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• SARS-CoV-2 is first detected in
Massachusetts wastewater on March 3,
2020.

• Viral titers in wastewater correlate with
newly diagnosed COVID-19 cases.

• Trends in wastewater precede 4–10 days
earlier than in clinical data.

• Wastewater-based shedding model re-
veals an early burst of high viral shedding
after infection.
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Current estimates of COVID-19 prevalence are largely based on symptomatic, clinically diagnosed cases. The ex-
istence of a large number of undiagnosed infections hampers population-wide investigation of viral circulation.
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wastewater treatment facility inMassachusetts, between early January and May 2020. SARS-CoV-2 was first de-
tected inwastewater onMarch 3. SARS-CoV-2 RNA concentrations inwastewater correlatedwith clinically diag-
nosed new COVID-19 cases, with the trends appearing 4–10 days earlier in wastewater than in clinical data. We
inferred viral shedding dynamics bymodeling wastewater viral load as a convolution of back-dated new clinical
cases with the average population-level viral shedding function. The inferred viral shedding function showed an
early peak, likely before symptom onset and clinical diagnosis, consistent with emerging clinical and experimen-
tal evidence. This finding suggests that SARS-CoV-2 concentrations in wastewater may be primarily driven by
viral shedding early in infection. This work shows that longitudinal wastewater analysis can be used to identify
trends in disease transmission in advance of clinical case reporting, and infer early viral shedding dynamics for
newly infected individuals, which are difficult to capture in clinical investigations.

© 2021 Published by Elsevier B.V.
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1. Introduction

The ongoing coronavirus disease (COVID-19) pandemic, caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
quickly become a global health crisis, with over 2 million confirmed
cases in the US and 7.4 million worldwide as of June 11, 2020 (Johns
Hopkins University Center for Systems Science and Engineering,
2020). Due to limited diagnostic capacity in many countries and high
rates of asymptomatic individuals (Gandhi et al., 2020; Mizumoto
et al., 2020), these numbers are considered to be underestimates of
the true prevalence of infection (Kaashoek and Santillana, 2020; Lu
et al., 2021).

Wastewater surveillance has been used to detect illicit drug con-
sumption, human health-related biomarkers, and infectious diseases
including SARS-CoV-2. It offers a complementary approach to clinical
disease surveillance to track viral outbreak and circulation in the
population (Daughton, 2018; Fuschi et al., 2021; Lodder and de R.
Husman, 2020; Mao et al., 2020; Sims and Kasprzyk-Hordern,
2020). In addition, wastewater surveillance provides an unbiased
sample of the infected population, including asymptomatic and
pre-symptomatic individuals, those who are symptomatic but have
not yet been clinically confirmed, and individuals who may have
the disease but do not seek healthcare. Early work has shown that
wastewater surveillance could detect SARS-CoV-2 before it became
widespread in a population, and that viral levels in wastewater
largely paralleled local increases in clinical cases of COVID-19 in
Australia (Ahmed et al., 2020a), France (Wurtzer et al., 2020), the
Netherlands (Medema et al., 2020), Spain (Orive et al., 2020;
Randazzo et al., 2020), Turkey (Kocamemi et al., 2020), and Israel
(Bar-Or et al., 2021). These studies highlight the potential of waste-
water surveillance to provide early warning of emerging outbreaks.
However, it remains largely unexplored how viral concentrations
in wastewater can be used for quantitative epidemiological model-
ing, such as informing viral shedding dynamics for infected individ-
uals that is challenging to capture clinically.

The Massachusetts wastewater treatment facility where samples
were collected has two major influent streams, which are referred
to as the “northern” and “southern” influents. The daily flow rates
during the sampling period for the northern and southern influents
ranged from 7.53 × 105 to 1.84 × 106 m3/d, and 4.26 × 105 to
1.18 × 106 m3/d, respectively. Together the two sewersheds represent
approximately 2.25 million sewered individuals in Middlesex, Norfolk,
and Suffolk counties. We previously reported the detection of SARS-
CoV-2 inwastewater from this facility, and showed that viral concentra-
tionswere significantly higher thanwould be expected based on clinical
cases alone (Wu et al., 2020a, 2021). Here, we use longitudinal sampling
from January to mid-May 2020 (116 samples in total) to identify the
virus's first appearance and spread, to infer viral shedding dynamics,
and to investigate the relationship between wastewater SARS-CoV-2
concentrations, clinically reported COVID-19 cases, and statewide pub-
lic health interventions.
2

2. Materials and methods

2.1. Sample collection and viral inactivation

The 24-h composite samples of raw sewage were collected from the
Deer IslandWastewater Treatment Plant inMassachusetts. The January,
February and earlyMarch sampleswere stored at 4 °C in thewastewater
treatment facility before being transferred to the laboratory on ice in a
second container. Those sampleswere received in two groups and proc-
essed on April 17 and 21, respectively, and the longest storage time at
4 °C was 97 d (January 14 to April 21) before analysis. Samples from
mid-March to May were received in six groups in the order of time
and processed as previously described (Wu et al., 2020a, 2020b). Their
storage time at 4 °C varied from1 to 34 d. Briefly, sampleswere pasteur-
ized at 60 °C for 90min to inactivate the virus. Previous studies showed
that pasteurization has little influence on the detection of SARS-CoV-2
RNA copies, and PMMoV is highly resistance to heat inactivation
(Auerswald et al., 2021; Pastorino et al., 2020; Shirasaki et al., 2020;
Wang et al., 2020b). Raw sewage was then vacuum filtered through a
0.2 μm membrane (Millipore Sigma) to remove bacterial cells and de-
bris. Filtrate was used for the viral enrichment with the methods de-
scribed below.

