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A B S T R A C T   

A family history of alcoholism (FH) increases risk for alcohol use disorder (AUD), yet many at-risk individuals 
never develop alcohol use problems. FH is associated with intermediate levels of risk phenotypes, whereas 
distinct, compensatory brain changes likely promote resilience. Although several cognitive, behavioral, and 
personality factors have been associated with AUD, the relative contributions of these processes and their neural 
underpinnings to risk or resilience processes remains less clear. We examined whole-brain resting-state func
tional connectivity (FC) and behavioral metrics from 841 young adults from the Human Connectome Project, 
including healthy controls, individuals with AUD, and their unaffected siblings. First, we identified functional 
connections in which unaffected siblings were intermediate between controls and AUD, indicating AUD risk, and 
those in which siblings diverged, indicating resilience. Canonical correlations relating brain risk and resilience 
FC to behavioral patterns revealed AUD risk and resilience phenotypes. Risk phenotypes primarily implicated 
frontal-parietal networks corresponding with executive function, impulsivity, externalizing behaviors, and 
social-emotional intelligence. Conversely, resilience-related phenotypes were underpinned by networks of 
medial prefrontal, striatal, temporal, brainstem and cerebellar connectivity, which associated with high trait 
attention and low antisocial behavior. Additionally, we calculated “polyphenotypic” risk and resilience scores, to 
investigate how the relative load of risk and resilience phenotypes influenced the probability of an AUD diag
nosis. Polyphenotypic scores predicted AUD in a dose-dependent manner. Moreover, resilience phenotypes 
interacted with risk phenotypes, reducing their effects. The hypothesis-generating results revealed interpretable 
AUD-related phenotypes and offer brain-informed targets for developing more effective interventions   

1. Introduction 

In the US, 9% of young adults aged 18–25 met criteria for alcohol use 
disorder (AUD) in 2019 (SAMHSA, 2019). Approximately half of the risk 
for AUD is heritable (Agrawal and Lynskey, 2008; Kendler et al., 2012a), 
and a family history of alcoholism (FH) substantially increases an in
dividual’s risk for AUD (Anda et al., 2002; Kendler et al., 2012b). AUD 
risk is driven by the combination and interaction of multiple genetic and 
environmental risk and protective factors, which vary across affected 
individuals (Ducci and Goldman, 2008), producing multiple pathways 
to AUD (Sher et al., 2005). 

Due to the polygenic nature and heterogeneous expression of AUD, 
studies of intermediate phenotypes have been instrumental to the study 

of AUD risk (Ducci and Goldman, 2008). Here, we use the term inter
mediate phenotype to refer to markers of risk for AUD that exist some
where between genetic/environmental factors and the disorder itself, 
including personality traits and behavioral measures, as well as their 
neural substrates. By definition, intermediate phenotypes related to 
AUD risk are not only present in individuals with AUD, but also, to a 
lesser extent, in their unaffected family members. Behavioral and per
sonality phenotypes linked to AUD include sensation-seeking (Lange 
et al., 2010), antisocial personality (Oreland et al., 2018), delay dis
counting (Mitchell, 2011), impulsivity (Dick et al., 2010), sweet liking 
(Lange et al., 2010), and subjective response to alcohol (Morean and 
Corbin, 2010). Brain functional connectivity studies have also identified 
brain alterations in FH (Cservenka et al., 2015; Cservenka et al., 2014a; 
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Cservenka et al., 2014b; Herting et al., 2011; Martz et al., 2019; Spadoni 
et al., 2013a; Spadoni et al., 2013b; Vaidya et al., 2019a; Vaidya et al., 
2019b), including alterations in functional connections within and be
tween particular neural systems (Cservenka et al., 2015). For example, 
FH-positive adolescents demonstrate diminished integration within and 
reduced segregation between reward and cognitive control regions 
(Cservenka et al., 2014a), as well as reduced FC integration of motor 
regions (Vaidya et al., 2019). FH is also associated with reduced cere
bellar connectivity with both amygdala and frontal cortex (Cservenka 
et al., 2014b; Herting et al., 2011), as well as altered frontal-parietal FC 
(Spadoni et al., 2013; ME et al., 2019). However, few putative FC-based 
intermediate phenotypes for AUD are currently supported by consistent 
evidence of intermediate levels in FH relative to AUD and healthy 
comparison subjects. Thus, the examination of a large sample including 
FH, AUD, and healthy controls has the potential to establish the neu
robehavioral basis for heritable risk for AUD. 

Other work has begun to identifiy brain and behavioral markers of 
protection from AUD, including FC changes (Martz et al., 2019) and 
cognitive factors (Kim-Spoon et al., 2016; Wills et al., 2008). However, 
recent work in the neuroscience of resilience suggests resilience is not 
simply reduced, intermediate levels of risk, but involves separate brain 
connections offering protection against coexisting vulnerability-related 
alterations (Garavan and Albaugh, 2019; Ohashi et al., 2019). Support 
for resilience relies on evidence of interactions between risk factors and 
outcomes (Roosa, 2000), suggesting particular brain functional con
nections differentiate resilient individuals not only from their affected 
siblings (Doucet et al., 2017), but also from healthy controls (Luthar 
et al., 2006). Studies of reilience in AUD populations have primarily 
focused on the buffering effects of cognitive abilities on the risk for AUD 
associated with heightened reward sensitivity (Kim-Spoon et al., 2016) 
and environmental factors (Wills et al., 2008). One recent study iden
tified enhanced FC between a dorsolateral prefrontal seed and the pos
terior cingulate cortex among FH adolescents with limited prior 
substance use, versus those self-reporting substance use, indicating 
resilience (ME et al., 2019). However, brain-based phenotypes of resil
ience to AUD in the context of familial risk remain scarce. Recent find
ings of brain functional connectivity markers of resilience in other 
psychiatric disorders (Doucet et al., 2017; Ersche et al., 2020) suggest 
the potential for functional connectivity to similarly reveal the neural 
basis of resilience in AUD. 

