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ABSTRACT
Background: Healthy plant-based diet index (hPDI) is associated with a lower risk of cardiometabolic conditions, but

its association as well as interactions with microbiome have not been elucidated.

Objectives: We aimed to investigate the interrelations between hPDI, gut microbiome, and cardiometabolic risk

markers.

Methods: hPDI was derived from dietary assessments by a validated FFQ and was examined in relation to

metagenomic profiles of 911 fecal samples collected from 303 men aged 71 ± 4 y with an average BMI (in kg/m2) of

25.2 ± 3.6 in the Men’s Lifestyle Validation Study. Principal coordinate (PCo) analysis based on Bray–Curtis dissimilarity

was conducted, and interactions between hPDI and PCo were examined by using a metabolic risk score composed of

blood lipids, BMI, and glycated hemoglobin.

Results: After multivariable adjustment, hPDI was significantly associated with the relative abundance of 7 species

and 9 pathways. In particular, higher hPDI was significantly associated with a higher relative abundance of Bacteroides

cellulosilyticus and Eubacterium eligens, amino acid biosynthesis pathways (L-isoleucine biosynthesis I and III and

L-valine biosynthesis), and the pathway of pyruvate fermentation to isobutanol. A favorable association between hPDI

and the metabolic risk score was more pronounced among men with a higher PCo characterized by higher abundance

of Bacteroides uniformis and lower abundance of Prevotella copri. At the individual species level, a similar interaction

was also observed between hPDI and P. copri, as well as with Clostridium clostridioforme or Blautia hydrogenotrophica

(all P-interaction < 0.01).

Conclusion: A greater adherence to a healthy plant-based diet by older men was associated with a microbial profile

characterized by a higher abundance of multiple species, including B. cellulosilyticus and E. eligens, as well as pathways

in amino acid metabolism and pyruvate fermentation. In addition, inverse associations between healthy plant-based diet

and human metabolic risk may partially depend on microbial compositions. J Nutr 2021;151:2780–2789.
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Introduction

There is a rapidly growing body of evidence suggesting that diet
plays a lifelong role in the mutualistic relation between humans
and their gastrointestinal microbiota (1). The gastrointestinal
microbiota harvest energy and micronutrients through fermen-
tation of dietary fiber and other constituents from the host’s diet.
The host may subsequently also absorb energy and beneficial
compounds (e.g., SCFAs and enterolignans) that are otherwise

inaccessible to humans (2). Conversely, the microbiota also
generate bioactive compounds that may adversely influence
human health, such as trimethylamine N-oxide from animal
products (3). This complex, mutual relation of human diet
with microbial composition and functionality requires a deep
understanding (4, 5).

In this regard, several studies have demonstrated that a
variety of healthy dietary patterns can be metabolized by the
microbiota to exert beneficial effects on host health, while
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the dietary patterns may also gradually influence microbial
composition over time (e.g., via selection for resistant starch
or carbohydrate fermentation) (6–9). Our previous analyses
showed that greater adherence to healthy plant-based diets that
do not completely exclude animal proteins was significantly
associated with a lower risk of cardiometabolic conditions (10),
and the diets could be as beneficial as the strict vegan or
vegetarian diets with regard to reducing diabetes risk (11, 12).
In contrast to the vegan/vegetarian diets that are consumed by
a small proportion of populations, plant-based diets are much
more commonly practiced globally. Indeed, plant-based diets
are gaining in popularity because of their potentially beneficial
effects to both human and planetary health (10–13). In addition,
there is a potentially intrinsic relation between these diets and
microbiota because the diets emphasize healthy plant-based
foods, which are primary contributors of fiber, lignans, and
other healthy prebiotics. However, the relation between plant-
based diets and human gut microbiota remains to be defined.

To fill this important knowledge gap, in the current analysis,
we focused on the adherence to healthy plant-based diets as
reflected by a healthy plant-based diet index (hPDI) score
and evaluated its relation with microbial composition and
functionality and metabolic risk. Our central hypothesis is that
hPDI score is associated with a beneficial profile of microbial
compositions and pathways. We also explored potential
interactions between hPDI and microbiome composition on the
profile of metabolic risk.

Methods
Study population

The Men’s Lifestyle Validation Study (MLVS) is a substudy
within the Health Professionals Follow-Up Study (HPFS), which was
established in 1986 when 51,529 male US health professionals aged 40–
75 y completed a mailed questionnaire about their medical history and
lifestyle at baseline, with follow-up questionnaires being administered
subsequently in order to assess and update lifestyle, diet, and medical
history (12, 14). The current ad hoc analysis is based on existing data
collected through the MLVS.
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Dietary assessments
In the MLVS, diet was assessed repeatedly at the beginning and the end
of the study (1 y apart) using a validated semiquantitative FFQ (15, 16).
The FFQ consisted of >130 questions inquiring how often, on average,
participants consumed a prespecified amount of the foods during the
previous year. The questions had 9 possible responses, ranging from
never or <1 time per month to ≥6 times per day. The reproducibility
and validity of the FFQ in measuring food intake have been documented
in previous studies (17, 18). For example, the average deattenuated
Pearson correlation coefficients between FFQ assessments and those by
multiple 7-d diet records ranged from 0.45 for nuts to 0.85 for tea/coffee
for the 18 food groups considered in the hPDI in a previous validation
study in the HPFS (18). Daily intake of energy and fiber was calculated
by multiplying the frequency of consumption of each food item by its
nutrient content and summing the nutrient contributions of all foods.
Nutritional composition data were from Harvard food composition
databases.

