approach that 
is not dependent upon the authors’ knowledge 
and biases. So-called large-scale propensity 
score (LSPS) adjustment [18, 19] adjusts 
for all available covariates in the claims or 
electronic health record database, generally 
in the tens of thousands. This contrasts with 
other techniques that attempt to select only the 
confounders, either through authors’ knowl-
edge or empirical selection. OHDSI employs 
L1 regularized regression (LASSO) [20] to 
handle the challenge that the number of vari-
ables usually exceeds the number of subjects 
available. The technique provides diagnostics 
to ensure that the adjustment is effective. The 
treatment and control groups are checked for 
equipoise (i.e., the degree to which two groups 
have patients with similar baseline character-
istics) using a preference score plot [21]; if 
the two groups have poor equipoise (i.e., just 
a minority of patients in each group share 
similar baseline characteristics), then the 
results may not be as generalizable because 
the analysis will focus on the small subset who 

overlap. The tens of thousands of covariates 
are plotted on a balance graph, showing the 
standardized difference of the mean before 
and after propensity score adjustment. The 
generally recognized threshold for sufficient 
balance is a standardized mean difference less 
than 0.1 [22, 23]. OHDSI found in a large 
study of half a million hypotheses that 75% 
of the time, every single one of the tens of 
thousands of variables achieved balance after 
matching on the large-scale propensity score 
[16]. Furthermore, OHDSI has found that 
on adjusting for tens of thousands of covari-
ates, important unobserved factors may also 
become balanced. For example, in studying 
hypertension therapy, adjusting for many 
other covariates also adjusted for an important 
potential confounder, baseline blood pressure, 
when it was held out of the analysis of the one 
database that captured it [16, 24].

OHDSI checks for residual systematic 
error that LSPS may have failed to address 
using negative and synthetic positive con-
trol hypotheses [5, 25]. The use of negative 
controls to verify a result is becoming more 
common, but usually only one to three hy-
potheses are included. OHDSI uses a large 
sample (>50) negative controls chosen using 
semi-automated methods [26] and a set of 
synthetic positive controls to create a distri-
bution of estimates with known true values 
(e.g., hazard ratio of exactly 1 for negative 
controls). For a 95% confidence interval, 95% 
of true values should lie inside the calculated 
confidence intervals. If there is residual sys-
tematic error, fewer of the true values will 
lie inside the confidence intervals. OHDSI 
diagnoses the problem and also provides 
an adjustment: the confidence intervals are 
recalibrated through widening and shifting 
to achieve actual 95% coverage. This ensures 
a proper false positive rate corresponding to 
the selected alpha level (e.g., 5%), with the 
limitation that it results in fewer true positive 
results being declared positive.

Credibility and generalizability are both 
enhanced by using a heterogeneous network 
that differs in geographic location, practice 
type, data collection mechanism. In OHDSI’s 
federated network, analyses are done locally, 
with no patient-level data pooling across 
sites, and the results from each site are com-
pared looking for consistency. If the results 
are not consistent, then that could point 

to missed biases or important differences 
among the subpopulations. If the results are 
consistent, then a combined, meta-analytic 
summary is estimated.

OHDSI’s openness is an important factor 
in causal credibility. The study design is 
released publicly before any analysis is done 
to ensure that authors cannot steer the results. 
The code is made freely available on GitHub 
and all software parameters are published so 
that other researchers can verify what anal-
ysis was done and replicate the study. The 
results of the study are immediately made 
available on the Internet at data.OHDSI.
org so that other researchers can verify that 
extreme results were not inappropriately 
selected for publication.

Using these techniques, OHDSI answers 
important questions. For example, when the 
US Food and Drug Administration published 
a query about whether levetiracetam causes 
angioedema, OHDSI quickly launched a 
network study that showed that in fact, the 
drug is not associated with angioedema, but 
the comparator, phenytoin, may be responsi-
ble for a low rate of the complication [27].

