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Abstract
The efficiencies offered by C4 photosynthesis have motivated efforts to understand its biochemical, genetic, and develop-
mental basis. Reactions underlying C4 traits in most C4 plants are partitioned between two cell types, bundle sheath (BS),
and mesophyll (M) cells. RNA-seq has been used to catalog differential gene expression in BS and M cells in maize (Zea
mays) and several other C4 species. However, the contribution of translational control to maintaining the distinct pro-
teomes of BS and M cells has not been addressed. In this study, we used ribosome profiling and RNA-seq to describe trans-
latomes, translational efficiencies, and microRNA abundance in BS- and M-enriched fractions of maize seedling leaves. A
conservative interpretation of our data revealed 182 genes exhibiting cell type-dependent differences in translational effi-
ciency, 31 of which encode proteins with core roles in C4 photosynthesis. Our results suggest that non-AUG start codons
are used preferentially in upstream open reading frames of BS cells, revealed mRNA sequence motifs that correlate with
cell type-dependent translation, and identified potential translational regulators that are differentially expressed. In addi-
tion, our data expand the set of genes known to be differentially expressed in BS and M cells, including genes encoding
transcription factors and microRNAs. These data add to the resources for understanding the evolutionary and developmen-
tal basis of C4 photosynthesis and for its engineering into C3 crops.

Introduction
Plant species are classified as C3 or C4 according to their
mechanism of photosynthetic carbon fixation. C4 photosyn-
thesis offers advantages under hot, dry conditions (Hatch,
1987), and it evolved many times from a C3 progenitor (Sage
et al., 2011; Schlüter and Weber, 2020). Many C4 plants are
characterized by a specialized leaf anatomy, denoted Kranz
anatomy, that partitions enzymes of the C4 pathway between
two cell types: mesophyll (M) and bundle sheath (BS). M cells

surround BS cells, which in turn surround vascular bundles.
Dissolved atmospheric CO2, HCO�3 , is first fixed by phospho-
enolpyruvate (PEP) carboxylase (PEPC) in M cells to produce
four-carbon acids. These diffuse to BS cells, where they are
decarboxylated, providing CO2 for fixation by ribulose
bisphosphate carboxylase/oxygenase (Rubisco) according to
the C3 scheme. This organization reduces Rubisco’s wasteful
oxygenation reaction by increasing local CO2 concentration
and decreasing local O2 concentration.
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Research into the genetic and developmental mechanisms
underlying C4 traits has been propelled by interest in intro-
ducing C4 traits into C3 crops (Sedelnikova et al., 2018;
Ermakova et al., 2020). A thorough understanding of pat-
terns of gene expression during C4 differentiation is essential
to achieve this goal. Numerous studies have approached this
problem through transcriptome analysis (Wang et al., 2016;
Schlüter and Weber, 2020), including studies that profiled
transcriptomes during development of C4 leaves (Li et al.,
2010; Pick et al., 2011; Liu et al., 2013; Wang et al., 2013b,
2014; Ding et al., 2015; Mattiello et al., 2015; Denton et al.,
2017), or compared transcriptomes between BS and M cells
(Li et al., 2010; Chang et al., 2012; Aubry et al., 2014; John et
al., 2014; Tausta et al., 2014; Denton et al., 2017), among dif-
ferent C4 lineages (Aubry et al., 2014; Chen et al., 2014; John
et al., 2014; Ding et al., 2015; Li et al., 2015; Offermann et al.,
2015; Covshoff et al., 2016; Rao et al., 2016), or among re-
lated C3 and C4 species (Bräutigam et al., 2011; Gowik et al.,
2011; Chen et al., 2014; Külahoglu et al., 2014; Wang et al.,
2014; Ding et al., 2015; Lauterbach et al., 2017; Schlüter et
al., 2017; Dunning et al., 2019). These transcriptome data
have been complemented by surveys of protein populations
during C4 differentiation and in isolated BS and M chloro-
plasts (Majeran et al., 2005; Bräutigam et al., 2008; Majeran
et al., 2008; Friso et al., 2010; Majeran et al., 2010).

