Skip to main content
. 2021 Aug 18;11:706733. doi: 10.3389/fonc.2021.706733

Table 5.

Performances of the six machine learning classifiers for predicting molecular subtype.

Classifier Subtype Precision Recall F1-score Overall Accuracy
MLP TNBC 0.813 0.520 0.634 0.735
HR+/HER2− 0.771 0.661 0.712
HER2+ 0.704 0.852 0.771
GPC TNBC 0.692 0.360 0.474 0.623
HR+/HER2− 0.628 0.482 0.545
HER2+ 0.613 0.802 0.695
LDA TNBC 0.714 0.400 0.513 0.642
HR+/HER2− 0.674 0.518 0.586
HER2+ 0.619 0.802 0.699
SVM TNBC 0.778 0.280 0.412 0.623
HR+/HER2− 0.697 0.411 0.517
HER2+ 0.592 0.877 0.707
RF TNBC 0.625 0.400 0.488 0.636
HR+/HER2− 0.628 0.482 0.545
HER2+ 0.641 0.815 0.718
LR TNBC 0.733 0.440 0.550 0.679
HR+/HER2− 0.700 0.625 0.660
HER2+ 0.660 0.790 0.719

SVM, Support Vector Machine (radial bias function); RF, Random Forest; LR, Logistic Regression; LDA, Linear Discriminant Analysis; GPC, Gaussian Process Classifier; MLP, Multilayer Perceptron; TNBC, triple-negative breast cancer; HR, hormone receptor; HER2, human epidermal growth factor receptor-2.