hPDI
Based on the frequency and prespecified serving size, we calculated
servings of intake per day for each food item listed in the FFQ. We then
grouped the food items into 18 groups based on nutritional and culinary
similarities of foods within the broad categories of plant-based foods
and animal products by summing intakes of all food items in each food
group. We considered whole grains, fruits, vegetables, nuts, legumes,
vegetable oils, and tea/coffee as healthy plant food groups; fruit juices,
sugar-sweetened beverages, refined grains, potatoes, and sweets/desserts
were considered unhealthy plant food groups. Animal food groups
included animal fats, dairy, eggs, fish/seafood, meat (poultry and red
meat), and miscellaneous animal-based foods. Next, we categorized
these 18 food groups (servings/day) into quintiles, and each quintile was
assigned a score between 1 and 5. Participants receive a score of 1–5 (1
for lowest quintile and 5 for highest quintile) for each healthy plant
food group; for animal food groups and unhealthy plant food groups,
we reversed the score so that higher intake received a lower score (1
for highest quintile and 5 for lowest quintile). We then summed the
scores across the 18 food groups to derive the hPDI score, which has
a theoretical range of 18 (lowest possible score) to 90 (highest possible
score). Overall, a higher hPDI score reflects higher intake of healthy
plant-based foods and lower intake of animal products and unhealthy
plant-based food (12, 13).

We considered both FFQ surveys in the MLVS and dietary
assessments collected using similar FFQs quadrennially from 1986 to
2010 in the HPFS and calculated the cumulative average of hPDI scores
based on all FFQ assessments (up to 9 assessments) to measure habitual
long-term adherence to the healthy plant-based diet.

In secondary analyses, we also derived an overall PDI score without
differentiating between healthy and unhealthy plant-based food groups
(i.e., foods in both categories were positively ranked corresponding to
quintiles), as well as unhealthy PDI (uPDI) score by assigning positive
scores corresponding to the quintile distribution of unhealthy plant-
based food intake and reversely assigning scores to the intake of other
foods (12, 13).

Fecal sample collection
The MLVS comprised 308 participants who underwent repeated
examinations of diet and lifestyle and multiple collections of blood
and fecal samples in 2012–2013 (19). All examinations were conducted
within a 1-y period, and fecal samples were self-collected by participants
as previously described (19). Briefly, participants provided up to
2 pairs of fecal samples (6 mo apart) from 2 adjacent bowel
movements. A short questionnaire was administered for the fecal sample
collections and inquired about fecal consistency as indicated through
the Bristol Stool Chart, questions regarding the use of acid-lowering
and antibiotic medications, antibiotic usage, and other information
regarding gastrointestinal health. At approximately the same time as
fecal sample collection, a fasting blood sample was also collected
(twice, 6 mo apart). Body weight and other anthropometric and lifestyle
variables were also assessed at these time points. Participants reported
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date of birth, geographic location, ethnicity, alcohol consumption, and
smoking status at baseline examination when they were enrolled in the
MLVS. All MLVS participants were free of a history of coronary heart
disease, stroke, cancer, or major neurological disease.

Taxonomic and functional profiling of metagenomic
samples
Shotgun metagenomes were generated from study specimens using
paired-end 100nt Illumina HiSeq shotgun sequencing as previously
described (19, 20). DNA from fecal samples was extracted using
standard protocols and subsequentially prepared for sequencing using
the Nextera XT DNA Library Preparation Kit and sequenced to a
target depth of 1–2 Gnt each. Taxonomic and functional profiles
were generated using the bioBakery workflow (21). Briefly, quality
controls included the removal of human sequences, quality trimming,
and depletion of duplicate reads using KneadData (http://huttenhower.
sph.harvard.edu/kneaddata), taxonomic profiling by MetaPhlAn2 (22),
and functional profiling by HUMAnN2 (23). Microbiome profiles of
the MLVS men have been previously described (19, 20).

We excluded participants with missing values of plasma metabolic
marker measurements [including blood lipids and glycated hemoglobin
(HbA1c)] or hPDI score, which resulted in 911 metagenomes from 303
participants included in the current analysis (Supplemental Figure 1).
We further filtered all taxonomic features with a relative abundance
<10−4 in >10% of all samples. Similarly, we filtered all pathways with
a relative abundance <10−5 in >10% of all samples.

Assessment of metabolic risk factors
Fasting blood samples were collected through venipuncture into sodium
heparin tubes and shipped by overnight mail with an ice pack. Plasma
levels of HDL cholesterol and triacylglycerol were assayed using
enzymatic methods. HbA1c levels were measured using turbidimetric
immunoinhibition (Roche Diagnostics). Blind quality control samples
(10%) were randomly interspersed in the assay batches, based on which
we estimated coefficients of variation <7% for all plasma assays.