More recently, OHDSI has moved to car-
rying out studies at scale with many simul-
taneous hypotheses. This allows researchers 
to check the operating characteristics of the 
analytic pipeline. For example, most drugs 
do not cause most outcomes. If an analysis 
produces a large proportion of statistically 
significant results, then the analytic methods 
need to be checked. In addition, consid-
eration of a large number of hypotheses 
allows the medical evidence gap to be filled 
more efficiently. OHDSI’s first large-scale 
analysis looked at the side effects of de-
pression medications [4]. In contrast to the 
literature’s 85% statistically significant study 
rate noted above, OHDSI had a statistical 
significance rate of 11%, with 5% likely 
due to false positive hypotheses based on 
the 95% confidence intervals and 6% being 
true positives. In that study, every one of 
almost 20 thousand hypotheses underwent 
full diagnostics to verify whether the result 
should be trusted. In some cases, hypotheses 
failed to pass the diagnostics, such as com-
paring medication treatment for depression 
to electroconvulsive therapy, implying the 
treatment groups were too different for pro-
pensity scoring to achieve balance.



IMIA Yearbook of Medical Informatics 2021

287

Drawing Reproducible Conclusions from Observational Clinical Data with OHDSI

This highlights a strength of OHDSI: it 
does not purport to be able to carry out every 
study, but it is careful to diagnose when its re-
sults are likely to be credible or not. Running 
many hypotheses at once is not an example 
of data dredging, as long as all the results are 
revealed to the reader. The literature, with 
its proven publication bias [4], hiding most 
of the studies that are actually performed, is 
indeed data dredging. Comparing OHDSI’s 
large-scale systematic approach for con-
founding adjustment to a more traditional 
one-study-at-a-time approach, one can ask 
if it would be better to optimize each study, 
hand-selecting covariates to adjust for sepa-
rately and manually for each hypothesis. First, 
we note that human designers rarely get a list 
of 10 to 20 variables exactly right (e.g., given 
the differences in what variables are selected 
by different authors for seemingly identical 
studies), and second, it is not possible to assess 
the operating characteristics of a single study. 
The single study must be taken on faith that 
the designers have done a good job, whereas 
with multiple studies we can review the over-
all rate of statistical significance, the overall 
rate of passing diagnostics, etc.

OHDSI next applied these LEGEND meth-
ods to a study of hypertension treatment [28]. 
The 2017 US hypertension treatment guideline 
[29] identifies 58 first- and second-line antihy-
pertensive medications based on the results of 
40 randomized trials, observational evidence, 
and expert opinion. Only about 11% of those 
recommendations were based on randomized 
trials and most were based on expert opinion 
(e.g., assuming class effects). OHDSI sought 
to fill in the evidence gap with state-of-the-art 
observational research. With 58 ingredients 
from 15 drug classes, implying 1,653 possible 
combination therapies, and 58 outcomes of 
interest in both effectiveness and safety, OHD-
SI’s network had data to carry out 587,020 
comparisons of the 164,908,500 possibilities 
(i.e., most possible combinations are not 
actually feasible). Each of those comparisons 
is a fully executed study with all diagnostics, 
including equipoise, balance, Kaplan-Meier 
curves, etc. Compared to the original 40 
randomized trials, OHDSI provided 10,278 
comparisons between drug regimens.

The study [28] first of all largely verified 
the guideline, with most of the first-line med-
ication classes being indistinguishable on ef-

fectiveness and safety, and with beta-blocker 
classes, which are second-line classes, being 
inferior to the first-line classes. Also expected 
was that non-dihydropyridine drugs proved 
to be inferior. Unexpected was the superi-
ority of thiazide and thiazide-like diuretics 
showing better effectiveness and safety than 
angiotensin-converting enzyme inhibitors. 
This is an important finding, as patients start 
on angiotensin-converting enzyme inhibitors 
48% of the time. The switch to a diuretic 
could save 1.3 cardiovascular events per 1000 
patients. Within-class comparisons were also 
revealing. For example, while the guideline 
favors the diuretic chlorthalidone over hy-
drochlorothiazide, LEGEND found [24, 30] 
that patients started on chlorthalidone suf-
fered significantly worse side effects and no 
detectable improved effectiveness compared 
to hydrochlorothiazide, and the result was 
incorporated into The Medical Letter [31].

