Skip to main content
. 2021 Aug 19;6:689264. doi: 10.3389/frma.2021.689264

TABLE 2.

Dietary biomarkers document classification results. Highest precision, recall, F1-score, F2-score and AUC achieved by each algorithm: Decision Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). The highest value of each metric on each feature type is bolded.

TITLES
MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC
 DT 0.216 0.433 0.262 0.302 0.635
 LR 0.388 0.707 0.495 0.601 0.910
 NB 0.528 0.652 0.475 0.561 0.903
 NN 0.560 0.331 0.385 0.348 0.887
 RF 0.415 0.661 0.489 0.577 0.889
 SVM 0.586 0.688 0.462 0.560 0.904
ABSTRACTS
MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC
 DT 0.337 0.570 0.397 0.449 0.720
 LR 0.559 0.770 0.618 0.687 0.953
 NB 0.606 0.752 0.644 0.684 0.952
 NN 0.854 0.441 0.542 0.472 0.948
 RF 0.621 0.705 0.591 0.644 0.954
 SVM 0.512 0.798 0.572 0.658 0.949
TITLES + ABSTRACTS
MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC
 DT 0.379 0.533 0.419 0.480 0.740
 LR 0.550 0.779 0.614 0.701 0.948
 NB 0.601 0.788 0.643 0.695 0.950
 NN 0.764 0.432 0.528 0.463 0.945
 RF 0.665 0.687 0.586 0.634 0.953
 SVM 0.512 0.807 0.564 0.664 0.948
TITLES + METADATA
MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC
 DT 0.307 0.468 0.328 0.390 0.693
 LR 0.392 0.734 0.502 0.616 0.930
 NB 0.373 0.707 0.456 0.566 0.914
 NN 0.603 0.266 0.333 0.274 0.905
 RF 0.476 0.725 0.492 0.592 0.924
 SVM 0.163 0.168 0.144 0.154 0.725

The highest value of each metric is bolded.