Given the polygenic and heterogeneous nature of AUD, we hypoth
esized that 1) patterns of brain FC would associate with multiple, 
distinct neurobehavioral phenotypes of vulnerability or resilience to 
AUD and 2) the number of risk and/or resilience phenotypes an indi
vidual expressed would influence their likelihood of having AUD. We 
leveraged 841 resting-state fMRI data sets from the Human Connectome 
Project (HCP) young adult study (Van Essen et al., 2013) to examine 
brain differences between healthy controls, individuals with AUD, and 
their unaffected siblings. First, a data-driven canonical correlation 
analysis (CCA) related brain FC differences between groups to patterns 
of behaviors in those same individuals. Confirming our first hypothesis, 
CCA identified multiple risk and resilience phenotypes represented in 
human brain function that associated with interpretable behavioral 
profiles. Secondly, we tested the utility of “polyphenotypic” risk and 
resilience scores, predicting that risk and resilience phenotypes would 
combine to increase or decrease AUD risk. Indeed, the number of risk 
phenotypes expressed predicted AUD in a dose-dependent manner, 
whereas the number of resilience phenotypes expressed reduced the 
probability of AUD but also moderated effects of risk phenotypes, sup
porting interactive models of resilience (Brook et al., 1990; Garmezy 
et al., 1984; Rutter, 1985). The results provide brain-informed targets 
for AUD interventions and suggest how interventions targeting either 
risk or resilience phenotypes could impact AUD. 

2. Methods 

Data were downloaded from the Human Connectome Project Young 
Adult 1200 dataset repository (https://www.humanconnectome.org/ 
study/hcp-young-adult, 2017), which includes 1206 highly- 
characterized adults, aged 22–35, recruited to participate in fMRI 
scanning sessions and behavioral assessments. The demographic and 
substance use characteristics of each group are summarized in Table 1. 
Group differences were examined for significance with one-way ana
lyses of variance (ANOVAs) for age, handedness, and alcoholic drinks in 
the past 7 days. Group differences in the distribution of sexes and 
nicotine dependence symptoms were assessed with chi-squared tests. 
Data collection and analysis was carried out in accordance with the 
ethical standards of the Declaration of Helsinki. 

2.1. Experimental design and statistical analysis 

Three groups of subjects were defined, including a healthy control 
group (CON), individuals with AUD, and their unaffected siblings (FH), 
as described in detail in the Inclusion/Exclusion section. CCA were con
ducted in SAS 9.4 using the Cancorr procedure and are described in the 
Canonical Correlation Analysis (CCA) section. To test the associations of 
risk and resilience phenotypes, including polyphenotypic scores, and the 
probability of AUD, we employed logistic regression analyses (SAS 
PROC LOGISTIC) with AUD as a binary outcome variable; these analyses 
are described in the Associations of Risk and Resilience Phenotypes with 
AUD section. 

2.2. Inclusion/exclusion 

Inclusion criteria for the AUD group was meeting DSM-IV criteria for 
either alcohol abuse or dependence based on Semi-Structured Assess
ment for the Genetics of Alcoholism (SSAGA) interview. FH group in
clusion required a sibling in the dataset meeting criteria for the AUD 
group but no personal AUD or other substance use disorder. CON group 
exclusion criteria were personal, sibling, or parental alcohol or sub
stance use disorder, based on SSAGA interview. Exclusion criteria for all 
groups included positive breathalyzer test, positive urine drug screen on 
the day of the scan, or incomplete resting-state data. This selection 
criteria produced 841 subjects, including 433 CON (253 females), 208 
FH (123 females), and 200 AUD (74 females). 

2.3. Functional connectivity analyses 

To examine resting-state FC, we downloaded the “netmats” partial 
correlation matrices for each of the available independent component 
parcellations (i.e. 15, 25, 50, 100, 200, and 300). Preliminary tests 
examined the similarities between CCA results across parcellations. 

Table 1 
Group Characteristics.   

CON FH AUD p-value 

n 433 208 200 – 
Age 28.7 28.6 28.8 p = 0.88 
Sex (females, %) 253 

(58%) 
123 
(59%) 

74 
(37%) 

p < 0.001 

Handedness (left = -100, 
right = 100) 

67.1 71.8 66.2 p = 0.31 

Drinks past 7 days 2.8 4.7 9.2 p < 0.001 
Cannabis abuse/dependence – – 57 

(29%) 
– 

Nicotine tolerance, withdrawal, 
or difficulty quitting 

47 
(11%) 

27 
(13%) 

72 
(36%) 

p < 0.001 

Demographic and substance use measures are presented for controls (CON), 
individuals with a family history of alcohol use disorder (FH), and their siblings 
with an alcohol use disorder (AUD). P-values indicate the significance of group 
differences according to one-way analyses of variance or chi-squared tests. 
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When comparing the first canonical brain variate from each parcella
tion, the combination of functional connections from all parcellations 
tended to be more strongly correlated with each parcellation CCA result 
than any independent parcellation (Supplementary Table 1). Therefore, 
the analysis considered all six parcellations, totaling 71,330 connec
tions. Effects of several nuisance variables were removed based on es
timates from linear regressions that simultaneously controlled for group: 
age, sex, handedness, years of education, nicotine dependence, and 
cannabis dependence. The resulting residual FC values were used in 
subsequent analyses. 