To build the metabolic risk score, we first divided triacylglycerol,
HDL cholesterol, BMI (in kg/m2), and HbA1c into quintiles, and each
quintile was assigned a score between 1 and 5. Participants received a
score of 1–5 (1 for the lowest quintile and 5 for the highest quintile) for
triacylglycerol, BMI, and HbA1c; they received a reverse score for HDL
cholesterol (1 for the highest quintile and 5 for the lowest quintile). We
then summed the scores across the 4 variables to derive a metabolic
score that has a theoretical range of 5 (lowest possible score, low risk)
to 20 (highest possible score, high risk).

Statistical analysis
All species/pathways data were normalized via arc-sin square root
transformation. MaAslin2 (https://huttenhower.sph.harvard.edu/maas
lin2) was used to examine the associations between the hPDI score and
the relative abundance of taxonomy and pathways, with a random effect
to account for within-person correlations between the 4 time points.
Visualizations were constructed using Graphical Phylogenetic Analysis
(https://huttenhower.sph.harvard.edu/graphlan). In secondary analyses,
we also examined the association between the 18 individual food
groups, as well as dietary fiber, and microbial features. Analyses were
based on per SD of hPDI and other dietary variables. In multivariable
analyses, we adjusted for time-varying covariates assessed proximately
to each fecal/blood sample collection, including age, total energy intake,
physical activity, smoking, alcohol consumption, Bristol categories,
use of antibiotics in past year, and consumption of any probiotics
(except yogurt) in the past 2 mo. The analyses of associations between
hPDI score and metabolic risk factors were based on 466 plasma
measurements of the 303 participants, of whom 163 had repeated
measurements. Linear mixed-effect models (PROC MIXED, SAS version
9.4; SAS Institute) were used to examine the associations between hPDI
and metabolic risk factors, with an unstructured covariance matrix
specified to account for within-person correlations between the 2 time
points.

To derive microbial patterns at the species level, we used principal
coordinate (PCo) analysis based on Bray–Curtis dissimilarity. Permu-
tational multivariate analysis of variance (PERMANOVA) test was
applied to assess the association of the overall microbial community
with PDI scores. To alleviate concerns of multiple comparisons, we
examined interactions between PDI scores and PCo on the metabolic
score, and in secondary analyses we also examined interactions with
individual species that were associated with hPDI. Test for interaction
was conducted by including an interaction term between PDIs and
PCo/species (high compared with low) in the multivariable-adjusted
linear mixed model and examining the significance of the interaction
term. We used the detection rate to guide the categorization of
individuals by the abundance of individual species in the interaction
tests: for species that were detected in ≥800 (of the 916) samples,
we classified the participants into high-abundance or low-abundance
category based on the median value of the relative abundance of the
species. For species with lower detection rate, we defined the low-
abundance group as the absence of the species and high-abundance
group as the presence of the species.

False discovery rate (FDR) values <0.05 after FDR correction
following the Benjamini–Hochberg method were considered statistically
significant.

Results

Table 1 presents baseline characteristics of participants accord-
ing to quintiles of hPDI. The average hPDI score ranged from
46.5 in the lowest quintile to 64.1 in the highest quintile. A
high hPDI was associated with a higher intake of fiber, plant
proteins, whole grains, fruits, vegetables, nuts, and legumes
and a lower intake of energy, animal proteins, refined grains,
potatoes, sweets, animal fat, egg, dairy, and meats (Table 1).

Taxonomies associated with PDI scores, fiber, and
individual foods

A higher hPDI score was significantly associated with 7 species
at the FDR < 0.05 level (Figure 1), including a higher
relative abundance (%) of Bacteroides cellulosilyticus (2.58%;
95% CI: 1.39, 3.77) and Eubacterium eligens (1.37%; 95%
CI: 0.55, 2.20) and a lower abundance of Ruminococcus
torques (–1.09%; 95% CI: –1.67, –0.50), Ruminococcus gnavus
(–1.10%; 95% CI: –1.69, –0.52), Clostridium leptum (–0.66%;
95% CI: –1.03, –0.30), Lachnospiraceae bacterium 1_4_56faa
(–0.29%; 95% CI: –0.45, –0.12), and Erysipelotrichaceae
bacterium 21_3 (–0.12%; 95% CI: –0.18, –0.05). At the
0.05 < FDR < 0.25 level, a higher hPDI score was
positively associated with relative abundance of Butyrivibrio
crossotus, Faecalibacterium prausnitzii, Ruminococcus lactaris,
Roseburia hominis, Paraprevotella clara, and Haemophilus
parainfluenzae (Supplemental Figure 2). The majority of
species (96/138, 69.6%) were associated with both hPDI
and the overall PDI score in the same direction, whereas
the majority of species (107/138, 77.5%) were associated
with hPDI and uPDI in the opposite direction (Supplemental
Figure 2).