The results from these studies support the view that tran-
scriptional control plays the major role in determining pat-
terns of gene expression during C4 differentiation and in
mature BS and M cells. That said, evidence for post-
transcriptional contributions emerged in several studies
(Patel et al., 2006; John et al., 2014; Ponnala et al., 2014;
Berry et al., 2016; Williams et al., 2016), yet translational reg-
ulation has barely been explored (Schlüter and Weber,
2020). Ribosome profiling (ribo-seq) provides the means to
comprehensively address this issue. Ribo-seq uses deep se-
quencing to map and quantify ribosome-protected mRNA
fragments (ribosome footprints [RFs]). Because average
translation elongation rates are generally similar among
mRNAs under a given condition, the normalized abundance
of RFs is a widely accepted proxy for relative rates of protein
synthesis (Brar and Weissman, 2015). Comparison of RF
abundance with the abundance of the corresponding
mRNA allows inferences about translational efficiencies on a
genome-wide scale.

Previously, we used ribo-seq in conjunction with RNA-seq
to analyze chloroplast gene expression in BS- and M-
enriched leaf fractions in maize (Zea mays), a C4 species of
the NADP-malic enzyme (NADP-ME) subtype
(Chotewutmontri and Barkan, 2016). We found that differ-
ences in mRNA abundance largely account for differential
expression of chloroplast genes in the two cell types, but dif-
ferences in translational efficiency (TE) synergize with
mRNA-level effects in some cases. We have now extended
this analysis to cytosolic mRNAs. Similar to what we ob-
served in chloroplasts, the differential expression of nuclear
genes in BS and M cells results primarily from differences in

mRNA abundance. However, our data identified a subset of
mRNAs whose translational efficiencies are significantly dif-
ferent in the two cell types, and revealed mRNA sequence
features and trans-factors that correlate with cell-type-
dependent translation. Additionally, our results expand the
set of genes known to be differentially expressed in maize
BS and M cells, suggesting additional genes of potential rele-
vance to C4 traits.

Results

Overview of ribo-seq and RNA-seq data collected
from BS- and M-enriched leaf fractions
Analyses reported here used BS- and M-enriched fractions
generated from the apical region of seedling leaves with
a rapid mechanical fractionation method similar to
that used in our prior study of chloroplast translatomes
(Chotewutmontri and Barkan, 2016). Marker proteins for
each cell type were highly enriched in these fractions (Figure
1A). RFs and RNA were purified from aliquots of the same
BS and M preparations, in three biological replicates. The
ribo-seq reads mapping to cytosolic mRNAs exhibit the
expected characteristics of RFs: they map almost exclusively
to protein-coding regions, their size distribution is heavily
weighted to 29–30 nt, and their positions within open read-
ing frames (ORFs) show strong 3-nt periodicity
(Supplemental Figure S1, A–C). We used rRNA-depleted to-
tal RNA for RNA-seq to avoid the 30-bias that can lead to
false inferences about differential expression (Denton et al.,
2017; Supplemental Figure S2, A and B). Correlation coeffi-
cients among replicates ranged from �0.93 to 0.98, with
replicate datasets clustering together as expected
(Supplemental Figure S1D).

Four RNA-seq studies of maize BS and M fractions were
reported previously (Li et al., 2010; Chang et al., 2012; Tausta
et al., 2014; Denton et al., 2017), all of which used polyA-
selected mRNA. We used the two most recent studies as
points of comparison for our data. Tausta et al. (2014) gen-
erated BS- and M-enriched fractions by laser capture micro-
dissection, whereas Denton et al. (2017) used a mechanical
method that differed from ours. Both studies analyzed tissue
slices at several positions along the leaf blade, which repre-
sent different stages along the pathway of photosynthetic
differentiation. The apical sections were most analogous to
our material, so we selected those data for our comparisons.
To facilitate comparisons, we aligned both prior datasets to
the current maize genome assembly (B73 RefGen_v4) and
we calculated differential expression using the same analysis
pipeline we used for our data.

Figure 1B compares the cell-type enrichment of sequence
reads from four C4 marker genes in our data to those in the
prior datasets. In comparison with the Denton data, our
RNA-seq data exhibited greater enrichment of both M and
BS markers. In comparison with the Tausta data, our RNA-
seq data exhibited similar enrichment of M markers and less
enrichment of BS markers. We expected that our mechani-
cal fractionation method would result in contamination of
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the M and BS fractions with epidermal and vascular tissue,
respectively, and analysis of epidermal and phloem markers
confirmed this to be the case (Figure 1C; Supplemental
Figure S2C). Despite the considerable differences in sample
preparation and developmental stage, a core gene set associ-
ated with C4 photosynthesis (Schlüter and Weber, 2020)
showed Pearson correlation coefficients of at least 0.85
among all three datasets (Supplemental Figure S3A).