Next, we identified functional connections consistent with risk or 
resilience. Functional connections representing risk were identified as 
those for which the group mean FC values followed the pattern 
CON < FH < AUD or CON > FH > AUD, consistent with an intermediate 
phenotype. Similarly, resilience was defined as connections in which 
siblings diverged (i.e., FH < CON < AUD or FH > CON > AUD), indi
cating protection from AUD. To ensure reliable estimates, the proba
bility that a connection followed patterns of either risk or resilience was 
calculated with 10,000 bootstrap iterations, based on resampling ob
servations within each group with replacement. We also calculated the 
probability that a connection would fit the pattern of risk or resilience by 
chance using random permutation of group labels. Using this method, all 
71,330 connections were designated as possible risk connections, 
possible resilience connections, or neither, depending on whichever 
gave the greatest probability above chance. We did not apply statistical 
thresholds at this step, but rather performed an additional data- 
reduction step (i.e., principal component analysis) to isolate risk and 
resilience signals from this large set of connections prior to entering FC 
data into the CCA (see below). 25,354 functional connections were 
designated as possible risk connections and 23,687 functional connec
tions were designated as possible resilience connections. 

2.4. Canonical correlation analysis (CCA) 

CCA is a multivariate correlation analysis that identifies linear 
combinations of two sets of variables, known as canonical variates, that 
maximize their correlation while remaining orthogonal to other variate 
pairs. In this analysis, we correlated brain FC variables with behavioral 
variables. We conducted two separate analyses: one for risk brain FC and 
one for resilience brain FC. The goal of this analysis was to identify brain 
FC-derived neurobehavioral phenotypes of risk or resilience for AUD. 
We predicted that CCA would identify multiple significant brain- 
behavior correlations. 

First, we reduced the number of brain FC variables for this analysis, 
performing parallel analyses for risk and resilience. We started with all 
possible risk (or resilience) connections that were identified by boot
strapping (see Section 2.3) and then isolated sources of risk- (or resil
ience-) related signals from the noise. To do this, we converted FC values 
to z-scores and then performed a principal component analysis on the set 
of risk (or resilience) functional connections. This analysis identified 
patterns of brain FC that accounted for the greatest variance among the 
included connections. We discarded any components that did not exhibit 
patterns consistent with risk (or resilience) as irrelevant to the analysis. 
Although a previous CCA using this dataset retained the first 100 FC 
components for analysis (Smith et al., 2015), we heeded concerns of 
overfitting with higher ratios of variables to observations and retained 
the first 50 components for CCA. Because the principal component 
analysis was performed on functional connections identified from all six 
parcellations, and thus identified potentially shared, as well as unique, 
sources of variance across parcellations, this strategy enabled us to 
utilize signals relating to between-network and within-network con
nectivity simultaneously. 

We also limited the number of behavioral variables entered in the 
CCA, following a similar process as previously published (Smith et al., 
2015). We excluded variables for which more than 5% of values were 
missing, as well as discrete variables in which more than 90% of values 

were identical. Other variables not clearly related to behavioral and 
personality factors of AUD were not evaluated, such as sleep quality, 
motor skills, and sensory abilities. Notably, we also excluded substance 
use measures so that results would be driven by intermediate measures 
of risk or resilience to AUD rather than by alcohol use itself. The final 
selection of 76 variables are provided in Supplementary Table 2. CCA 
cannot handle missing data; therefore, missing values were imputed 
with the group-specific mean value. Behavioral values underwent a 
rank-based inverse normal transformation to account for departures 
from normality. Prior to entering values into the CCA, effects of age, sex, 
handedness, years of education, nicotine dependence, and cannabis 
dependence were removed from behavioral data following identical 
nuisance regression procedures as described for the brain FC data. 

To correct for the identification of multiple canonical correlations, 
we calculated the distribution of the maximum correlation across 1000 
CCAs using random permutations of the data. A comparison of each 
canonical correlation calculated with the original data to this distribu
tion provided family-wise error-rate corrected p-values. 

We next tested the validity of the identified risk and resilience ca
nonical variates. To ensure the identified canonical correlations repre
sented risk or resilience phenotypes based on evidence for group 
differences, post-hoc analyses examined group effects on behavioral 
variates in one-way analyses of variance (ANOVA) in SAS 9.4 using 
PROC ANOVA. Because reversing the signs of the canonical coefficients/ 
scores does not alter the interpretation of the correlation, we reversed 
signs as necessary based on group effects to be consistent with in
terpretations of greater vulnerability (i.e., CON < FH < ALC) or greater 
resilience (i.e., FH > CON > ALC). 

Risk and resilient brain variates were mapped onto a brain 
anatomical image for visualization purposes. We first conducted ridge 
regressions (i.e., linear regression with L2 regularization to limit over
fitting) using the ridge function in MATLAB to test associations between 
the set of risk and resilient connections and the corresponding canonical 
variable scores for the brain risk or resilience brain variates, using a 
ridge parameter value of 0.01. The purpose of mapping regularized 
regression coefficients, rather than simple correlations, was to highlight 
brain regions most directly related with the phenotypes, rather than 
those regions that were indirectly correlated. Then, the coefficients were 
mapped onto the brain for each of the risk and resilience canonical 
variable scores, separately for each component parcellation (i.e., 15, 25, 
50, 100, 200, 300). Specifically, for each component, we calculated a 
measure of strength of that component’s association with a given brain 
variate by averaging the absolute coefficient values for all functional 
connections of that component. The strength measure was then multi
plied by the corresponding component spatial map, which we had 
normalized to values of 0–1 after discarding negative values. These 
strength-weighted component maps were then summed across all com
ponents from that parcellation and then normalized by the sum of un
weighted component maps. Finally, the normalized strength maps were 
averaged across the six parcellations and then converted to z-scores. 