2.2. Viral precipitation, RNA extraction, reverse transcription and quantitative
PCR (Method I)

Two methods were used for RNA extraction, reverse transcription
and quantitative PCR (Methods I and II). For Method I, the filtrate
(40 ml) was mixed with 4 g of Polyethylene glycol 8000 (10% w/v,
Millipore Sigma) and 0.9 g NaCl (0.3 M, Millipore Sigma) and centri-
fuged at 12,000 ×g at 4 °C for 2 h (or overnight centrifugation at
3200 ×g) to precipitate the viral particles. The viral pellet was then re-
suspended in 1.5 ml Trizol reagent (Cat# 15596026, Thermo Fisher
Scientific) for RNA extraction. cDNA was synthesized by reverse tran-
scription (RT) based on the manufacturer's protocol (M0368, New
England Biosciences). Briefly, 10 μl of RNA was mixed with random
hexamers and then incubated at 70 °C for 5 min and 4 °C for 3 min.
After that, the RNA-hexamer mixture was mixed with 5× ProtoScript
II buffer (5 μl), 0.1 M DTT (2.5 μl), ProtoScript II Reverse Transcriptase
(200 U/μl. 1.25 μl), 10 mM dNTP (1.25 μl), RNase Inhibitor (40 U/μl,
0.5 μl), and Nuclease-free water (2.5 μl) to a total volume of 25 μl. The
mixture was then incubated at 42 °C for 1 h and inactivated at 65 °C
for 20 min.

The quantitative PCR (qPCR) was performed with TaqMan
assay techniques. Briefly, the TaqMan® Fast Advanced Master Mix
(4444557, ThermoFisher Scientific) was mixed with the primers and
water, and thendistributed into the 96-well PCRplate. 2 μl of cDNA tem-
plate from RTwas added into the plate, whichwas sealedwith adhesive
PCR plate seals (AB0558, ThermoFisher Scientific). The qPCR reaction
was carried out for 48 cycles using Bio-Rad CFX96 Real-Time PCR
Detection System based on the following program: polymerase
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activation (95 °C for 2min), PCR (48 cycles, denature at 95 °C for 1 s, and
anneal/extend at 55 °C for 30 s).

The primers (N1 and N2) and DNA standards of SARS-CoV-2 nucle-
ocapsid (N) gene were used to quantify the genome copies of SARS-
CoV-2 (Table S1, Ref. (CDC, 2020)). Briefly, Cq values for N1 or N2
primer sets were first converted to viral gene copies in the cDNA sample
(copies per μl of cDNA) based on the calibration curves established with
the positive control plasmid (Table S1). This concentration was further
converted to viral gene copies per microliter of the wastewater sample
by multiplying the dilution factor (volume of total cDNA ∗ total volume
of RNA) / (volume of RNA used for reverse transcription ∗ starting
volume of filtered wastewater sample). Two or three replicates were
performed for each primer set, and mean values were reported. The
MIQE (Minimum Information for Publication of Quantitative Real-
Time PCR Experiments) checklist was also provided as supplementary
information (Table S1).

Concentrations of fecal materials in wastewater are subject to wide
fluctuations in daily sewage flow rates at the wastewater treatment
plant. To correct for these fluctuations, we used pepper mild mottle
virus (PMMoV), a positive-strand RNA virus prevalent in human feces
(Hamza et al., 2019; Rosario et al., 2009; Zhang et al., 2005), as an inter-
nal reference for quantification. PMMoV is globally distributed and
highly stable in the wastewater (Hamza et al., 2019; Kitajima et al.,
2018; Rosario et al., 2009; Zhang et al., 2005). Our previous results
showed that PMMoV is relatively stable across samples, and the data
after PMMoV adjustment are much less noisy and match the upward
trend of clinical COVID-19 cases (Wu et al., 2020a, 2020b). Briefly, we
used qPCR to evaluate the PMMoV concentrations across the sewage
samples in our time-series with the PMMoV primers and probe
(Table S1, Ref. Zhang et al., 2005). Results showed that PMMoV is de-
tectable and relatively stable between daily samples, with a standard
deviation of 1.789 Ct in the 108 tested samples (Fig. S8).

To adjust the SARS-CoV-2 viral concentrations for each sample, we
first calculated the deviation of its PMMoV copies from the median of
PMMoV copies in all 108 samples: Deviation factor = 10^(k ∗ (sample
Ct − median Ct)), where k = −0.2991 is the slope of the standard
curve (amplification efficiency is 99.11% for this primer set as previously
measured (Wu et al., 2020a, 2020b)). The SARS-CoV-2 viral concentra-
tion was then divided by this deviation.

In Method I, we processed 108 wastewater samples, in batches as
they were received in the lab, from January 8 to May 5, 2020 (Fig. S1).