Looking at the operating characteristics, 
OHDSI compared its results to pre-existing 
randomized trials [16]. We found that OHDSI 
and trials results overlapped in 28 out of 30 
hypotheses, noting that a 5% disagreement 
rate is expected based on the definition of a 
95% confidence interval. This included the 
new diuretic versus angiotensin-converting 
enzyme inhibitor finding, except that the 
randomized trial confidence interval was 
wider than the OHDSI result and overlapped 
a hazard ratio of one (i.e., was not significant). 
All the LEGEND results are publicly available 
on the OHDSI results Web site.

The OHDSI predictive modeling com-
munity has developed a suite of open-source 
tools that runs against the OMOP common 
data model and implements a vast array of 
machine learning methods. A 2018 article 
laid out the vision for OHDSI-scale global 
patient-level predictive modeling [32], and 
many clinical applications are underway 
[e.g., 33-36].

4   COVID-19
With the emergence of COVID-19, OHDSI 
swung into action to bring observational 
research to bear on COVID-19 treatment, 
starting with an 88-hour Study-a-Thon that 
was held virtually in place of the previous-

ly planned annual European symposium. 
COVID-19 was particularly challenging to 
study for several reasons. There were initially 
no coding standards for the disease and its 
laboratory tests, and once organizations de-
veloped a work-around for it, it was difficult to 
move to the proper codes even after they were 
disseminated. Many observational databases 
go through a conversion and quality assur-
ance process that takes months; COVID-19 
was therefore delayed in showing up in most 
databases. Health care providers were often 
overwhelmed with patients, and this led to 
reduced and inaccurate documentation. The 
timeline for severe cases of the disease moved 
rapidly so that the time of events needed to be 
known by minutes instead of days (e.g., did 
the drug come before intubation). Treatment 
recommendations for COVID-19 changed 
rapidly, especially in the early months of the 
disease, implying the cohort changed over 
time. OHDSI therefore partnered closely with 
the data providers to understand and address or 
account for the resultant difficulties especially 
at the data conversion and analytic stages.

OHDSI first characterized the disease, 
comparing it to previous annual influenza 
as well as H1N1 influenza [37]. The study 
showed that while COVID-19 affects older 
and sicker patients most severely, compared 
to influenza, it also affects younger, health-
ier patients. OHDSI found that angiotensin 
converting enzyme inhibitor drugs and an-
giotensin receptor blocking drugs, which were 
suspected of worsening COVID-19, did not in 
fact pose extra risk, so patients should not stop 
taking them [38]. A study of a large cohort of 
patients without COVID-19 taking hydroxy-
chloroquine and azithromycin [39] showed that 
the combination increased risk of sudden death 
even in the short term, whereas hydroxychloro-
quine increased risk only with longer exposure. 
To estimate COVID-19 severity risk, OHDSI 
trained a predictive model on influenza and 
validated it on COVID-19 patients from five 
databases in three countries [36].

5   Discussion
Thus far, OHDSI has accomplished several 
things. We have a created a global feder-
ated database of electronic health records 



288

IMIA Yearbook of Medical Informatics 2021

Hripcsak et al.

mapped to common data model that includes 
nearly 10% of the world’s population. We 
have assembled a community of hundreds 
of researchers around the world that have 
developed open-source tools to enable the 
data network. That community has em-
braced open science and has developed an 
extensive suite of analytic tools that enable 
the generation of clinical evidence from the 
data. The first major OHDSI clinical studies 
have appeared in major medical journals and 
represent by far the largest observational 
studies ever conducted. The COVID-19 crisis 
galvanized the community, and OHDSI has 
been at the forefront of generating useful ev-
idence at this time. Large-scale adoption of 
the OMOP common data model has enabled 
all of these accomplishments.