Table 2 
Canonical correlations and the stability of their estimates.  

Risk r FWE-corrected p Mean r 95% CI 

# 1 0.63  <0.001 0.50 0.34  0.69 
# 2 0.59  <0.001 0.49 0.31  0.66 
# 3 0.57  <0.001 0.49 0.32  0.69 
# 4 0.55  0.002 0.44 0.24  0.63 
Resilience r  Mean r 95% CI 
# 2 0.57  <0.001 0.52 0.32  0.67 
# 3 0.55  0.004 0.44 0.21  0.61 

Canonical correlation values and corresponding p-values for each risk and 
resilience phenotype are provided. The right column displays the mean and 95% 
confidence intervals (CI) of correlations between the behavior canonical variates 
produced on random splits of the sample, repeated 100 times, demonstrating the 
stability of the results across subsamples. 
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To test the stability and generalizability of the CCA results, we 
repeated the analysis on 100 randomly-split samples (Table 2). We 
randomly divided each of the three groups in half 100 times in order to 
determine the reliability of results across two independent samples. In 
this procedure, first each group was divided in half at random. Next, the 
full set of brain functional connections related to either risk or resilience 
(as previously determined with the computationally-intensive boot
strapping of the full sample) was entered into a principal component 
analysis for each of the two groups separately. Then the first 50 com
ponents that followed patterns of risk (i.e., CON < FH < ALC or 
CON > FH > ALC) or resilience (i.e., FH < CON < ALC or 
FH > CON > ALC) were entered into CCA for each of the two groups 
independently. We tested the stability of the CCA results between group 
one and group two. For canonical correlations #1-#5 (for the risk 
analysis) or #2-#6 (for the resilience analysis), we identified the ca
nonical variate of behavior for the second group (considering the first 
ten variates, since variate order may differ between samples) that was 
most similar to that of the first group based on the Pearson correlation. 
This process was repeated for both risk and resilience variates. We 
continued this process 100 times, saving correlation values of the cor
responding canonical variates. The 95% confidence intervals were 
calculated across the 100 bootstrapped samples. 

2.5. Associations of risk and resilience phenotypes with AUD 

We next determined how risk and resilience phenotypes predicted 
AUD diagnosis. First, we set the upper quartile of each brain and 
behavior variate score as a cut-off to create a binary variable indicating 
whether a subject expressed that particular phenotype. We then summed 
the number of phenotypes expressed, separately for brain and behavior, 
and separately for risk and resilience, creating four scores. To examine 
relationships between these polyphenotypic scores and the probability 
of AUD, we employed four separate logistic regression analyses with 
AUD as the outcome variable and the polyphenotypic scores as ordinal 
predictors. Due to low frequencies of 4 total risk phenotypes, we trun
cated risk scores to include categories: 0, 1, 2, and 3+. 

We next tested whether resilience phenotypes interacted with risk 
phenotypes to moderate their influence on AUD risk. Risk scores, resil
ience scores, and their interaction were entered into a logistic regression 
as ordinal variables with AUD as a binary outcome variable. Due to even 
lower cell frequencies when calculating interactions, scores were trun
cated to 0, 1, or 2+ risk phenotypes. 

Finally, we explored whether specific resilience phenotypes moder
ated effects of specific risk phenotypes. In logistic regression analyses, 
we estimated effects of a single risk and single resilience phenotype and 
their interaction on AUD as a binary outcome variable in a pairwise 
manner. We tested a contrast of expressing (1) versus not expressing (0) 
each resilience phenotype in the presence of each risk phenotype (1). 
These exploratory analyses did not correct for multiple comparisons. 

3. Results 

3.1. Canonical correlation analysis 

There were four significant canonical correlations between risk 
functional connections and behavioral measures after multiple com
parison correction (Wilks’ λ(df = 3800/30546): 0.00135, p < 0.001). 
There were three significant canonical correlations between protective 
functional connections and behavioral measures (Wilks’ λ(df = 3800/ 
30546): 0.00191, p < 0.001) after multiple comparison correction. Post- 
hoc analyses using one-way ANOVAs confirmed the presence of signif
icant group effects on behavioral variate scores (all p’s < 0.003), 
demonstrating the validity of these canonical correlations in repre
senting risk. Similar one-way ANOVAs on behavior variate scores for 
resilience indicated significant group effects consistent with resilience 
for the second (p < 0.001) and third (p < 0.001) behavioral variates; 

there were no significant group differences in the first behavioral variate 
(p = 0.29). Thus, only canonical variate pairs #2 and #3 were inter
preted as resilience phenotypes. Canonical correlations for these variate 
pairs are in Table 2. The canonical variates produced in half of the 
sample generally replicated in the other half of the sample with 
moderate-to-strong correlations (Table 2), demonstrating stability of the 
results. 