2.3. Viral precipitation, RNA extraction and RT-qPCR (Method II)

For Method I, raw wastewater samples were processed as they were
received, in chronological groups – providing near-real time information
on viral concentrations in sewage but raising the possibility of batch ef-
fects because of different reagent lots and personnel changes. Therefore,
we processed 60 samples fromMarch 3 toMay 20 (including 8 new sam-
ples from May) with a second method (Method II) to allow all samples
from a single influent to be processed together as a single batch. Before
the reprocessing, these samples were stored at 4 °C and the longest stor-
age timewas about two and halfmonths (March 4 toMay 22). Compared
toMethod I, thismethod startedwith less volume of sewage samples and
greatly shortened the experimental time. Fifteenmilliliters offiltratewere
first concentrated with 10 kDa Amicon Ultra Centrifugal Filter (Sigma,
Cat# UFC9010) to 150–200 μl, which is further lysed with 600 μl AVL
buffer (Qiagen, Cat# 19073) for RNA extraction (Qiagen RNeasy kit,
Cat# 74182). The eluted RNA (3 μl) was immediately used for one-step
RT-PCR with TaqMan™ Fast Virus 1-Step Master Mix (Thermofisher,
Cat# 4444436) based on the following protocol: 50 °C 10min for reverse
transcription, 95 °C 20 s for RT inactivation and initial denaturation, and
48 cycles of denature (95 °C, 1 s) and anneal/extend (55 °C, 30 s).

Viral gene copies per ml of sewage were converted from the Ct
values for N1 or N2 primer sets using the calibration curves
(Table S1), and multiplied by the dilution factor (Total volume of RNA
3

sample/Starting volume of filtered wastewater sample). Two technical
replicates were performed for each primer set, and mean values were
reported. No significant difference was found between the viral gene
concentrations in the wastewater estimated from N1 or N2 primer
sets (Student's t-test with a p-value 0.407). PMMoVwas also quantified
in the newly extracted samples, and SARS-CoV-2 RNA concentrations
were adjusted by the corresponding PMMoV concentrations in the sam-
ple using the method described above. Data analysis was performed
with both raw and PMMoV normalized viral concentrations to confirm
agreement of observed trends. Viral genome copies per ml of wastewa-
ter sample were averaged from the N1 and N2 primer sets.

To assess the robustness of Method I andMethod II, we evaluated the
recovery rate using murine hepatitis virus (MHV, ATCC® VR-764), which
is also an enveloped coronavirus like SARS-CoV-2. SARS-CoV-2 virus was
not useddue to safety reasons. Briefly,MHVwas spiked into thewastewa-
ter and then concentrated by PEG8000 and Amicon filter inMethod I and
Method II, respectively. In parallel, the same amount of virus was directly
lysed using Trizol reagent or AVL buffer in Method I and Method II, re-
spectively. Viral RNA extraction, RT, and qPCRwere performed by follow-
ing the steps as described above using MHV-specific primers and probes
(Table S1). Results indicate that the recovery rates of viral concentration
in Method I and Method II were 58.09 ± 20.21% and 31.42 ± 2.59%, re-
spectively. Using the same protocol, Ahmed et al. obtained recovery
rates ranging from 26.7 to 65.7% (Ahmed et al., 2020b).

All data presented was obtained with Method II, unless specified
otherwise. The longitudinal data generated with Method I are only pre-
sented in Figs. 1B, S1 and S9, showing high correspondence of viral con-
centrations obtained from the two methods. In Method II, we
reprocessed 52 samples from March 3 to May 5, and 8 new samples
from May 2 to May 20. In total, 116 samples were processed in this
study from January 8 to May 20.

2.4. Contemporaneous societal data collection and correlation analysis

Clinical case data fromMarch 1, 2020 toMay 20, 2020 from Norfolk,
Suffolk, and Middlesex Counties was downloaded from Mass.gov
(“Department of Public Health |Mass.gov,” 2020).We summed the clin-
ical cases from each county to represent the cases in the sewershed of
the wastewater treatment plant and calculated the new cases per day.
We conducted locally weighted scatterplot smoothing (LOWESS) of
wastewater concentrations (smoothingparameter=0.4) andnew clin-
ical cases (smoothing parameter = 0.2) purely to show the qualitative
trends in Fig. 1A. No further analysis was done with the smoothed
data. LOWESS smoothing was done with statsmodels.nonparametric.
smoothers_lowess.lowess in python 3.6.5 and statsmodels 0.9.0.

Pearson's correlation was calculated between unsmoothed waste-
water data and unsmoothed clinical data. Higher correlations were
seen when comparing wastewater data to daily new clinical cases
than to cumulative cases (Figs. 1C and S2). Moreover, cumulative
cases are monotonically increasing, and do not reflect the trend of
wastewater viral concentrations over the time, and thus we decided to
do further analysis with daily new clinical cases. Correlation analysis
was done in R (3.5.0). p-Values for the correlations between viral con-
centrations and clinical cases were not provided because of the poten-
tial autocorrelations within the two datasets.