Six of the 7 hPDI species were also significantly associated
with dietary fiber intake in the same direction (Figure 1),
including B. cellulosilyticus, E. eligens, R. torques, R. gnavus, L.
bacterium 1_4_56faa, and E. bacterium 21_3. The associations
between these species and individual food components of the
hPDI score, especially fruits and whole grains, largely mirrored
the associations with hPDI score. Of the 7 species that were
significantly associated with hPDI, E. eligens, R. torques, and
E. bacterium 21_3 were also significantly associated with fruits;
B. cellulosilyticus was also significantly associated with whole
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TABLE 1 Characteristics of 303 older men in the MLVS by quantile of hPDI1

hPDI

Quintile 1 (n = 59) Quintile 2 (n = 62) Quintile 3 (n = 60) Quintile 4 (n = 62) Quintile 5 (n = 60) P-trend

Age,2 y 70.1 ± 3.5 70.6 ± 4.4 71.7 ± 4.4 70.9 ± 4.3 71.3 ± 4.6 0.09
BMI, kg/m2 26.2 ± 4.0 25.6 ± 3.4 24.5 ± 3.6 24.8 ± 2.5 23.9 ± 3.1 0.001
Total activity,3 MET-h/wk 117 ± 56 116 ± 46 108 ± 48 115 ± 59 114 ± 51 0.42
Current smoking, % 0.0 1.0 1.9 4.9 5.0 0.49
Using of antibiotics in past 12 mo, % 18.4 37.2 23.8 31.8 23.8 0.82
Consumed any probiotics in past 2 mo, % 6.4 5.5 2.6 6.1 5.0 0.98
PDI score 54.0 ± 3.9 56.3 ± 4.8 56.0 ± 4.5 55.9 ± 4.7 58.9 ± 4.4 <0.0001
uPDI score 56.2 ± 5.1 54.6 ± 6.0 53.5 ± 6.2 51.5 ± 5.8 50.5 ± 4.5 <0.0001
hPDI score 46.5 ± 2.6 51.3 ± 0.9 54.4 ± 0.9 58.0 ± 1.2 64.1 ± 2.8 <0.0001
Dietary intakes

Energy, kcal/d 2353 ± 411 2254 ± 512 2069 ± 481 1987 ± 510 1921 ± 459 <0.0001
Protein, g/d 96.0 ± 17.5 92.7 ± 23.9 90.2 ± 23.7 85.5 ± 20.8 81.0 ± 18.7 0.0001
Animal protein, g/d 67.5 ± 14.5 62.3 ± 17.4 60.0 ± 17.3 55.5 ± 14.1 46.0 ± 16.2 <0.0001
Plant protein, g/d 28.6 ± 6.1 30.3 ± 8.6 30.1 ± 8.9 30.0 ± 8.9 35.0 ± 12.7 0.003
Carbohydrates, g/d 275 ± 56.8 273 ± 70.7 251 ± 64.5 241 ± 69.2 254 ± 76.7 0.01
Fiber, g/d 21.8 ± 5.5 24.5 ± 7.4 24.1 ± 7.4 25.2 ± 7.9 30.4 ± 10.6 <0.0001
Alcohol, g/d 12.3 ± 12.0 16.6 ± 13.7 12.2 ± 10.6 15.7 ± 13.1 12.2 ± 11.6 0.83
Whole grains, serving/d 1.6 ± 0.7 1.7 ± 0.9 2.1 ± 1.2 1.9 ± 0.9 2.5 ± 1.7 <0.0001
Fruits, serving/d 1.3 ± 0.8 1.6 ± 0.6 1.7 ± 0.8 1.9 ± 1.1 2.6 ± 1.4 <0.0001
Vegetables, serving/d 3.2 ± 1.0 3.4 ± 1.4 3.5 ± 1.7 3.9 ± 1.7 4.6 ± 1.6 <0.0001
Nuts, serving/d 0.6 ± 0.4 0.7 ± 0.5 0.8 ± 0.6 0.7 ± 0.5 1.0 ± 0.6 0.0005
Legumes, serving/d 0.4 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.7 ± 0.5 <0.0001
Vegetable oils, serving/d 0.5 ± 0.4 0.4 ± 0.3 0.4 ± 0.4 0.6 ± 0.5 0.6 ± 0.5 0.01
Tea and coffee, serving/d 1.3 ± 1.2 2.4 ± 1.5 2.2 ± 1.5 2.7 ± 1.5 2.2 ± 1.2 0.001
Fruit juices, serving/d 1.1 ± 0.9 0.9 ± 0.7 0.8 ± 0.6 0.5 ± 0.4 0.6 ± 0.5 <0.0001
Refined grains, serving/d 1.8 ± 0.6 1.8 ± 0.9 1.4 ± 0.7 1.5 ± 0.9 1.2 ± 0.5 <0.0001
Potatoes, serving/d 0.8 ± 0.3 0.6 ± 0.3 0.6 ± 0.3 0.4 ± 0.2 0.3 ± 0.2 <0.0001
Sugar-sweetened beverages, serving/d 0.6 ± 0.6 0.4 ± 0.4 0.2 ± 0.2 0.1 ± 0.2 0.1 ± 0.1 <0.0001
Sweets and desserts, serving/d 1.8 ± 0.9 1.8 ± 0.9 1.4 ± 0.9 1.2 ± 0.7 1.0 ± 0.7 <0.0001
Animal fat, serving/d 0.8 ± 0.7 0.3 ± 0.3 0.4 ± 0.5 0.3 ± 0.4 0.2 ± 0.2 <0.0001
Dairy, serving/d 2.6 ± 1.2 2.1 ± 1.0 2.1 ± 0.9 1.8 ± 0.9 1.6 ± 0.8 <0.0001
Egg, serving/d 0.4 ± 0.3 0.3 ± 0.2 0.3 ± 0.3 0.3 ± 0.3 0.2 ± 0.2 0.0001
Fish or seafood, serving/d 0.3 ± 0.1 0.4 ± 0.2 0.3 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.02
Meat, serving/d 1.6 ± 0.5 1.4 ± 0.5 1.3 ± 0.6 1.1 ± 0.4 0.7 ± 0.4 <0.0001
Miscellaneous animal-based foods,