Fig. 1 presents brain maps of the regions involved in the functional 
connections with the strongest direct influences on each brain canonical 
variate based on ridge regression analyses. Additionally, word clouds 
depict behavioral variables that correlated with each behavioral variate 
with a strength of at least |r| > 0.15 (Fig. 1). We also separately visu
alized all brain functional connections correlating with each of the brain 
canonical variates with a strength of at least |r| > 0.2 based on simple 
Pearson correlations (Supplementary Figure 1). 

3.2. Relationship between risk or resilience phenotypes and AUD 

Compared with individuals with no risk phenotypes, individuals 
with one or more risk phenotypes exhibited an increased probability of 
meeting AUD criteria in a graded positive relationship (Fig. 2A, Sup
plementary Table 3), which was observed for both brain and behavior 
risk scores, although brain relationships were stronger. The number of 
resilience phenotypes was associated with a graded decrease in proba
bility of AUD. Again, these relationships were observed for both brain 
and behavior resilience scores (Fig. 2B, Supplementary Table 3), with 
stronger statistical relationships for brain scores. Independent effects of 
individual phenotypes are also provided (Supplementary Table 4). 

Consistent with an ability of resilience to moderate risk, there was a 
significant interaction of polyphenotypic risk and resilience scores for 
both brain (Wald Х2(5) = 20.4, p = 0.001; Fig. 2C) and behavior (Wald 
Х2(5) = 33.4, p < 0.001; Fig. 2D). These patterns were replicated using a 
median rather than upper-quartile cut-off (Supplementary Figure 2), 
although absolute AUD probabilities depended on the selected cut-off. 
The results indicated that subjects expressing more resilience pheno
types exhibited reduced effects of risk phenotypes on probability of 
AUD. 

Finally, logistic regressions indicated specific brain and behavioral 
resilience phenotypes may be particularly effective at moderating spe
cific risk phenotypes (Table 3). Again, brain phenotypes demonstrated 
stronger effects than behavior phenotypes. 

4. Discussion 

We undertook an innovative data-driven analysis to characterize 
brain-derived risk and resilience phenotypes for AUD, a leading cause of 
morbidity and mortality. A CCA identified multiple brain-behavior 
correlations associated with either risk or resilience, consistent with 
the diverse etiology of AUD. Brain phenotypes underlying risk versus 
resilience implicated largely distinct sets of brain networks, with fron
toparietal networks associating with risk, and subcortical, limbic, and 
paralimbic networks relating to resilience. Furthermore, whereas the 
total number of risk or resilience phenotypes, as well as their interaction, 
predicted the probability of AUD, we also found evidence that specific 
resilience phenotypes may counteract specific risk phenotypes. 

4.1. Risk phenotypes 

We identified five orthogonal brain-behavior relationships related to 
AUD risk based on their association with individuals with AUD and, to 
an intermediate extent, their unaffected siblings, i.e., intermediate 
phenotypes. Notably, networks of executive control regions, including 
the dorsomedial and dorsolateral prefrontal cortex, precuneus, and 
inferior parietal cortex, were most strongly associated with AUD risk, 
suggesting a major role for brain regions outside of the mesolimbic 
dopamine system in AUD risk. The behaviors that most strongly 
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correlated with these connections included diverse cognitive, affective, 
and personality measures. 

Intriguingly, the first (strongest correlation) variate pair indicated 
that greater scores on certain measures of intelligence and cognition, 
such as matrix reasoning and working memory, were associated with 
risk for AUD. Executive function deficits in AUD primarily implicate 
impaired cognitive flexibility and inhibitory control (Day et al., 2015), 
but not intelligence (Bailey et al., 2020; Johnson et al., 2009; Maggs 
et al., 2008) (but see also (Müller et al., 2013)) or working memory 
(Hildebrandt et al., 2004; Tapert et al., 2004; van der Plas et al., 2009), 
except in reports that may be confounded by educational attainment 
(Rosoff et al., 2019), alcohol-related Korsakoff syndrome (Hildebrandt 
et al., 2004), and/or polysubstance use (Crone et al., 2006; Fernández- 
Serrano et al., 2010). We propose that Risk Phenotype #1 relates to a 

lack of cognitive flexibility. Specifically, whereas cognitive rigidity of
fers an advantage for tasks requiring a consistent application of estab
lished rules, the trade-off is an increased reliance on stimulus-directed 
behaviors (Cools and Robbins, 2004; Cools et al., 2007) and thus a 
vulnerability to addiction (Everitt and Robbins, 2016; McKim et al., 
2016). 

Consistent with prior evidence of poor behavioral control among 
individuals with AUD and their family members (Coskunpinar et al., 
2013; DM et al., 2010), the strongest behavioral correlate for Risk 
Phenotype #2 was poor flanker task performance. Similarly, indices of 
delay discounting, a measure of impulsive choice, was also strongly 
correlated, as was anger/aggressive behavior, which similarly relates to 
inhibition deficits and impulsivity (Vigil-Colet and Codorniu-Raga, 
2004). These relationships are consistent with findings that inhibitory 

Fig. 1. Summary of brain-behavior phenotypes of risk and resilience for alcohol use disorder based on canonical correlation analyses. Functional connectivity data 
for risk phenotypes (left) and resilience phenotypes (right) were mapped onto brain anatomical images to depict regions for which their functional connections were 
most strongly associated (averaging across all of the node’s connections) with the brain canonical variate. For these images, we used a regularized linear regression, 
covarying for all other functional connections, to emphasize regions with direct contributions to the brain variate. Only voxels exceeding a z-score threshold of 1.0 
are displayed. Coordinates are in Montreal Neurological Institute (MNI) space. Word clouds were created to display the behavioral variables that correlated with the 
corresponding behavioral variate. Behavioral variables with a correlation strength of at least |r| > 0.15 are shown, where font size is linearly related to correlation 
strength and the maximum |r| is indicated. Red indicates the behavior positively correlated with the behavioral variate whereas blue color indicates negative 
correlations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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control deficits precede substance use (Nigg et al., 2006; Tarter et al., 
2004; Tarter et al., 2003), and represent a major risk pathway for 
addiction. 