Influenza-like illness data reported to ILINet was downloaded from
CDC FluView Portal (“U.S. Outpatient Influenza-like Illness Surveillance
Network (ILINet): Overall Percentage of Visits for ILI | CDC,” n.d.). Data
on hospitalizations, reported deaths, number of tests administered, and
daily positive test rates in Massachusetts were downloaded from Mass.
gov (“Department of Public Health | Mass.gov,” 2020). Public transit and
cellular mobility data were downloaded from Massachusetts Bay
Transportation Authority (Massachusetts Department of Transportation,
2020) and Citymapper (“CitymapperMobility Index,” 2020), respectively.
Supermarket visits data for Massachusetts was downloaded from
SafeGraph (SafeGraph, 2020).

http://Mass.gov
http://Mass.gov
http://Mass.gov


Fig. 1. SARS-CoV-2 concentrations in wastewater correlate with new clinical cases, with a temporal offset. (A) Viral RNA concentrations in wastewater samples from March 3 to May 20
(blue dots) and new clinical cases from February 12 to May 20 in Norfolk, Suffolk, and Middlesex counties served by the wastewater treatment plant (orange dots). LOWESS smoothing
was applied to show the trends for viral concentrations (shaded blue) and daily new cases (shaded orange). Viral concentrations were normalized by PMMoV concentrations in each
sample, and the blue dot represents the mean of northern and southern viral concentrations. (B) Unsmoothed viral concentrations in the northern and southern influents are highly
correlated and have similar magnitudes for all the data generated by Method I and II combined (see Materials and methods). Blue line represents y = x. Pearson's r = 0.94. (C) Linear
correlation between unsmoothed viral concentrations in wastewater and unsmoothed daily new cases with different time lags from 0 to 14 days. Pearson's correlation coefficient is
highest with a 4 day time lag. Grey bar highlighted the points with the 1st and 2nd highest correlation coefficients. (D) Viral concentrations correlate with daily new cases with a 4-d
time lag. Red solid line is the linear regression fitting. Grey area: 95% confidence interval from standard error of the fitting. Pearson's r = 0.88. (E–F) Modeling wastewater
concentrations as a convolution of new cases per day and virus shedding per day. (E) Beta function with optimal shape and scaling parameters (α, β, c) representing the average viral
shedding function S(t) on a linear scale and log scale (inset). The shedding function was inferred using 1× reported cases (black), 6× reported cases (red), and 24× reported cases
(purple) based on reports that true case numbers could be 6–24× higher than reported cases. Markov Chain Monte Carlo (MCMC) simulation was used to investigate the uncertainty
landscape around the MLE shedding function, and 100 random MCMC results are shown in blue, pink, and lavender for 1×, 6×, and 24× reported cases, respectively. Clinically
reported values provided by Wolfel et al. are added in orange for reference, with linear regression fit (Wölfel et al., 2020). (F) Viral concentrations based on the convolution model
compared to viral concentrations observed in wastewater. Model output is the convolution of new cases per day I(t) and MLE shedding function S(t) from (E). 100 random MCMC
simulation results of the shedding function were convolved with I(t) to illustrate the uncertainty around the MLE model results (orange vertical lines).
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2.5. Social media data analysis

For analysis of emotional content, we used the dictionaries from
LIWC2015 (Tausczik and Pennebaker, 2010), which are optimized
to capture social and psychological states within written text. Our
4

analysis focused specifically on health, anxiety, and death-related
texts.

Facebook posts were collected by querying for posts containing the
keyword “massachusetts” between January 1, 2020 and May 20, 2020
from the CrowdTangle API (CrowdTangle Team, 2020), resulting in
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475,938 posts. 105,127 (22.1%) of the posts contained wordswithin the
LIWC categories of interest.

For analysis, the available text fields from the Facebook posts were
pre-processed, and psychometricswere calculated using the prevalence
of words in the LIWC2015 dictionaries within the corpus of posts for a
given day. Counts of words related to anxiety, death, and health were
retained for analysis. The prevalence of posts about anxiety, death,
and health by day was calculated by summing the counts of word
matches and dividing by the number of posts in that day.

2.6. Estimation of viral shedding function

Wastewater dataW(t) wasmodeled as a convolution of new clinical
cases I(t) and S(t) describing the average viral shedding detectable in
wastewater from infected individuals in the sewershed. We assume I
(t) = z ∗ G(t), where G(t) represents government-reported new cases,
while z represents the ratio between non-reported and reported cases.
We chose z=1, 6, 24 based on a CDC report that the estimated number
of total infections based on serological testing could be 6–24× higher
than reported cases (Havers et al., 2020).

Wehypothesized that the viral shedding function S(t) could be fit by
a beta distribution with parameters α, β, and scaling factor c. Beta and
gamma distributions harbor a rich variety of shapes with only two pa-
rameters, and are widely employed to model viral shedding or viral
load dynamics from clinical data (Ferretti et al., 2020; He et al., 2020;
Huynh and Rong, 2012; Milbrath et al., 2013). Since the beta distribu-
tion is defined on the range [0, 1], we sampled the probability density
function for points 1/30 apart as a proxy for viral shedding over
30 days. Time lag between wastewater data and clinical counts was de-
noted as parameter τ. Based on the results of the correlation analysis, we
back-dated the clinical cases by τ=4 days to get the new cases per day
function I(t). The full model is:

log W tð Þð Þ ¼ log S ∗ Ið Þ t½ �ð Þ ð1Þ

S tð Þ ¼ c ∗ Beta t,α,βð Þ ð2Þ

I tð Þ ¼ z ∗ G tð Þ ð3Þ

The discrete convolution formula is defined as: f ∗ gð Þ n½ � ¼
∑∞

m¼− ∞ f m½ �g n−m½ �;
and beta probably density function is defined as:

Beta t,α,βð Þ ¼ Γ αþβð Þtα−1 1−tð Þβ−1

Γ αð ÞΓ βð Þ ,

where Γ is the gamma function Γ xð Þ ¼ R∞
0 t

x−1e−tdt.
Wedefined the score function as the sumof squared errors (SSE) be-

tween log10(observed copies/ml in wastewater) and log10((S ∗ I)[t]).
We used the L-BFGS method in the scipy.optimize.minimize function
to find parameters α, β, c of the beta distribution that minimized the
SSE, which is equivalent to conducting maximum likelihood estimation
under the assumption of normally distributed homoscedastic noise. For
initial parameter guesses, we used a combination of α= [2, 20, 50, 100,
200], β = [2, 20, 50, 100, 200], and c = [0.01, 0.1], which gives a wide
variety of starting shapes for the shedding function. Optimal S(t) was
multiplied by an estimated wastewater volume of 1.36e6 m3 to obtain
the total copies shed per day. This total viral shedding per day per indi-
vidual does not consider person-to-person variation and can be
regarded as the average shedding in the sewershed.