Comparison of our ribo-seq and RNA-seq data
(Supplemental Figure S3B) returned correlation coefficients
of 0.72 and 0.89 for genome-wide and C4 gene comparisons,
respectively. These values are considerably lower than those
for replicate samples, suggesting some differences in TE in
the two cell types. In addition, we compared our data to
that from a proteomic study of material obtained with a
similar mechanical fractionation method (Friso et al., 2010;
Supplemental Figure S3C). Proteins that were quantified
with higher confidence levels showed considerable correla-
tion with our ribo-seq data. Furthermore, our ribo-seq data
correlated better with the proteomic data than did our
RNA-seq data (Supplemental Figure S3C), consistent with a
role for translational control in maintaining the distinct pro-
teomes in the two cell types.

Differences in translational efficiency contribute to
the differential expression of genes in BS and M
cells.
To detect mRNAs that experience differential translation in
M and BS cells, we calculated differences in TE with XTAIL
(Xiao et al., 2016). XTAIL reports the normalized ratio of
ribo-seq to RNA-seq reads for each gene together with a
false discovery rate (FDR) for differential translation. We
drew conclusions about differential translation only for
genes with an average of at least 100 RNA-seq reads
mapped to coding sequences in both the BS and M frac-
tions, as well as an average of at least 100 ribo-seq reads in
either the BS or M fraction. 9,476 genes met these read-
count criteria. The XTAIL output for these genes is provided
in Supplemental Dataset S1. We defined a gene as being dif-
ferentially translated using stringent criteria: greater than
three-fold difference in TE between the two tissues and an
FDR5 0.001. A total of 355 genes met these criteria (Figure
2A; Supplemental Dataset S2). A comparison of the ribo-seq
and RNA-seq data (Figure 2B) parses these genes into sev-
eral groups: those that are differentially expressed primarily
due to differences in TE, those for which changes in RNA
and TE synergize to amplify differential expression
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(RNA&TE), and those for which a change in TE offsets a
change in RNA (buffering). Buffering of this type has been
detected in many ribo-seq studies (McManus et al., 2014;
Schafer et al., 2015; Oertlin et al., 2019). However, we are
hesitant to draw conclusions about the buffering set because
our RNA-seq data for those particular genes correlated
poorly with data from prior RNA-seq studies (Supplemental
Figure S4). In contrast, RNA-seq data for our TE and
RNA&TE sets correlated well with those from prior studies
(Supplemental Figure S4). Examples of read coverage plots
for genes whose cell type-specific expression results primarily
from a difference in TE are shown in Figure 2C with addi-
tional examples in Supplemental Figure S5.

The data for translationally regulated genes of particular
relevance to C4 physiology are shown in an expansion of the
heat map in Figure 2D. These include (1) “C4” genes
(Schlüter and Weber, 2020) involved in photorespiration,
the Calvin-Benson cycle, C4 metabolism, redox regulation,
and nitrogen and sulfur assimilation; (2) membrane trans-
porters, subunits of photosystem II (PSII), and subunits of
the NADH dehydrogenase-like complex (NDH) that are
strongly enriched in one cell type or the other (Majeran and
van Wijk, 2009); and (3) genes encoding transcription factors
(TFs), which could potentially contribute to the establish-
ment of cell type-specific transcriptomes. Roughly, one-third
of these genes are regulated primarily at the level of TE, and
the remainder by a combination of RNA abundance and TE.
The latter set includes the gene encoding ribose-5-
phosphate isomerase (RPI), which had been suggested to be
under translational control based on a comparison of
Setaria and maize transcriptome data (John et al., 2014). We
detected three TFs that are differentially expressed primarily
due to a difference in TE, two of which (Trihelix TF28 and
NAC TF40) had not been detected as differentially expressed
in transcriptome studies (Figure 2D, asterisks).