We further identified a risk phenotype (#3) consistent with a 
“deviance proneness” (Ohannessian and Hesselbrock, 2008; Sher, 1991) 
or externalizing pathway (Edwards et al., 2016; Hussong et al., 1998) of 
substance use/AUD, that was independent of the impulsivity phenotype, 
despite known relationships between impulsive and externalizing be
haviors (Martel et al., 2017). Rather, the externalizing phenotype 
moderately correlated with somatic and internalizing symptoms, 

suggesting a common brain mechanism underlies these closely- 
intertwined behavioral syndromes as they relate to AUD. 

Risk Phenotype #4 was designated a social-emotional intelligence 
risk phenotype, as it related to better fMRI emotion task performance, 
measures of emotional health, and FC in brain regions important for 
social cognition such as superior temporal sulcus, temporoparietal 
junction, inferior frontal gyrus, and fusiform gyrus (Wolf et al., 2010). 
This risk phenotype may capture enhanced problem drinking among 
young people who are more socially engaged (Martins et al., 2017; 
Power et al., 2005). Indeed, social motives are a particularly strong risk 
factor for AUD for individuals with a positive family history of alcohol 
problems (Vaughan et al., 2009) and among younger individuals more 
generally (Corbin et al., 2011). 

4.2. Resilience phenotypes 

There is a paucity of published research on brain markers of resil
ience in AUD, much less a comprehensive analysis. In the current 
analysis, brain connections related to resilience were focused in the 
brain stem, cerebellum, medial prefrontal cortex, striatum, insula, and 
medial temporal lobe. These regions overlapped closely with regions 
involved in resilience to trauma and adversity (Bolsinger et al., 2018; 
Holz et al., 2020), indicating a potential shared neurobiology of resil
ience to heritable risk and resilience to stressors. 

Resilience phenotype #2 correlated with fewer attention problems 
and, to a lesser extent, fewer internalizing symptoms, extending previ
ous links between attention and resilience to psychopathology (Lee 
et al., 2019; Peng et al., 2012; Shi et al., 2018). Furthermore, treating 
symptoms of attention-deficit/hyperactivity disorder (ADHD) in child
hood and adolescence lowers the risk for AUD associated with this 
developmental disorder (Mannuzza et al., 2008; Wilens, 2003). In fact, a 
link between attention ability in FH and resilience to college binge 
drinking has recently been demonstrated (Elton et al., 2021). This 
phenotype was associated with the greatest reductions in AUD risk both 
independently (Supplementary Table 4) and in interactions (Fig. 2). 
Taken together, these findings suggest that interventions targeting 

Fig. 2. Effect of the number of risk or resilience phenotypes and their interaction on probability of AUD. The prevalence of AUD among subjects having A) 0, 1, 2, or 
3 + risk brain or behavior phenotypes and B) 0, 1, or 2 resilience brain or behavior phenotypes is plotted. The prevalence of AUD among subjects having 0, 1, or 
2 + risk phenotypes are plotted separately according to the number of resilience phenotypes for C) brain phenotypes and D) behavior phenotypes. 

Table 3 
Results of logistic regression analyses testing interactions between risk and 
resilience phenotypes on probability of alcohol use disorder.  

Brain Phenotypes #2 Attention #3 Low Delinquency 

#1 Cognitive Intelligence CON = − 1.28 CI:(− 1.99, 
− 0.57) p < 0.001 

CON = − 1.04 CI:(− 1.81, 
− 0.27) p = 0.008 

#2 Impulsivity CON = − 1.26 CI:(− 1.95, 
− 0.57) p < 0.001 

CON = − 0.67 CI:(− 1.41, 
0.06) p = 0.071 

#3 Externalizing CON = − 0.52 CI:(− 1.50, 
0.57) p = 0.30 

CON = − 1.29 CI:(− 1.96, 
− 0.62) p < 0.001 

#4 Social− Emotional 
Intelligence 

CON = − 1.19 CI:(− 1.86, 
− 0.51) p < 0.001 

CON = − 0.99 CI:(− 2.01, 
0.03) p = 0.056 

Behavior Phenotypes #2 Attention #3 Low Delinquency 

#1 Cognitive Intelligence CON = − 1.24 CI:(− 2.00, 
− 0.48) p = 0.001 

CON = − 0.59 CI:(− 1.33, 
0.14) p = 0.11 

#2 Impulsivity CON = − 0.73 CI:(− 1.46, 
− 0.01) p = 0.048 

CON = − 0.13 CI:(− 0.94, 
0.67) p = 0.74 

#3 Externalizing CON = − 0.63 CI:(− 2.22, 
0.97) p = 0.44 

CON = − 0.82 CI:(− 1.47, 
− 0.18) p = 0.012 

#4 Social-Emotional 
Intelligence 

CON = − 0.38 CI:(− 1.02, 
0.26) p = 0.25 

CON = − 0.01 CI:(− 0.90, 
0.88) p = 0.98 

Interaction of pairwise risk and resilience phenotypes were tested in logistic 
regression analyses. Risk phenotypes are in rows and resilience phenotypes are 
in columns, and results of pairwise interactions are presented. CON values 
represent estimates of the contrast of the interaction term when Risk = 1 and 
Resilience = 1 versus Risk = 1 and Resilience = 0. CI, confidence interval. 
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attention in individuals with familial risk for AUD, especially those with 
attention problems, may effectively promote resilience among these 
individuals. 

