Skip to main content
. 2021 Aug 18;11:706733. doi: 10.3389/fonc.2021.706733

Table 6.

Performances of the six machine learning classifiers for predicting AR expression.

Classifier AUC (95% CI) ACC (%) SEN (%) SPE (%) NPV (%) PPV (%)
MLP 0.907 (0.851–0.947) 85.8 85.6 86.7 57.8 96.6
LDA 0.880 (0.820–0.926) 81.5 79.6 90.0 50.0 97.2
SVM 0.852 (0.788–0.903) 85.8 87.9 76.7 59.0 94.3
GNB 0.881 (0.821–0.927) 80.9 80.3 83.3 49.0 95.5
RF 0.905 (0.849–0.945) 82.1 79.6 93.3 50.9 98.1
LR 0.888 (0.829–0.932) 86.4 88.6 76.7 60.5 94.4

SVM, Support Vector Machine (radial bias function); RF, Random Forest; LR, Logistic Regression; MLP, Multilayer Perceptron; GNB, Gaussian Naïve Bayes; LDA, Linear Discriminant Analysis; AUC, the area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; NPV, negative predictive value; PPV, positive predictive value; AR, androgen receptor.