To investigate the relationship between the shape of the shedding
function and the clinical time lag τ, we conducted the optimization for
τ ranging from 0 to 10 days and reported the optimal shedding function
for each τ. This analysis was performed for northern and southern influ-
ent data separately, as well as the average wastewater data. We also
modeled the shedding function as a gamma distribution over [0, 30]
and had similar results as with the beta distribution. All shedding
5

estimation work was done with python 3.6.5, numpy 1.14.3, pandas
0.23.0, and scipy 1.1.0.

2.7.Markov ChainMonte Carlo (MCMC) simulation to quantify uncertainty
in shedding model

MCMC simulation was performed to investigate the uncertainty
landscape around the maximum likelihood estimation of the param-
eters for the viral shedding function. Briefly, we started at the max-
imum likelihood estimate for each parameter α, β, and c. We defined
the transition function as a normal distribution centered around the
previous parameters, with standard deviation (1, 1, 0.001) for α, β,
and c, respectively. At each iteration, we selected a new set of pa-
rameters using the transition function and computed the log likeli-
hood. New parameters were accepted if the log likelihood was
higher. If the log likelihood was lower, we accepted the parameters
with probability exp(−delta(SSE)/T), where we used T = 5 to tune
the acceptance ratio. In 10,000 iterations, 1318 samples were ac-
cepted. We selected 100 random selected parameter sets and plot
them in Fig. 1E and F to illustrate the uncertainty around the maxi-
mum likelihood estimate of the shedding function. MCMC simula-
tion was done with python 3.6.5, numpy 1.14.3, pandas 0.23.0, and
scipy 1.1.0.

3. Results and discussion

We first quantified SARS-CoV-2 RNA concentrations in 108 longitu-
dinal wastewater samples from the wastewater treatment facility's
northern and southern influents, from January 8 to May 5, 2020. Sam-
ples from March 3 to May 20 including eight new samples in May
were processed a second time in late May, in a single batch for each
sewershed, to complement initial quantification, which had been
performed in chronological groups as samples were received (see
Materials and methods).

3.1. Longitudinal wastewater sampling captures the emergence and spread
of SARS-CoV-2 in the population

Viral concentrations in wastewater followed a trend similar to new
clinical cases over the sampled time period (Fig. 1A). SARS-CoV-2 was
not detected in either influent stream in January or February samples,
and was first detected on March 3 (northern influent) and March 10
(southern influent), at a concentration of ≤15 copies perml of wastewa-
ter (Figs. 1A and S1). Only two clinically confirmed COVID-19 cases had
been reported inMassachusetts as of March 3, indicating viral detection
in wastewater in the early stage of the local outbreak. SARS-CoV-2 con-
centrations remained relatively low (<90 copies per ml) in both influ-
ents until March 15, after which they increased exponentially. Viral
concentrations appeared to rise in wastewater in advance of clinical
cases. SARS-CoV-2 levels in wastewater began trending downward
about a month later (April 13), while the peak and decline in new clin-
ical cases occurred later, on April 24. Together, these qualitative trends
suggested that wastewater viral concentrations during this time period
might reflect disease incidence in advance of clinical reporting.

SARS-CoV-2 was consistently detected at comparable levels, and
demonstrated similar dynamics, in the northern and southern influents
(Fig. 1B).

3.2. Wastewater data correlates best with clinically confirmed new cases,
with a temporal offset

Since SARS-CoV-2 was first detected in wastewater when only two
cases were clinically confirmed, we hypothesized that the wastewater
data included a significant undiagnosed, COVID-19 infected population.
This difference between wastewater and clinical data could be due to
underdiagnosis of asymptomatic or mildly symptomatic cases,
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limitations in clinical testing capacity, or a time delay between viral
shedding and the onset of respiratory and other symptoms.

We tested the correlation of viral concentrations with new clinical
cases and cumulative cases, allowing for a variable time lag (Figs. 1C/D
and S2). The number of cumulative cases was considered because of re-
ports that SARS-CoV-2 can be shed in feces for more than 20 days, in
which case the long tail of shedding may contribute significant signal
to wastewater (Wölfel et al., 2020; Wu et al., 2020b; Zheng et al.,
2020). Higher correlations were seen when comparing wastewater
data to daily new clinical cases than to cumulative cases (Figs. 1C and
S2). Strong correlations (Pearson's r > 0.8) were observed when com-
paring new clinical cases back-dated by 3–5 and 9–10 days, and the
maximum agreement between the two time series was observed for a
time offset of 4 days (Pearson's r = 0.88, Fig. 1C/D). Similar results
were found when each sewershed was considered individually
(Fig. S3). This time lag between the wastewater signal and clinically re-
ported cases is consistent with the typical 4–5 day incubation period
from SARS-CoV-2 infection to symptom onset (Guan et al., 2020;
Lauer et al., 2020; Li et al., 2020). Thus, wastewater surveillance could
potentially be used to predict trends in new COVID-19 cases.