Features of untranslated regions that correlate with
differential translation in BS and M cells
The rate of translation initiation is influenced by various fea-
tures of mRNA untranslated regions (UTRs), including up-
stream ORFs (uORFs), start codon sequence and sequence
context, RNA structure, and binding sites of translational
regulators. To gain insight into the basis for differences in TE
between BS and M cells, we compared UTR features among
mRNAs exhibiting cell type-dependent translation to those
that do not. RNAs that are translated preferentially in the
BS fraction show a tendency toward UTRs that are shorter
and more GC-rich than those in the control set, particularly
in the 50-UTR (Figure 3A). We identified six sequence motifs
that are enriched in UTRs of mRNAs that are preferentially
translated in one cell type or the other (Figure 3B;
Supplemental Dataset S3): three in 50-UTRs of the BS set,
one in 30-UTRs of the BS set, and one each in 50- and 30-
UTRs of the M set. Out of the 182 genes whose cell type-
dependent translation contributes to differential expression
(greater than three-fold difference in TE), 78 harbor at least
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Figure 3 Characteristics of UTRs of differentially translated genes.
Differentially translated genes used for these analyses are the TE and
RNA&TE sets from Figure 2B (jlog2(BS/M TE)j 4 1.585, FDR5 0.001
excluding buffering sets, BS set n = 107 and M set n = 75). The control
set was defined as jlog2 (BS/M) TEj4 0.585 (n = 5280). A, UTR length
and GC content. Horizontal lines show median values, boxes show
25–75th percentile, and whiskers indicate 10–90th percentiles.
Brackets show significant P-values from Dunn’s multiple comparison
test of the means. *P = 0.01; **P5 0.005; ***P = 0.002, and
****P5 0.0001. B, Enriched motifs in UTRs of differentially translated
genes. Enriched motifs in the data set indicated to the left were identi-
fied with STREME (Bailey, 2021) and those matching known DNA
motifs were removed. Motifs reported by AME (McLeay and Bailey,
2010) as significantly enriched (P5 0.05) are shown in red or blue
font. The enrichment P-values and number of sites for the nonen-
riched data are shown for comparison. C, Presence of enriched motifs
in differentially translated genes. Gene sets are taken from Figure 2B.
Motifs are identified at top via the motif numbers shown in (B). D,
Differential expression of PUF genes. Values from prior RNA-seq data-
sets come from Li et al. (2010), Chang et al. (2012), Tausta et al. (2014)
section 14, and Denton et al. (2017) section S1. Genes reported with
high confidence as differentially expressed in prior studies or in our
data [jlog2(BS/M)j 4 1, FDR5 0.001] are bordered in black. Crossed
boxes indicate absence of data or read counts below cutoffs.
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one of these motifs and 20 harbor more than one (Figure
3C). Enriched sequence motifs of this nature are candidates
for binding sites of translational regulators. Few sequence-
specific RNA-binding proteins have been identified in plants
that regulate the translation of specific mRNAs. However,
members of the PUF (Pumilio/FBF) family are attractive can-
didates because they are known to regulate translation and
RNA stability by binding specific UTRs in animals and fungi
(Goldstrohm et al., 2018; Wang et al., 2018), and the PUF
family is unusually large in plants (Dedow and Bailey-Serres,
2019; Joshna et al., 2020). Furthermore, the UGUGCCG motif
that is enriched in 30-UTRs of the BS set (Figure 3B) resem-
bles the consensus UGUR core binding site for canonical
PUF proteins. With this in mind, we examined expression of
genes encoding PUF proteins in BS and M fractions in our
ribo-seq and RNA-seq data and in prior RNA-seq studies
(Figure 3D). We identified several PUF-encoding genes that
are expressed preferentially in one cell type or the other
in at least one dataset (Figure 3D). A particularly intriguing
example is Zm00001d023781, whose expression is highly
enriched in BS cells across multiple datasets. Furthermore,
the expression of this gene along the seedling leaf blade
peaks in the zone of active chloroplast biogenesis (http://
bar.utoronto.ca/efp_maize/cgi-bin/efpWeb.cgi; Li et al., 2010;
Wang et al., 2014), consistent with a role in regulating
chloroplast differentiation. These results highlight
Zm00001d023781 as an attractive candidate for future inves-
tigation with regard to the post-transcriptional control of BS
and M differentiation.