serving/d
0.4 ± 0.5 0.3 ± 0.4 0.3 ± 0.5 0.3 ± 0.4 0.2 ± 0.4 0.046

1Values are age-standardized means ± SDs or percentages. hPDI, healthy plant-based diet index; MET, metabolic equivalents; MLVS, Men’s Lifestyle Validation Study; PDI,
pland-based diet index; uPDI, unhealthy plant-based diet index.
2Not age-adjusted.
3Metabolic equivalent hours per week from recreational and leisure-time activities.

grains; and L. bacterium 1_4_56faa and E. bacterium 21_3
were also significantly associated with the frequency of nut
consumption (Figure 1). In contrast, associations in the opposite
direction were observed between these species and intake
of animal products, such as meats, fish, and dairy products
(Figure 1). Only a few species were significantly associated
with individual foods but not the PDI scores, such as red meat
intake in relation to Coprococcus comes and Bacteroides nordii
(Supplemental Figure 2).

Pathways associated with PDI scores, fiber, and
individual foods

Of the 239 pathway features that passed the filtering criteria,
4 pathways were significantly enriched and 5 pathways
significantly depleted with increasing values of the hPDI score
(FDR < 0.05) (Figure 2). At the enzyme level, hPDI score was
significantly associated with the relative abundances of 155
enzymes (FDR < 0.05; Supplemental Table 1). The 4 enriched

pathways included 3 branched-chain amino acid (BCAA)
biosynthesis pathways (l-isoleucine biosynthesis I and III and
l-valine biosynthesis) and 1 fermentation pathway (pyruvate
fermentation to isobutanol). Consistently, relative abundance
of the BCAA transaminase was also significantly enriched
with increasing hPDI (FDR < 0.001; Supplemental Table 1).
Relative abundance of amino acid biosynthesis pathways was
also positively associated with fiber and fruits and negatively
associated with meats (Figure 2).

We also detected 5 pathways that were inversely associated
with hPDI (Figure 2). A low hPDI score, reflecting a high
intake of refined grains and animal foods, was associated with
an enrichment of purine nucleobases degradation pathway
(Figure 2) and related formate dehydrogenase (EC 1.2.1.2),
glycine reductase (EC 1.21.4.2), guanine deaminase (EC
3.5.4.3), and methenyltetrahydrofolate cyclohydrolase (EC
3.5.4.9) (all FDRs < 0.05; Supplemental Table 1). Other low
hPDI-related pathways included the lipid biosynthesis pathway
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FIGURE 1 Heatmap of the species that significantly associated with PDIs, fiber, and individual food groups based on 911 repeated
measurements of the 303 participants. Effect size colors are based on the relative abundance (arc sine of square root of the normalized abundance
values) changes with per SD increasing of PDIs, foods, fiber, or MET score. Filtering criteria: relative abundance <0.001% at 10%+ samples.
Generalized linear mixed-effects regressions implemented in MaAsLin2 were adjusted for repeated measurements (participant’s ID as random
intercept), age, energy intake, alcohol, smoking, physical activity, using of antibiotics, consumed any probiotics, and fecal sample characteristics).
hPDI, healthy plant-based diet index; MET, metabolic risk; PDI, plant-based diet index; SSB, sugar-sweetened beverage; uPDI, unhealthy plant-
based diet index.

of stearate biosynthesis II and related 3-oxoacyl-[acyl-carrier-
protein] reductase (EC 1.1.1.100), as well as amine degradation
pathways of allantoin degradation to glyoxylate II and III and
related allantoate deiminase (EC 3.5.3.9) (all FDRs < 0.05;
Supplemental Table 1). The majority of the pathways that were
inversely associated with hPDI were positively associated with
increasing intake of eggs, meats, butter, or lard, whereas the
relative abundance of lipid biosynthesis pathway was positively
associated with uPDI and sugar-sweetened beverages (Figure 2).

