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Effective iron trafficking from the mother to fetus in at-
risk pregnancies is critical for fetal neurodevelopment. In this
month’s issue of The Journal of Nutrition, Delaney et al. (1)
leverage innovative tools to better understand maternal-fetal
iron trafficking in, “Umbilical cord erythroferrone is inversely
associated with hepcidin, but does not capture the most variabil-
ity in iron status of neonates born to teens carrying singletons
and women carrying multiples.” Identifying abnormalities of
the maternal-fetal iron metabolism is important, as congenital
iron deficiency (ID) can no longer be considered a nutritional
disorder with cost-effective treatment, but a neurocognitive and
behavioral risk factor. Thus, preventing either congenital ID or
the development of ID anemia (IDA) in early life is an important
arm of an infant neuroprotective strategy (2).

Maternal ID in pregnancy is common and impacts the fetal
iron status, as the enteral iron supplementation increases fetal
iron accretion (3). Although women commonly develop ID in
the third trimester, current clinical screening for ID utilizes
blood hemoglobin concentrations early in pregnancy as the
marker, in part because physiological drops in hemoglobin
concentrations occur consequent to hemodilution in late
pregnancy (4). Using hemoglobin as a surrogate screen for ID is
inadequate and out of date, being neither specific nor sensitive
for diagnosing preanemic ID in most populations. Perhaps
because of poor screening tools, the US Preventative Services
Task Force concluded there was insufficient current evidence to
assess the balance of benefits and harms of IDA screening in
pregnancy (5). Employing better tools could clarify the utility
of screening for ID in pregnancy.

Maternal IDA is a risk factor for congenital ID, despite iron
being prioritized for the fetus at the expense of the maternal iron
compartment. However, in the setting of placenta dysfunction
or certain maternal health issues, this prioritization may be
compromised. Intrauterine growth restriction, hypertensive
disorders, chronic inflammatory disorder, obesity, or diabetes
increase risks for congenital ID even in the face of a normal
maternal iron status (6–10). Fetal risk factors for congenital
ID also include male sex (larger fetus), being large or small
for gestational age, multifetal gestation, and/or prematurity
(7–9, 11). In addition, several social determinants of health
increase risks for maternal and/or congenital ID, including lower
socioeconomic status, maternal youth, maternal ID, maternal
childhood lead exposure, and/or maternal ethnic minority status
(9, 12, 13).

Supported by National Institutes of Health grant R01HD089989.
Author disclosures: The author reports no conflicts of interest.
Address correspondence to PJK (e-mail: pkling@wisc.edu).

Clinical tools used to piece together the maternal-fetal iron-
erythropoiesis puzzle have moved well beyond hemoglobin
and are becoming more comprehensive. An assay for erythro-
poietin (EPO) levels was the first to examine maternal-fetal
erythropoiesis in the 1980s (14, 15). In the 1990s, serum
soluble transferrin receptor (sTfR) 1 (16) was applied to assess
iron availability for erythropoiesis. With the identification
of intestinal iron transporters, divalent metal transporter 1
(DMT1), and ferroportin (17) came the recognition in the
early 2000s that human placentas express TfR1, DMT1, and
ferroportin transporters (18–21). The most recent additions
to the toolbox examining the maternal-fetal iron metabolism
include identification of the iron trafficking regulator, hepcidin
(22, 23), and erythroblast-produced iron regulator, erythrofer-
rone (ERFE) (24). The authors of this manuscript previously
published on maternal ERFE levels in the same cohorts of
at-risk adolescent and multifetal gestation pregnancies used
in the current publication (25). Their prior study found that
maternal ERFE was associated with erythropoietic demand
during pregnancy, but not with maternal hepcidin (25). Because
iron indices, EPO, and hepcidin are known to be also produced
by the fetus, the latest piece of the puzzle is to place fetal ERFE
levels within this context. Limited data supported an intact fetal
EPO-ERFE-hepcidin axis (26). Here, Delaney et al. (1) examine
this axis in the setting of pregnancies at high risk for congenital
ID.

These studies both set out to understand the fetal-maternal
iron physiology and generate clinically useful biomarkers of
congenital ID in this setting. They observed that umbilical cord
ERFE levels were found to be inversely related to fetal iron
indices and positively related to the fetal erythropoietic drive,
supporting fetal regulation of ERFE production (1). Cord ERFE
levels were higher than maternal ERFE levels, likely due to
the relatively higher proportion of immature erythrocytes in
fetuses than in pregnant women. Cord ERFE levels were directly
related to the cord iron indices, sTfR1, and sTFR index. It
is important to note that higher sTfR1 reflects both ID and
release from maturing erythrocytes (i.e., erythropoiesis) in early
life (16). Of the potential biomarkers tested, cord hepcidin and
the ratio of cord hepcidin to EPO explain the most variance
in fetal iron and hemoglobin levels (1). The finding that the
hepcidin-EPO ratio was related to the fetal iron status may be
related in part to the regulation of EPO production by hypoxia-
inducible factor 2, which is regulated in turn by iron (27, 28).
Given that ERFE is released from erythroblasts, it would be
informative to study pregnancies in which fetal erythropoiesis
is increased (e.g., maternal obesity and/or diabetes). In such
settings, fetal iron availability for storage is decreased (9).
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Another area for further exploration is the observed difference
in cord ERFE levels in African American compared with
Caucasian infants. It will be informative to determine the
relative contributions of genetic and socioeconomic influences.
The study by Delaney et al. (1) thus provides insights into future
directions in understanding the regulation of the maternal-
fetal iron metabolism and erythropoiesis. Such studies offer the
possibility of better identifying those fetuses at risk for ID, as
well as approaches to mitigation beyond screening maternal
hemoglobin and supplementing iron.
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