OHDSI’s federated approach has a num-
ber of limitations. Consumers of our studies 
would need to collaborate with potentially 
very many data partners to truly reproduce 
a study. The data network includes some 
commercial databases that could prove pro-
hibitively expensive to access. Researchers 
conducting OHDSI studies generally do not 
have direct access to patient-level data, except 
perhaps at a local site. This precludes certain 
model and data diagnostics or at the very least, 
requires close cooperation of the data own-
ers to conduct some types of analyses. Our 
approach to causal inference, in particular, 
has a number of limitations inherent to the 
observational setting. Our use of positive and 
negative controls aims to quantify and account 
for sources of bias but some bias or departure 
from nominal uncertainty bounds can remain.

While we have a large sample, it is 
concentrated in developed nations, with 
a strong emphasis in the US, Europe, and 
parts of Asia. In a sense, the first 600 million 
patients were the easy 600 million, i.e., those 
for whom data were more readily available. 
We strive to add more representative popu-
lations, both in geography and in diversity 
within covered nations.

We believe the OHDSI collaboration has 
the potential to truly transform the practice 
of health care. However, many obstacles 
remain. The scientific community remains 
deeply skeptical about observational stud-
ies. The COVID crisis has exacerbated 
this problem because of the glut of hastily 
conducted observational studies that has 

entered the literature. The epidemiological 
community remains largely focused on one-
off, handcrafted studies that rely on clinical 
knowledge to generate “the right answer.” 
As noted above, this approach does not lend 
itself to objective evaluation but nonetheless 
remains deeply embedded in analytical train-
ing programs all around the world. Much 
work remains to improve the paradigm that 
OHDSI is developing, but the advantages 
are stark: reproducible results that enable 
systematic evaluation. 

Measuring the real clinical impact of 
OHDSI f indings is diff icult. Based on 
OHDSI’s mission statement, quoted in the 
Introduction, we seek to go beyond proofs of 
concept and publication to actually promot-
ing better health decisions and better care. 
OHDSI is still in the early phase of gener-
ating evidence, but we can cite OHDSI’s 
hypertension evidence being incorporated 
into the Medical Letter [31], the European 
Medicines Agency explicitly citing the 
OHDSI study on hydroxychloroquine risk 
[40] in its deliberation about the drug being 
used for COVID-19 prophylaxis, and the 
European Medicines Agency highlighting 
OHDSI’s study of the (lack of) risk of an-
giotensin converting enzyme inhibitors and 
angiotensin receptor blockers in COVID-19, 
pointing out that OHDSI’s reproducible 
methods help to address recent doubts about 
the COVID-19 literature that have arisen 
from a lack of transparency and uncertainty 
of research standards in the research commu-
nity [41]. True open science demands that we 
demonstrate that the downstream decisions 
and care are truly “better”; that is, we should 
use OHDSI methods and data to measure the 
downstream effect of our results (an excel-
lent suggestion by a reviewer of this paper). 
It is difficult to tease apart the actual drivers 
of policy changes (e.g., COVID-19 decisions 
were based on multiple sources of evidence), 
but at least we can in the future determine if 
practice aligns with our recommendations.

Going forward, OHDSI plans to con-
tinually enrich the data network both with 
data for more patients and also with richer 
data on each patient that may include sensor 
data, image data, and genomic data. We will 
continue to grow the OHDSI researcher 
network with a long-term view to generating 
truly impactful clinical evidence to improve 

the practice of health care. A key focus 
for OHDSI going forward is to galvanize 
the methodological research community; 
the global data resource that OHDSI has 
assembled will grow and become richer in 
future years, but dramatic progress is needed 
in new analytic methods to harness the data.

6   Conclusion
OHDSI demonstrates that it is feasible to 
create an enormous international network 
on a voluntary basis with a federated data 
source that is nearing 10% of the world’s 
population. Sites have been able to partici-
pate despite wide differences in languages, 
national health care structures, and privacy 
regulations. OHDSI’s work is completely 
open other than not providing access to 
patient-level data, with all methods, tools, 
models, and results available freely, includ-
ing a textbook called “The Book of OHDSI” 
that covers all aspects of its research [42]. 
Using novel methods for addressing bias, 
openness, large-scale analysis, and extensive 
diagnostics, OHDSI seeks to improve the 
credibility of observational research, and it 
has already produced findings that are being 
incorporated into practice.
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