3.3. An inferred viral shedding function suggests an early burst of high viral
shedding

The high correlation between wastewater viral concentrations and
daily reports of new clinically confirmed COVID-19 cases (Fig. 1D) –
combined with the time lag between the wastewater signal and clinical
data – suggests that newly infected individuals contribute significant
viral loads to the wastewater and that most of this shedding may
occur early in infection, prior to the individual seeking healthcare and
being tested. As a result, viral dynamics inwastewater could provide in-
sight into early shedding, which would be challenging to capture clini-
cally if it precedes patient presentation to the clinic.

We attempted to infer average population-level viral shedding dy-
namics observed in wastewater by comparing our longitudinal waste-
water data with estimates of daily new cases. Wastewater viral RNA
concentrations W(t) was modeled as a convolution of new clinical
cases I(t) and a function S(t) describing the average viral shedding
(whether from fecal, urine, or other unknown sources) detectable in
wastewater from infected individuals in the sewershed (see Materials
and methods).

Modeling revealed a short burst of viral shedding that peaked
around day 2 of shedding and lasted for 3–4 days (Fig. 1E and F). This
feature of the modeling was robust to different time lags (0–10 days)
applied to data of daily new clinical cases, as well as the distribution
used to fit the shedding function (both beta and gamma distributions
were investigated, Fig. S4). This short burst of shedding was also seen
after modeling each sewershed individually (Figs. S5–S6). Inferring
the viral shedding function using values for z (estimated true number
of infected individuals) reflecting 6× or 24× the reported number of
new cases (Havers et al., 2020) resulted in a similar narrow-peaked
viral shedding function peaking around day 2, but with a lower average
magnitude per individual (Fig. 1E). The lower magnitude of viral shed-
ding is expected because W(t) is defined as a convolution of I(t) and S
(t); when I(t) increases, S(t) will decrease for a fixed W(t).

A limitation to thismodelingmethod is that the trends inferred from
Boston data early in the pandemic may be confounded by limited test-
ing capacity. To address this limitation and validate our findings, we
have repeated our analysis with wastewater and clinical new case
data, collected over an additional 9 month period, from August 15,
2020 to May 13, 2021 (Massachusetts Water Resources Authority),
after on-demand testing became readily available in Massachusetts
(“Baker-Polito Administration Announces New Initiatives to Stop
Spread of COVID-19 | Mass.gov,” n.d.). Using this second data set, we
found a similar narrow-peaked viral shedding function during the
early phase of infection (Fig. S7), replicating our initial findings. These
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independent models of the two waves of the COVID-19 pandemic
showed similar results, improving our confidence that Bostonmunicipal
wastewater data reflects an early period of viral shedding, in alignment
with clinical reports. As additional groups test this methodology it will
be useful to compare results to understand the factors underpinning
trends in different types of wastewater.

The early timing of the inferred shedding is consistent with reports
that viral load and infectiousness may peak before symptom onset
(Benefield et al., 2020; He et al., 2020;Wei, 2020), and that fecal and re-
spiratory shedding may occur 3–5 days before symptom onset (Jones
et al., 2020; Wang et al., 2020a, p. 138). Although the early peak of
viral shedding in our model does not directly reflect patients' reported
clinical courses, it is consistent with reports of abdominal pain, nausea,
and diarrhea preceding onset of respiratory symptoms in COVID-19 pa-
tients (Cholankeril et al., 2020; Dane et al., 2020; Siegel et al., 2020),
suggesting that individuals may shed SARS-CoV-2 virus early in this
process. In several clinical studies, the earliest stool samples collected
have been positive for viral RNA (day 3 post symptom onset (Wölfel
et al., 2020); and day 0 of hospital admission (Chen et al., 2020, p. 2)),
suggesting fecal shedding may start before individuals seek medical
care. Our finding about the early peak shedding is also supported by ob-
servations in a transgenic mouse model with humanized ACE2 recep-
tors, where viral concentrations in the intestines peaked at 1 day post
infection (Bao et al., 2020). Moreover, Benefield et al. performed a
pooled analysis of 66 clinical studies (1198 patients across 14 counties)
reporting temporal viral load and shedding data, and found that SARS-
CoV-2 viral load peaks prior to – not at – symptom onset (Benefield
et al., 2020). Finally, a recent studymodeled SARS-CoV-2 fecal shedding
and found that hospitalized patients represent the tail end of shedding
and their shedding levels cannot explain the high RNA concentrations
observed in wastewater (Hoffmann and Alsing, 2021). This modeling
result is consistent with ours and suggests the presence of more abun-
dant shedding early in infection.

The inferred peak shedding was generally several orders of magni-
tude greater than typical values (104–109 copies per 200 g stool),
which are measured after symptom onset and clinical testing (Zheng
et al., 2020;Wölfel et al., 2020; Jones et al., 2020) (Fig. 1E). In amore re-
cent study, Han et al. measured the viral RNA load in infected individ-
uals in South Korea and found the median fecal RNA load was 107.68

(ranging from 104.1–1010.27) copies/ml (Han et al., 2020). Assuming
one 200 g stool per day per individual, our peak shedding value is
very similar to this report, illustrating the variability in the clinical liter-
ature.

