Skip to main content
. 2021 Aug 19;6:689264. doi: 10.3389/frma.2021.689264

TABLE 3.

Dietary biomarkers ensemble classifiers’ results. Highest precision, recall, F2-score and AUC reached for each algorithm: Decision Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). The NB algorithm did not work with the Stacking approach.

BAGGING
MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC
 DT 0.742 0.477 0.546 0.502 0.941
 LR 0.664 0.707 0.642 0.663 0.950
 NB 0.716 0.580 0.594 0.582 0.951
 NN 0.729 0.477 0.537 0.497 0.942
 RF 0.648 0.541 0.571 0.550 0.958
 SVM 0.740 0.405 0.489 0.433 0.957
STACKING
MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC
 DT 0.417 0.735 0.513 0.622 0.842
 LR 0.380 0.890 0.521 0.685 0.961
 NN 0.581 0.505 0.521 0.509 0.911
 RF 0.568 0.734 0.624 0.673 0.952
 SVM 0.374 0.890 0.513 0.679 0.947

The highest value of each metric is bolded.