Skip to main content
. 2021 Aug 31;3(3):fcab188. doi: 10.1093/braincomms/fcab188

Table 3.

Feature definitions

10 log 10(μ(·)) 10 log 10(σ(·))
x(i) f5(i)=10  log 10(σ(x(i)))
R(y(i)) f1(i)=10  log 10(μ(R(y(i)))) f6(i)=10  log 10(σ(D(y(i))))
L(y(i)) f2(i)=10  log 10(μ(L(y(i)))) f7(i)=10  log 10(σ(L(y(i))))
C(y(i)) f3(i)=10  log 10(μ(C(y(i)))) f8(i)=10  log 10(σ(C(y(i))))
T(y(i)) f4(i)=10  log 10(μ(T(y(i)))) f9(i)=10  log 10(σ(T(y(i))))

 tan 1(skew(·)) 10 log 10(kurt(·))

y(i) f10(i)= tan 1(skew(y(i))) f15(i)=10  log 10(kurt(y(i)))
R(y(i)) f11(i)= tan 1(skew(R(y(i)))) f16(i)=10  log 10(kurt(D(y(i))))
L(y(i)) f12(i)= tan 1(skew(L(y(i)))) f17(i)=10  log 10(kurt(L(y(i))))
C(y(i)) f13(i)= tan 1(skew(C(y(i)))) f18(i)=10  log 10(kurt(C(y(i))))
T(y(i)) f14(i)= tan 1(skew(T(y(i)))) f19(i)= log 1(kurt(T(y(i))))

Features are computed by starting with either the normalized (y(i)) or non-normalized (x(i)) data per for each epoch/channel combination i; c.f. Equations 1 and 2. Next, a transformation is applied (none, rectification R, line-length L, curvature C, or Teager-Kaiser Energy T; c.f. Equations 3–6), followed by a statistical measure (mean, variance, skewness or kurtosis). Lastly, a scaling transformation (arctangent or conversion to decibels) is applied. Rows in the table represent specific transforms to the data, and columns represent specific combinations of statistical measure and scaling transformation.