We note that inadequate testing capacity, changing criteria for
testing, and populations who do not seek medical care introduce un-
certainty to the reported new cases. It should be noted, however,
that a good model fit could be obtained even if a large fraction of
cases is underreported. For example, if only half of cases are re-
ported, then the total amount of shedding per individual would be
inferred to be twice the actual value, even though the fit to the
model would be equally good. Attempting to correct for these factors
would decrease the magnitude of average viral shedding per person.
On the other hand, factors such as viral RNA degradation in sewage
lines and storage and recovery efficiency introduce uncertainty in
the observed wastewater concentrations and attempting to correct
for these factors would increase themagnitude of average viral shed-
ding per person. Because these factors introduce sizable uncertainty
to the true magnitude of shedding, we do not seek to challenge the
absolute shedding number reported in the literature, but rather em-
phasize the timing- that wastewater signals may reflect shedding
dynamics early in infection.

Together, our data suggest that SARS-CoV-2 levels in wastewater
may be largely driven by an early burst of shedding, followed by a pe-
riod of prolonged low-level shedding as reported in the literature
(Chen et al., 2020; Hoffmann and Alsing, 2021; Wölfel et al., 2020;
Zheng et al., 2020).
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3.4.Wastewater SARS-CoV-2 RNA concentrations in the context of behavior
and interventions

SARS-CoV-2 levels in wastewater began to increase exponentially
after March 15, coinciding with a peak in reports to the US Centers for
Disease Control and Prevention of “influenza-like illnesses” (ILI) inMas-
sachusetts that were not caused by influenza (Fig. 2, panel 3) – and
which showed early dynamics similar to SARS-CoV-2 levels inwastewa-
ter, suggesting these ILIs may have been undiagnosed COVID-19
(Centers for Disease Control and Prevention, 2020; Lu et al., 2021;
“U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet):
Overall Percentage of Visits for ILI | CDC,” n.d.). Wastewater concentra-
tions of SARS-CoV-2 began to drop in mid-April (Fig. 1A), roughly one
month after the state of emergency was declared (March 10, Fig. 2)
and the statewide school closure (March 17; Fig. 2), and approximately
three weeks after the Massachusetts stay-at-home advisory went into
Fig. 2.A timeline of viral dynamics in the context of key events and clinical/behavioral data. Tren
19 pandemic and important events inMA. Row 2: Clinical Cases vsViral concentrations inWaste
represents theminimum/maximumof PMMoV-adjusted viral concentrations), daily (orange lin
Illness: Visits for influenza-like illness (ILI, purple shading) and confirmed flu cases (light gree
shows a peak of non-flu ILI at March 18. Clinical Testing: Daily SARS-CoV-2 tests and positiv
hospitalizations in MA. Mobility: Public transit and cellular mobility data. Supermarket Visit
posts with terms expressing “Health”, “Anxiety”, and “Death”. Dashed lines in all the panels
state-wide face covering advisory.
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effect (March 24, Fig. 2) (“Information on the Outbreak of Coronavirus
Disease 2019 (COVID-19) | Mass.gov,” n.d.). Public transport and cellu-
lar mobility data indicate that public movement began to decrease sig-
nificantly ahead of the stay-at-home advisory, starting soon after the
state of emergency was declared and the first school closures
(“Citymapper Mobility Index,” 2020; Massachusetts Department of
Transportation, 2020). The time between infection and forward trans-
mission is approximately 4–6 days (Ferretti et al., 2020; He et al.,
2020), suggesting that there were likely 4–5 additional cycles of infec-
tion after the implementation of the stay-at-home advisory before
viral concentrations began to decline in wastewater.

What could explain the approximately month-long lag between de-
creased public mobility and the drop in population-wide viral levels as
measured in wastewater? Several factors likely contributed. First, de-
spite efforts to limit human-to-human contact, disease transmission
could have remained high among especially at-risk populations such
ds are plotted in the same time frame, from January 8 toMay 20. Row1: Timeline of COVID-
water: Viral concentrations inwastewater (blue line along the primary y-axis, shaded area
e) and cumulative (brown line) confirmed cases along the secondary y-axis. Influenza Like
n shading), and the difference between the two after normalization (purple line), which
e rates in MA. Hospitalizations and Deaths: New reported COVID-19 related deaths and
s: Supermarket visits in MA (normalized by the median value). Social Media: Facebook
represent the date of the Biogen conference, the stay-at-home advisory in MA, and the
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as essential workers and their families. Second, individuals infected be-
fore the stay-at-home order could have infected multiple family mem-
bers or roommates in subsequent days, especially in areas with high
numbers of inhabitants per household. Finally, despite the stay-at-
home order, human-to-human interactions may still have occurred at
a significant rate outside the household, in essential venues such as su-
permarkets and pharmacies. These early interactions may have been
more likely to result in disease transmission because theMassachusetts
advisory recommending face coverings in public was not announced
until April 10, and the state order requiring face coverings did not go
into effect until May 6 (“Department of Public Health | Mass.gov,”
2020). Social media indices of public anxiety showed a pronounced
rise in anxiety around the time of the declaration of the state of emer-
gency (CrowdTangle Team, 2020), followed shortly thereafter by a
peak in Massachusetts supermarket traffic on March 13 (Fig. 2, panel
7–8; Ref. SafeGraph, 2020). This concentration of people into supermar-
kets –withoutmasks, and before the institution of supermarket policies
to limit the number of shoppers – might have contributed to the sharp
rise in viral concentrations inwastewater (Fig. 1A) that began in the fol-
lowing days.