uORFs often regulate the translation of main ORFs
(mORFs) in eukaryotic mRNAs (Hinnebusch et al., 2016). To
address the relevance of uORFs to cell type-dependent
translation, we expanded the set of differentially translated
genes to include those that exhibit greater than two-fold dif-
ferences in TE (P5 0.001). This resulted in 335 genes (ex-
cluding the buffering set), which we inspected for RFs
upstream of their annotated start codon. We considered
uORFs beginning with AUG as well as those with the nonca-
nonical start codons CUG and ACG (van der Horst et al.,
2019). Thirty-nine genes fit these criteria (Supplemental
Dataset S4): 5 had only uORFs beginning with AUG, 28 had
uORFs beginning with CUG or ACG, 6 had both AUG and
non-AUG uORFs. Nine genes had overlapping uORFs and 17
genes had uORFs that overlap mORFs.

Comparison of uORF and mORF ribosome occupancies
(ribo-seq/RNA-seq) in BS and M fractions revealed three
types of relationship (Figure 4A; Supplemental Dataset S4):
uORF translation was inversely related to mORF translation,
suggesting a repressive effect of the uORF; uORF translation
was positively correlated with mORF translation, suggesting
an activating effect of the uORF; and uORF and mORF
translation changed independently of one another. Positive
correlations between non-AUG uORF and mORF translation
in plants have been reported previously (Li and Liu, 2020).
Figure 4B shows examples of normalized ribo-seq read cov-
erage from two genes in each category. Interestingly, our

uORF data suggest a bias toward translation of non-AUG
start codons in BS cells (Figure 4C). However, a deeper
analysis of start codon usage will be needed to draw
firm conclusions. In yeast, the translation initiation factors
eIF1 and eIF5A promote translation from AUG codons
while eIF5 antagonizes this function, thereby favoring non-
AUG initiation (Hinnebusch et al., 2016; Eisenberg et al.,
2020). We, therefore, considered the possibility that differing
ratios of these factors in BS and M cells underlie the differ-
ences in AUG versus non-AUG uORF initiation suggested
by our data. In fact, the ratio of eIF1/eIF5A to eIF5 expres-
sion is elevated in BS cells (Figure 4D), running
counter to the hypothesized relationship with non-AUG
initiation. In particular, expression of one eIF1 paralog
(Zm00001d021668) and two eIF5A paralogs
(Zm00001d006760 and Zm00001d022042) is BS-enriched in
our ribo-seq data (Figure 4D) and in many prior RNA-seq
datasets (Supplemental Figure S6), suggesting that these
paralogs may play noncanonical roles that favor non-AUG
initiations.

Global analysis of BS and M translatomes expands
the known set of differentially expressed genes
The abundance of RFs mapping to a gene reflects both
mRNA abundance and TE. This is widely used as a proxy for
relative rates of protein synthesis among genes, and there is
considerable evidence that this is, with rare exceptions, a
valid assumption (Brar and Weissman, 2015). Therefore,
ribo-seq can provide a more accurate picture of differential
expression than RNA-seq. With that in mind, we analyzed
our ribo-seq data with DESeq2 to catalog genes that are dif-
ferentially expressed in BS and M cells. We limited the analy-
sis to the 13,182 genes having an average of at least 100
ribo-seq reads mapped to coding sequences in at least one
of the two tissue types (Supplemental Dataset S5). We de-
fined differentially expressed genes as having jlog2 (BS/
M)j4 1 and FDR5 0.001. With these criteria, we detected
1,345 and 993 genes that are preferentially expressed in the
BS and M fractions, respectively (Figure 5A; Supplemental
Dataset S6 and S7). Analysis of our RNA-seq data using the
same criteria produced 14,476 genes that met our read
count cutoffs, of which 1,111 and 1,457 genes are preferen-
tially expressed in the BS and M fractions, respectively. We
then compared the ribo-seq results to those from previous
RNA-seq studies of maize BS and M fractions (Li et al., 2010;
Chang et al., 2012; Tausta et al., 2014; Denton et al., 2017).
Approximately 30% of the genes reported as differentially
expressed in our ribo-seq analysis were not reported to be
differentially expressed in prior RNA-seq studies
(Supplemental Dataset S6 and S7; “unique” sets in Figure
5A). These “unique” gene sets showed similar functional-
enrichment patterns as the complete sets of BS- and M-
enriched genes (Figure 5B; Supplemental Dataset S8), instil-
ling confidence that many of these genes are, in fact, differ-
entially expressed in BS and M cells. The unique set includes
many TFs (Figure 5C), as discussed below.
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Three photosynthetic complexes harboring plastid-
encoded subunits accumulate differentially in BS and M
cells: Rubisco and the NDH complex accumulate preferen-
tially in BS cells, whereas PSII accumulates preferentially in
M cells. The biogenesis of each complex involves a large
number of nuclear genes, some of which are involved in
complex assembly and others in the expression of plastid-
encoded subunits. Differential expression data for genes that
function specifically in the biogenesis of these complexes
(Supplemental Figure S7; Supplemental Dataset S9) show
that many of them are preferentially expressed in the same
cell type as the cognate complex. Furthermore, three genes
encoding proteins that activate translation of the chloro-
plast psbA mRNA (HCF173, HCF244, and OHP2; Schult et
al., 2007; Link et al., 2012; Chotewutmontri et al., 2020) are
expressed preferentially in M cells. This can account for the
preferential translation of psbA mRNA in M cells we had
reported previously (Chotewutmontri and Barkan, 2016).