Microbial composition, hPDI, and their interactions on
metabolic risk

The first 2 PCos of species derived from the principal
coordinates analysis captured 9.5% and 8.8% of the overall
variations and largely reflected compositions of Firmicutes
and Bacteroidetes, respectively (Supplemental Figure 3D). In
particular, the abundance of Bacteroides uniformis positively
(R2 = 0.64) and P. copri inversely (R2 = 0.61) accounted
for the PCo1 loading. The abundance of Eubacterium rectale
(R2 = 0.76) accounted for the PCo2 loading. The overall
microbial communities were significantly associated with the

PDI scores (both R2 for hPDI and PDI = 0.0069, R2 = 0.0053
for uPDI, all P < 0.001; PERMANOVA with Bray–Curtis
distances) (Supplemental Figure 3A–C).

Per SD increment of hPDI score was significantly associated
with a 2.2 mg/dL (SE = 0.6) higher HDL cholesterol,
–8.9 mg/dL (SE = 2.7) lower triacylglycerol, 0.06% (SE = 0.02)
lower HbA1c, 0.9 kg/m2 (SE = 0.2) lower BMI, and a 1.0 unit
(SE = 0.2) lower value of the metabolic score (Table 2). On
the contrary, increasing uPDI was significantly associated with
lower HDL cholesterol but higher triacylglycerol and a higher
metabolic score. The overall PDI was associated with lower BMI
and metabolic score (Table 2).

The association of hPDI with metabolic score was signifi-
cantly modified by the overall microbial composition pattern
in that the inverse association between hPDI and metabolic
score was more pronounced in participants with a higher PCo1
than in participants with a lower PCo1 (P-interaction = 0.004,
FDR = 0.01; Figure 3A). This interaction was mainly driven
by the interaction between hPDI and PCo1 on HbA1c (P-
interaction = 0.00004, FDR = 0.002; Figure 3A). Consistently,
when we further examined the interaction between hPDI and
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FIGURE 2 Heatmap of the pathway (DNA) that significantly associated with PDIs, fiber, and individual food groups based on 911 repeated
measurements of the 303 participants. Effect size colors are based on the relative abundance (arc sine of square root of the normalized abundance
values) changes with per SD increasing of PDIs, foods, fiber, or MET score. Filtering criteria: relative abundance <0.0001% at 10%+ samples.
Generalized linear mixed-effects regressions implemented in MaAsLin2 were adjusted for repeated measurements (participant’s ID as random
intercept), age, energy intake, alcohol, smoking, physical activity, using of antibiotics, consumed any probiotics, and fecal sample characteristics).
hPDI, healthy plant-based diet index; MET, metabolic risk; PDI, plant-based diet index; SSB, sugar-sweetened beverage; TCA, tricarboxylic acid;
uPDI, unhealthy plant-based diet index.

the presence of P. copri, per SD increment of hPDI score
was significantly associated with lower levels of triacylglycerol,
HbA1c, and metabolic score among individuals without P. copri
than among P. copri carriers (Figure 3B). Bacteroides uniformis
primarily modulated the association between hPDI and HbA1c;
per SD hPDI score was significantly associated with a 0.25 SD
less HbA1c among carries of B. uniformis only (Figure 3C). We
did not find significant interactions between PCo2 and hPDI or
between E. rectale and hPDI on metabolic risks.

Interactions between hPDI and individual species on
metabolic risk

We found that a few other species potentially modulated
the associations between hPDI and metabolic risk score. For
example, hPDI score was more strongly associated with lower
metabolic score in the presence of Clostridium clostridioforme
than in the absence of this species: the βs were –1.58 and –0.70
per SD hPDI, respectively (P-interaction = 0.0003, FDR = 0.01;
Supplemental Figure 4A). In contrast, the presence of Blautia
hydrogenotrophica significantly attenuated the associations
between hPDI and metabolic score, with the βs of –0.28 and

–1.16 per SD hPDI with high and low abundance of this
species, respectively (P-interaction = 0.002, FDR = 0.036;
Supplemental Figure 4B).

Other findings

The relative abundance of Coprococcus sp. ART55/1 and that
of F. prausnitzii were significantly associated with a lower MET
score (FDR < 0.05; Supplemental Table 2). The relative abun-
dances of d-galacturonate degradation I, inosine-5-phosphate
biosynthesis I, 4-deoxy-l-threo-hex-4-enopyranuronate degra-
dation, glutaryl-CoA degradation, petroselinate biosynthesis,
l-isoleucine biosynthesis III, and inosine-5′-phosphate biosyn-
thesis II were significantly associated with a lower metabolic
score, all in a direction opposite their associations with hPDI
(Figure 2).

