Skip to main content
. 2021 Aug 19;6:689264. doi: 10.3389/frma.2021.689264

TABLE 5.

Dietary biomarkers classifiers on the test set. Precision, recall, F2-score and AUC achieved each algorithm: Decision Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM), as well as the Bagging and Stacking approaches, using the combinations that achieved the highest F2-score.

Precision Recall F1 F2 AUC
DT 0.403 0.532 0.459 0.500 0.744
LR 0.530 0.745 0.619 0.689 0.854
NB 0.515 0.745 0.609 0.684 0.853
NN 0.700 0.447 0.545 0.482 0.718
RF 0.450 0.766 0.567 0.672 0.857
SVM 0.451 0.787 0.574 0.685 0.867
Bagging 0.542 0.681 0.604 0.648 0.825
Stacking 0.388 0.851 0.533 0.687 0.889

The highest value of each metric is bolded.