This brain-behavior resilience pathway was associated with reduced 
antisocial personality and rule breaking. The brain results mirrored prior 
work identifying antisocial personality disorder effects on FC between 
the cerebellum and superior parietal regions (Tang et al., 2013). Anti
social personality is an important predictor of alcohol use problems 
above and beyond the risk conferred by FH (Hesselbrock and Hessel
brock, 1992). Antisocial behavior and conduct problems in childhood 
and adolescence are have both environmental (Basto-Pereira et al., 
2016) and genetic (Rosenström et al., 2018) components. In fact, a ge
netic polymorphism and epigenetic regulation of the MAOA gene, for 
which high-activity variants protect against antisocial behavior (Kolla 
and Vinette, 2017), confers resilience against the increased risk for 
alcohol use problems among males with early life adversity (Nilsson 
et al., 2011; Bendre et al., 2018). Such mechanisms may represent 
important targets for promoting resilience to AUD among certain at-risk 
groups. Also, whereas Risk Phenotype #3 implicated increased rule 
breaking in AUD risk, Resilience Phenotype #3 strongly associated with 
reduced rule breaking and significantly moderated Risk Phenotype #3 
(Fig. 2). 

4.3. Combined effects of phenotypes 

Similar to combining multiple risk genotypes in polygenic risk scores 
for AUD (Clarke et al., 2016; Taylor et al., 2016), our results suggest the 
potential utility of polyphenotypic scores. Previous work has demon
strated that prediction of AUD is improved when combining two inde
pendent risk phenotypes (Lange et al., 2010). We expand upon that work 
to demonstrate that risk phenotypes exhibit a dose-dependent relation
ship with AUD. In fact, a polyphenotypic brain risk score of 3+ using an 
upper quartile cut-off is associated with greater than 90% probability of 
having AUD (Fig. 2, Supplementary Table 3). In general, brain risk 
phenotypes provided more robust relationships than behavioral phe
notypes, supporting the utility of neuroimaging markers in psychiatric 
illness (Aydin et al., 2019; Etkin, 2019). However, even a single risk 
behavior phenotype nearly tripled (OR = 2.8, Supplementary Table 3) 
the odds of having AUD, although effects of each independent risk 
phenotype varied (Supplementary Table 4). Resilience phenotypes also 
demonstrated dose-dependent (negative) relationships with AUD. 

In this study, interaction analyses demonstrated that resilience 
phenotypes moderated the influence of risk phenotypes. These in
teractions are consistent with a “risk-protective” model in which resil
ience processes dampen effects of risk (Garmezy et al., 1984; Rutter, 
1985); however, we also provide evidence that a greater number of 
protective phenotypes have a greater influence on reducing risk (Brook 
et al., 1990). The data further suggested that these interactions might be 
partly driven by specific risk-resilience phenotype pairs (Fig. 2), sug
gesting the potential utility of personalized intervention strategies 
dependent upon an individual’s profile of neurocognitive risk 
phenotypes. 

4.4. Limitations 

Although the inclusion of both affected (i.e., AUD) and unaffected (i. 
e., FH) siblings is a study strength, FH individuals generally drink an 
intermediate amount relative to CON and AUD, which obscures cause 
and effect relationships with alcohol use. Brain or behavioral alterations 
among FH may represent risk factors, alcohol toxicity effects (including 
in utero), protective factors, or compensatory changes. Additionally, the 
inclusion of different measures, including other known AUD risk phe
notypes, such as sweet liking or alcohol sensitivity may have produced 
different canonical correlations. Similarly, this analysis focuses on 
behavior and personality phenotypes of AUD, but the inclusion of sen
sory, motor, and physiological and sleep quality measures that were 

excluded could have informed. In addition, the cross-sectional design 
does not allow for a clear test of the validity of the identified “risk” and 
“resilience” phenotypes. However, these hypothesis-generating results 
should be examined further in the context of a longitudinal study design. 
Furthermore, these risk and resilience phenotypes may play differing 
roles across the lifespan, and thus may not translate to older or younger 
populations. Finally, the groups sizes were relatively small, which may 
have resulted in less reliable findings. 

4.5. Conclusions 

This analysis revealed both intermediate phenotypes of AUD risk and 
adaptive neurocognitive mechanisms of resilience. These results have 
the potential to be extended to develop innovative brain-informed in
terventions for prevention or treatment of AUD. Furthermore, the 
combination of phenotypes could inform multidimensional typologies of 
risk within this heterogeneous disorder, leading to more effective, 
personalized treatment and early intervention strategies. 
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Fernández-Serrano, M.J., Pérez-García, M., Schmidt Río-Valle, J., Verdejo-García, A., 
2010. Neuropsychological consequences of alcohol and drug abuse on different 
components of executive functions. J. Psychopharmacol. (Oxford, England) 24 (9), 
1317–1332. 

Garavan, H., Albaugh, M., 2019. Connecting with resilience. Biol. Psychiatry 85 (8), 
621–622. 

Garmezy, N., Masten, A., Tellegen, A., 1984. The study of stress and competence in 
children: a building block for developmental psychopathology. Child development 
55. 