Discussion
In this study of free-living healthy men, a higher hPDI score
that reflects a higher intake of fresh fruits, vegetables, whole
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TABLE 2 Main effects of PDI and cardiometabolic risk markers based on 466 plasma
measurements of the 303 participants1

PDI

hPDI PDI uPDI

HDL cholesterol, mg/dL 2.160 (0.637)1 1.003 (0.702) –1.863 (0.719)1

Triglycerides, mg/dL –8.879 (2.657)1 –4.199 (2.928) 4.617 (3.010)
HbA1c, % –0.057 (0.018)1 –0.011 (0.020) 0.043 (0.020)1

BMI, kg/m2 –0.918 (0.176)1 –0.988 (0.192)1 0.225 (0.203)
Metabolic score2 –0.979 (0.177)1 –0.471 (0.198)1 0.557 (0.203)1

1The analysis was based on 466 plasma measurements of the 303 participants, 163 of whom had repeated measurements.
P < 0.05, main effects were expressed as the β coefficients (SEM) of the differential metabolic risk factors associated with per SD
changes of PDIs. Multivariable adjustment considered age, energy intake, alcohol, smoking, physical activity, using of antibiotics,
consumed any probiotics, and fecal sample characteristics as well as the repeated measurements (participant’s ID as random
intercept). HbA1c, glycated hemoglobin; hPDI, healthy plant-based diet index; PDI, plant-based diet index; uPDI, unhealthy
plant-based diet index.
2The metabolic score (range: 5–20) was calculated as a sum of quintile scores of triglyceride, HDL cholesterol, BMI, and HbA1c,
where 1 was assigned for the lowest quintiles and 5 for the highest quintiles of triglyceride, BMI, and HbA1c. The score was
reversed for HDL cholesterol (1 for the highest quintile and 5 for the lowest quintile).

grains, and other healthy plant-based foods and a lower intake
of animal products was significantly associated with the overall
gut microbiome composition, as well as multiple individual
species, such as B. cellulosilyticus and E. eligens. hPDI was
also associated with the enrichment of pathways involved in
fermentation from pyruvate to isobutanol and biosynthesis
pathways of BCAAs, such as l-isoleucine and l-valine, as well
as depletion of fatty acid biosynthesis, lipid biosynthesis, and
amine degradation. Last, the overall microbial composition
significantly modulated the association between hPDI and
metabolic risk profile in that the favorable association was more
pronounced among men with a higher PCo characterized by
higher B. uniformis and lower P. copri.

The fermentation of glycans, especially complex carbohy-
drates, such as fiber, that are not digestible by the host’s own
digestive enzymes, represents one of the dominant microbial
metabolic activities in the gut that produce butyrate and
other SCFAs and may exert subsequent favorable physiological
effects to the host (24–26). Our findings regarding individual
species are broadly consistent with prior evidence linking
fiber intake and microbes in feeding studies or in vitro
experiments (27–30). For example, our study showed that
better adherence of hPDI was associated with the enrichment
of E. eligens, R. lactaris, R. hominis, and B. cellulosilyticus.
In vivo, the abundance of E. eligens was significantly enriched
by nondigestible polysaccharides (27). Similarly, R. lactaris
was significantly enriched following intake of resistant starch,
and this enrichment was also significantly associated with the
production of SCFAs (30). Last, durum wheat flour and whole-
grain barley pasta in healthy subjects significantly increased
the abundance of R. hominis (28). Bacteroides cellulosilyticus
is known to be involved in fiber metabolism (31, 32). Studies
examining habitual vegetarian and vegan diets have consistently
shown that these diets are linked to the enrichment of fiber-
degrading bacteria in the gut (5). Our study findings are also
broadly consistent with those from studies that examined other
healthful dietary indices. For example, a recent study (33)
found that both the Healthy Eating Index and Mediterranean
diet score were positively associated with the abundance of
F. prausnitzii, whereas the abundance of Lactobacillus was
inversely associated with both dietary indices.

In the current study, we observed that a high hPDI
was significantly associated with the enrichment of pathways
involved in amino acid biosynthesis and a low hPDI associated

with enrichment of pathways involved in the metabolism of
nutrients rich in animal products. Previous studies indicated
that vegan diet differed from animal-based diets with respect
to several microbe-dependent metabolic pathways, including
increased metabolism of fiber and polyphenols, enrichment of
BCAA synthesis and decreased metabolism of bile acids, choline,
l-carnitine, and amino acids (34–36).

Our study also identified several species and functional
pathways that were significantly associated with a lower
metabolic risk, such as abundance of F. prausnitzii as well
as pathways of d-galacturonate degradation I and 4-deoxy-
l-threo-hex-4-enopyranuronate degradation. A recent study
indicated that an isocaloric Mediterranean diet intervention led
to increased levels of the relative abundance of F. prausnitzii and
genes for microbial carbohydrate degradation linked to butyrate
metabolism (37). The pathways of d-galacturonate degrada-
tion I and 4-deoxy-l-threo-hex-4-enopyranuronate degradation
were positively associated with fruit intake and inversely
associated with metabolic risk score in the Lifelines DEEP study
(38). Collectively, these findings provided further evidence that
gut microbiome may function as a mediator of dietary factors
on the host metabolic status (39).