Differential expression of TFs and microRNAs in BS
and M fractions
The distinct transcriptomes of BS and M cells are presum-
ably maintained, at least in part, by cell-type-specific regula-
tory molecules, including TFs and microRNAs. We identified
genes encoding 114 and 37 TFs that were enriched in BS
and M translatomes, respectively (Supplemental Dataset

S10). Approximately one-third of these had not been
reported as differentially expressed in prior RNA-seq studies.
One interesting example is a BS-enriched member of the
Aux/IAA family of auxin-regulated TFs (Gene ID
Zm00001d041416; IAA10 in Figure 5C), which also emerged
as relevant to C4 biology based on evolutionary inferences
(Huang et al., 2017). Aux/IAA proteins govern diverse devel-
opmental processes including vascular patterning (Zhang et
al., 2014; Luo et al., 2018). These observations suggest the
possibility that this particular Aux/IAA protein regulates
C4 vascular patterning in the maize leaf. Only one-fifth of
these TFs were reported as differentially expressed across
all studies (Figure 5C). The low concordance among studies
is likely due to a variety of factors, including varying
sequencing depth, varying criteria used to identify differen-
tially expressed genes, and imperfectly matched develop-
mental stages. In addition, cell-type-dependent translation
accounted for the differential expression of two of the TFs
detected uniquely in our set (Trihelix TF28 and NAC TF40
in Figure 2D). Expression of Golden2-like 1 (GLK1), a TF re-
quired specifically for M-cell differentiation in maize (Wang
et al., 2013a) was M-enriched in our data as in prior RNA-
seq studies (Figure 5C).

MicroRNAs regulate mRNA stability and translation. To
address whether cell-type-specific microRNA expression
accounts for the differential expression of any genes in BS
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gray. The TFs that were identified in a cross-species transcriptome analysis by Huang and Brutnell (2016) are marked in the right column. TFs
reported to be differentially expressed among all studies are listed in Supplemental Dataset S10. IAA10*, Aux/IAA TF10 also known as ZmIAA7.
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and M cells, we sequenced small RNAs in the same RNA
preparations used for RNA-seq. DESeq2 returned six differ-
entially expressed microRNAs [jlog2 (BS/M)j 4 1 and
FDR5 0.05] (Supplemental Dataset S11), representing two
microRNA families: MIR160 and MIR166 (Supplemental
Figure S8). Five members of the MIR160 gene family encode
identical mature microRNAs, and these are strongly enriched
in our BS fraction (Figure 6, A and B). One member of the
MIR166 family (zma-MIR166a; Supplemental Figure S8) is
enriched in our M fraction (Figure 6, A and B).