Herting, M.M., Fair, D., Nagel, B.J., 2011. Altered fronto-cerebellar connectivity in 
alcohol-naive youth with a family history of alcoholism. Neuroimage 54, 
2582–2589. 

Hesselbrock, M.N., Hesselbrock, V.M., 1992. Relationship of family history, antisocial 
personality disorder and personality traits in young men at risk for alcoholism. 
J. Stud. Alcohol 53. 

Hildebrandt, H., Brokate, B., Eling, P., Lanz, M., 2004. Response shifting and inhibition, 
but not working memory, are impaired after long-term heavy alcohol consumption. 
Neuropsychology 18 (2), 203–211. 

Holz, N., Tost, H., Meyer-Lindenberg, A., 2020. Resilience and the brain: a key role for 
regulatory circuits linked to social stress and support. Molecular psychiatry 25. 

https://www.humanconnectome.org/study/hcp-young-adult, 2017. HCP1200 July 2017 
release of high-level rfMRI connectivity analyses. 

Hussong, A., Curran, P., Chassin, L., 1998. Pathways of risk for accelerated heavy alcohol 
use among adolescent children of alcoholic parents. J. Abnormal Child Psychol. 26. 

Johnson, W., Hicks, B.M., McGue, M., Iacono, W.G., 2009. How intelligence and 
education contribute to substance use: hints from the Minnesota twin family study. 
Intelligence 37. 

Kendler, K.S., Aggen, S.H., Prescott, C.A., Crabbe, J., Neale, M.C., 2012a. Evidence for 
multiple genetic factors underlying the DSM-IV criteria for alcohol dependence. Mol. 
Psychiatry 17, 1306–1315. 

Kendler, K.S., Sundquist, K., Ohlsson, H., Palmér, K., Maes, H., Winkleby, M.A., 
Sundquist, J., 2012b. Genetic and familial environmental influences on the risk for 
drug abuse: a national Swedish adoption study. Arch. Gen. Psychiatry 69 (7), 
690–697. 

Kim-Spoon, J., Deater-Deckard, K., Holmes, C., Lee, J., Chiu, P., King-Casas, B., 2016. 
Behavioral and neural inhibitory control moderates the effects of reward sensitivity 
on adolescent substance use. Neuropsychologia 91, 318–326. 

Kolla, N.J., Vinette, S.A., 2017. Monoamine Oxidase A in Antisocial Personality Disorder 
and Borderline Personality Disorder. Current behavioral neuroscience reports 4. 

Lange, L.A., Kampov-Polevoy, A.B., Garbutt, J.C., 2010. Sweet liking and high novelty 
seeking: independent phenotypes associated with alcohol-related problems. Alcohol 
Alcohol. 45 (5), 431–436. 

Lee, D., Lee, S., Park, C., Kim, B., Lee, C., Cha, B., Seo, J., Choi, J., 2019. The Mediating 
Effect of Impulsivity on Resilience and Depressive Symptoms In Korean Conscripts. 
Psychiatry investigation 16. 

Luthar, S., Sawyer, J., Brown, P., 2006. Conceptual issues in studies of resilience: past, 
present, and future research. Annals of the New York Academy of Sciences 1094. 

Maggs, J.L., Patrick, M.E., Feinstein, L., 2008. Childhood and adolescent predictors of 
alcohol use and problems in adolescence and adulthood in the National Child 
Development Study. Addiction (Abingdon, England) 103 (s1), 7–22. 

Mannuzza, S., Klein, R.G., Truong, N.L., Moulton, J.L., 3rd, Roizen, E.R., Howell, K.H., 
Castellanos, F.X., 2008. Age of methylphenidate treatment initiation in children with 
ADHD and later substance abuse: prospective follow-up into adulthood. The 
American journal of psychiatry 165. 

Martel, M.M., Levinson, C.A., Lee, C.A., Smith, T.E., 2017, Impulsivity Symptoms as Core 
to the Developmental Externalizing Spectrum. Journal of abnormal child psychology 
45. 

Martins, J.G., de Paiva, H.N., Paiva, P.C.P., Ferreira, R.C., Pordeus, I.A., Zarzar, P.M., 
Kawachi, I., Ryabinin, A.E., 2017. New evidence about the “dark side” of social 
cohesion in promoting binge drinking among adolescents. PLoS ONE 12 (6). 

Martz, M., Cope, L., Hardee, J., Brislin, S., Weigard, A., Zucker, R., Heitzeg, M., 2019. 
Frontostriatal Resting State Functional Connectivity in Resilient and Non-Resilient 
Adolescents with a Family History of Alcohol Use Disorder. Journal of child and 
adolescent psychopharmacology 29. 

McKim, T., Bauer, D., Boettiger, C., 2016. Addiction History Associates with the 
Propensity to Form Habits. Journal of cognitive neuroscience 28. 

ME, M., LM, C., JE, H., SJ, B., A, W., RA, Z., MM, H., 2019. Frontostriatal Resting State 
Functional Connectivity in Resilient and Non-Resilient Adolescents with a Family 
History of Alcohol Use Disorder. Journal of child and adolescent 
psychopharmacology 29. 

Mitchell, S., 2011. The genetic basis of delay discounting and its genetic relationship to 
alcohol dependence. Behavioural processes 87. 

Morean, M.E., Corbin, W.R., 2010. Subjective response to alcohol: a critical review of the 
literature. Alcohol. Clin. Exp. Res. 34, 385–395. 

Müller, M., Kowalewski, R., Metzler, S., Stettbacher, A., Rössler, W., Vetter, S., 2013. 
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