The interplay between hPDI and microbiome profile and
individual species on the metabolic risk markers is worth
discussing. Of note, similar microbiome–diet interactions were
also detected in previous studies. For instance, the health effect
of adherence to the Mediterranean diet was enhanced at the en-
richment of F. prausnitzii (33) or reduced at a higher abundance
of P. copri (40). Existing evidence indicates that the production
of bioactive microbiota metabolites following the intake of
dietary precursors is highly variable between individuals. For
example, the same dose of flaxseed supplementation could
result in a 0.9- to 43.8-fold increase in urinary excretion of
enterolignans (41). Experiments revealed that this between-
person variability was largely due to the variability in the
capacity of microbiota in digesting the complex carbohydrate
(42, 43). Collectively, both our data and existing data indicate
that microbiota may significantly modulate the effects of diet
on the production of bioactive compounds and subsequently
cardiometabolic health and thus, to a certain extent, account
for the individualized response to the same dietary interventions
observed in clinical studies.

The current analysis leveraged repeated assessments of
long-term diet, gut microbiome, and cardiometabolic risk
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FIGURE 3 Interactions between microbiome and hPDI on metabolic risk factors based on 911 repeated measurements of the 303 participants.
∗0.01 < P < 0.05; ∗∗P < 0.01; associations between hPDI and metabolic risk factors were calculated from a linear mixed model that
included participant’s identifier as random effects and the hPDI, PCo1 score, or Prevotella copri/Bacteroides uniformis carriages, as well as
simultaneously adjusting for age, energy intake, alcohol, smoking, physical activity, using of antibiotics, consumed any probiotics, and fecal
sample characteristics. P-interactions between hPDI and the first PCo (A), the P. copri carriage (B), and B. uniformis (C) on individual and/or
overall metabolic risk were calculated from the same models by further including the product term. Triglyceride, HDLc, HbA1,c and CRP were
plasma concentrations. CRP, C-reactive protein; HbA1c, glycated hemoglobin; HDLc, HDL concentration; hPDI, healthy plant-based diet index;
MET, metabolic risk; PCo; principal coordinate.

markers, which allowed us to systematically account for
within- and between-person variability. Another strength is
that all participants were healthy men free of major chronic
diseases, and thus the strong influence of diseases on the basic
biochemical associations of interest is small.

The primary limitation of this study is the cross-sectional
design, which cannot help establish temporal relations between
diet and microbial compositions and functionalities. However,
the use of repeated assessments of diet many years before the

collection of fecal samples renders it possible that detected
associations—often significant but of low effect size—are the
result of gradual, long-term selective pressures on the gut
microbiome. However, they could also be the joint result of
external factors (e.g., a generally healthier or more active
lifestyle corresponding with a higher hPDI and with microbiome
effects). The measurement errors in dietary assessments are
inevitable. Although we calculated and used the cumulative
average of hPDI scores, we cannot exclude the possibility of
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misclassification of adherence to hPDI. Our multivariable-
adjusted analysis controlled for multiple established and poten-
tial confounders, although residual or unmeasured confounding
may still exist, such as that by the use of different types of
probiotics. Our study participants were exclusively healthy male
health professionals of largely European ancestries. Although
the homogeneity may help alleviate confounding by socioeco-
nomic factors, the findings may lack generalizability to other
populations, such as women or minorities. Previous studies
indicated similar associations of PDI scores with risk of diabetes
and coronary heart disease between men and women (12, 13,
20), but the interplay between PDIs and microbiota on health
might be modified by hormonal or other differences between
gender and warrants further investigations. Furthermore, the
relation between diet and the human gut microbiome is
complex, with vastly different effects over the short term, long
term, at different life stages, under varying health and disease
conditions, and across ethnogeographical environments (44).
This complexity further limits the generalizability of the current
findings. Also, we were not able to assess metabolites that are
produced by microbiome, especially SCFAs, and thus cannot
evaluate which small molecules might explain interactions
between diet, the microbiome, and systemic host effects such as
cardiometabolic risk markers. Last, we examined the habitual
adherence to hPDI in relation to microbiome in the current
analysis, in light of the notion that long-term dietary habits
play an important role in shaping composition and function of
the gut microbiome (45) and in affecting the risk of developing
chronic diseases. As such, our findings cannot be extrapolated
to reflect acute effects of hPDI on microbiome. Nonetheless,
the microbial composition and functional potential have been
shown to be largely stable in the MLVS, suggesting that the
impact of short-term variations of diet on the microbiome is
likely to be relatively minor in this population (20).

In conclusion, a greater adherence to a healthy plant-based
diet was associated with an overall gut microbiome profile, pri-
marily with the enrichment of B. cellulosilyticus and E. eligens
as well as enriched pathways of amino acid biosynthesis, and
the depletion of pathways involved in processing constituents
from animal products. Both the overall microbial composition
and some individual species that were associated with the hPDI
also modulated the beneficial association between hPDI and
metabolic risk. Although these findings warrant replication
and further evaluation in future studies, they indicate that
healthy plant-based diets are associated with a unique microbial
composition, which may jointly determine the effects of the diet
on metabolic health. Further studies are warranted to examine
the generalizability of these findings to populations of different
biological or demographic characteristics.
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