We then used the DPMIND database (Fei et al., 2018) to
identify mRNA targets of these microRNAs. Zma-MIR160,
which is enriched in our BS fraction, targets mRNAs encod-
ing three auxin-responsive factor (ARF) TFs. RNA-seq data
show that expression of one of these, ARFTF15, is enriched
in the M fraction (Figure 6C), supporting a role for zma-
MIR160 in directing ARFTF15 mRNA decay in BS cells. The
M-enriched microRNA zma-MIR166 targets mRNAs encoding
three Class III homeodomain leucine zipper (HD-ZIP III) TFs
(Juarez et al., 2004; Fei et al., 2018). RNA-seq data reported
by Chang et al. (2012) indicate BS enrichment for all three of
these mRNA targets, and our RNA-seq data support this for
one of them (Rolled leaf1 [RLD1]; Figure 6C). Zma-MIR166 is
known to control spatial expression of RLD1 in maize leaf
primordia (Juarez et al., 2004). Our data suggest further that
zma-MIR166 regulates RLD1 in differentiated leaf tissue.

Discussion
Numerous transcriptome studies have sought to identify
genes whose differential expression is relevant to program-
ming C4 traits (Wang et al., 2016; Schlüter and Weber,
2020). However, the contribution of translational regulation
has been largely unexplored (Schlüter and Weber, 2020).
Our study addressed this gap through analysis of BS and M
translatomes in maize. Our results show that translational
regulation contributes to the differential expression of genes

in maize BS and M cells and provide clues about underlying
mechanisms. Our data also add to the set of genes known
to be differentially expressed in the two cell types, including
additional regulatory genes of potential relevance to the es-
tablishment or maintenance of C4 traits.

A conservative interpretation of our data identified 182
genes for which differential translation makes a strong con-
tribution (greater than three-fold difference in TE) to their
differential expression in BS and M cells (Supplemental
Dataset S2). These include several genes encoding TFs and
numerous genes encoding proteins involved in C4 photosyn-
thesis, including one (the gene encoding RPI) that had previ-
ously been suggested to be under translational control (John
et al., 2014; Figure 2D). Our previous study of chloroplast
translatomes in BS and M fractions showed that controls at
the level of translation and mRNA abundance often syner-
gize to produce robust differential expression
(Chotewutmontri and Barkan, 2016). Results here indicate
that a similar theme holds true for many nuclear genes. The
relative contributions of controls at the level of RNA abun-
dance and translation vary and, in some cases, translational
regulation plays the major role (Figure 2B).

Ribo-seq can provide a more accurate view of differential
expression than RNA-seq because it accounts for differences
in both mRNA abundance and TE. In fact, our ribo-seq data
provide evidence for the differential expression of many
more genes than had been detected in prior RNA-seq stud-
ies (Figure 5; Supplemental Dataset S6 and S7). Of particular
interest are candidates for cell-type-specific regulatory mole-
cules. For example, we detected 44 new TF candidates
(Supplemental Dataset S10) including one (IAA10) that had
been implicated in C4 differentiation on the basis of a cross-
species selection scan (Huang et al., 2017), and two (NAC
TF40 and THX28) that are expressed preferentially in the BS
fraction due primarily to differential translation. Furthermore,
we present evidence that the differential expression of two
microRNAs underlies the cell-type-enriched expression of
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several TFs: zma-MIR166a and zma-MIR160 are preferentially
expressed in M and BS fractions, respectively, correlating with
expression of their mRNA targets encoding TFs RLD1 and ARF
proteins, respectively, in the opposite cell type (Figure 6).
Interestingly, a gain-of-function Rld1 mutant that is no longer
controlled by zma-MIR166 exhibited normal vasculature in leaf
primordia (Juarez et al., 2004) but failed to increase vascular
bundle density and lacked photosynthetic BS and M cells in
mature leaf (Nelson et al., 2002). These results together with
our findings suggest that zma-MIR166-mediated inhibition of
RLD1 expression in mature M cells is important to maintain
high vein density and differentiated BS/M cells, both of which
are important C4 traits (Ermakova et al., 2020).