4. Uncertainties and future directions of wastewater surveillance

Although wastewater data should be relatively unbiased, relatively
high day-to-day variation in our results suggests that they are noisy.
On the other hand, clinical data may be less noisy but more prone to
systematic bias due to constraints such as limited clinical testing
capacity. Together, these independent data streams from clinical- and
wastewater-based surveillance can provide a more complete picture
of viral dynamics, and a new opportunity to explore the relationship be-
tween COVID-19dynamics and concomitant public health interventions
and behavioral changes. In this study, we infer a viral shedding function
that canhelp to connect these twodata streams in a quantitative fashion
to allow for more accurate epidemiological modeling – and ultimately,
more informed decision-making about how and when to intervene.

Several knowledge gaps introduce uncertainty to our modeling ap-
proaches. First, viral concentrations inwastewater are highly dependent
on individual shedding rates, viral stability in wastewater, and flow
rates of the influent. While we have noted that normalization with the
human fecal indicator PMMoV helps reduce noise due to sampling
time and flow, significant uncertainties remain regarding the consis-
tency of viral shedding among COVID-19 patients (Chen et al., 2020;
Zheng et al., 2020). Second, the viral shedding profile inferred by our
modeling approach relies on reported clinical new cases over the course
of the pandemic, and is thus subject to the limitations of clinical testing
criteria and capacity (Fig. 2). This early lack of testing is especially evi-
dent given that SARS-CoV-2 was detectable in wastewater when there
were only 2 reported cases in the sewershed, which is certainly
underreported and would decrease the robustness of the model
(Fig. 1A). However, our finding of a narrow-peaked viral shedding func-
tion was confirmed when repeating the modeling with data after
August 15, 2020, when clinical testing capacity was well established in
Massachusetts, lending more confidence to this result. Third, the exact
percentage of asymptomatic infections in the sewershed remains un-
known. We here incorporated z to reflect an estimate of the true num-
ber of infections into our model and analyzed when z equals 6 or 24×
the clinically reported cases based on serological reports (Havers et al.,
2020).We recognize that zmay be a function of disease spread and clin-
ical testing capacity.

Fourth, the wastewater viral concentrations reported were not
corrected for viral RNA degradation in sewage lines and during sample
storage at 4 °C or losses during experimental procedures. In this study,
some samples were stored for up to 2.5 months at 4 °C before being
reprocessed with Method II. We compared the SARS-CoV-2 RNA
concentrations measured by Method I and Method II. As shown
in Fig. S9A, the general magnitude and trends of SARS-CoV-2
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concentrations were similar between the two methods, and samples
detected positive in Method I were also positive in Method II. These re-
sults indicated that SARS-CoV-2 is not highly degraded during storage,
which is consistent with previous work reporting that SARS-CoV-2
copy numbers were stable at 4 °C for one to three months (Hokajärvi
et al., 2021). We also compared PMMoV concentrations in January, Feb-
ruary, and March wastewater samples, which were stored at 4 °C for 1
to 97 d before processed in April. No significant differencewas found be-
tween those samples by month (Fig. S9B). Together, these results sug-
gested that SARS-CoV-2 and PMMoV were not highly degraded after
storage at 4 °C for up to three months. However, further experiments
using live SARS-CoV-2 viral stocks of known concentrations to quantify
the degradation rate and recovery efficiency from wastewater samples
would improve our model inference.

This work demonstrates the power of longitudinal wastewater sur-
veillance in tracking the emergence and spread of an infectious disease
in a population, in advance of clinical case reporting – as well as its po-
tential to shed light on infection characteristics thatmay be challenging
to capture clinically. It also highlights a key question for future investi-
gation. To what degree can our collective insights from SARS-CoV-2
wastewater surveillance be applied to other infectious diseases?
Whether or not they generalize will depend on how excreted pathogen
(or other infection biomarkers) signals relate to the course of each indi-
vidual disease. This relationship may affect the sensitivity and accuracy
of wastewater surveillance efforts, aswell as determinewhether waste-
water signals correlate best with new cases or cumulative cases, if at all.
Finally, this work highlights the importance of addressing batch effects
in wastewater-based disease monitoring, where rapid availability of
data is critical to enable real-time public health responses to disease dy-
namics. As we collectively explore the limitations and future directions
of wastewater surveillance, its application in communities at this time
can provide important guidelines for responding to the current or future
public health crisis.

5. Conclusions

In this study, we used longitudinal wastewater surveillance to track
the appearance and spread of SARS-CoV-2 in the Greater Boston area
during the early phase of the pandemic, and demonstrated the applica-
tion of temporal wastewater data in inferring viral shedding dynamics.
Our results showed:

• SARS-CoV-2 was first detected in Massachusetts wastewater on
March 3, 2020, when there were only two clinically confirmed cases
in the state.

• Viral concentrations in wastewater correlate with newly diagnosed
COVID-19 cases, with trends in wastewater occurring 4–10 days ear-
lier than in clinical data.

• The viral shedding function inferred from wastewater data shows an
early burst of high viral shedding for infected individuals, suggesting
that wastewater data may be more specific to newly infected cases.
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