Our results also provide clues about the molecular basis
for the differential translation events reported here. Our
microRNA-seq data did not detect differentially expressed
microRNAs that target translationally regulated mRNAs, sug-
gesting that microRNAs do not contribute to translational
control in this context. Our data hint, however, that differ-
ential use of AUG versus non-AUG initiation codons in
uORFs is relevant to the cell-type-dependent translation of
several genes (Figure 4C) and that non-AUG initiations are
favored in BS cells. It is intriguing in this regard that specific
eIF1 and eIF5A paralogs, two general translation factors that
function in start codon selection (Nanda et al., 2009;
Manjunath et al., 2019), exhibit BS-enriched expression
(Figure 4D). A method called Translation Initiation Site
Profiling offers more robust detection of functional start
codons than does ribo-seq, and revealed a shift to use of
non-AUG start codons during yeast meiosis (Eisenberg et al.,
2020). Analysis of the BS and M translatomes with this assay
could address whether translational reprogramming of this
type affects BS and M proteomes in biologically meaningful
ways. In addition, sequence motifs that are enriched in
UTRs of translationally regulated mRNAs (Figure 3B) are
candidate binding sites for sequence-specific RNA binding
proteins. The motif UGUGCCG enriched in 30-UTRs of
mRNAs that exhibit preferential translation in BS cells
(Figure 3B) resembles the consensus binding site of PUF pro-
teins, which regulate the translation of specific mRNAs in
animals and fungi. Furthermore, the expression of one PUF-
encoding gene is strongly enriched in the BS fraction (Figure
3D), implicating this gene in the post-transcriptional control
of gene expression in BS cells. PUF proteins typically repress
translation, but examples of activation have been reported
(Goldstrohm et al., 2018; Wang et al., 2018). Functional
analysis of the candidate cis-elements and trans-factors to
emerge from this study is an attractive direction for future
investigation.

Materials and methods

Preparation of BS and M fractions
We prepared BS and M fractions by using a minor modifica-
tion of the rapid mechanical procedure described previously
(Chotewutmontri and Barkan, 2016). In brief, maize (Z. mays
inbred line B73) was grown for 13 d under cycles of 12-h

light (300 lmol m–2s–1) at 31�C and 12 h darkness at 22�C.
The apical one-third of the second and third leaves to
emerge were harvested 2 h into the light cycle. The M frac-
tion was taken as the supernatant following gentle grinding
of fresh tissue in a mortar and pestle as described before
(Chotewutmontri and Barkan, 2016). However, differing
from our previous procedure which used the residual mate-
rial from the M preparation as the source of the BS fraction,
we prepared the BS fraction from separate tissue aliquots as
the tissue remaining after several rounds of gentle grinding
and rinsing to remove released cells. This fractionation pro-
cedure took roughly 3 min for M fractions and 10 min for
BS fractions, at which point samples were flash frozen in liq-
uid nitrogen.

Ribo-seq, RNA-seq, and sRNA-seq libraries
RFs and total RNA were prepared from the same lysates in
three biological replicates as described previously
(Chotewutmontri and Barkan, 2016). Ribosome protected
fragments from �20 to �40 nt were selected for ribo-seq
library preparation, and libraries were prepared with the
NEXTflex Small RNA Sequencing Kit v2 (Bioo Scientific,
Austin, TX, USA) in combination with rRNA depletion with
customized biotinylated antisense oligonucleotides
(Chotewutmontri et al., 2018). RNA-seq libraries were pre-
pared from total RNA after rRNA depletion with the Ribo-
Zero rRNA Removal Kit (Plant Leaf; Illumina, San Diego, CA,
USA) using the NEXTflex Rapid Directional qRNA-Seq Kit
(Bioo Scientific). To catalog microRNAs, the same RNA sam-
ples were analyzed by sRNA-seq with the same kit used to
sequence RFs. The ribo-seq, RNA-seq, and microRNA librar-
ies were sequenced using a HiSeq 4000 (Illumina) in single-
read mode with read lengths of 100 nt.

Sequence read processing
Ribo-seq and RNA-seq data were processed as described
previously (Chotewutmontri and Barkan, 2020) with minor
modifications. In brief, adapter sequences were trimmed us-
ing cutadapt (Martin, 2011). For ribo-seq, only trimmed
reads between 18 and 40 nt were retained for alignments.
Reads were aligned sequentially to the maize chloroplast ge-
nome (GenBank accession X86563), the maize mitochondrial
genome (B73 RefGen_v4 assembly release 38), and the
maize nuclear genome (B73 RefGen_v4 assembly release 38)
using STAR version 2.5.3a (Dobin et al., 2013). Read splicing
was restricted to annotated splice junctions. Read counting
was performed using featureCounts from Subread package
version 1.6.0 (Liao et al., 2014), counting only those reads
that mapped to a unique site. Ribo-seq read counts for nu-
clear and organellar genes excluded the first 25 and 10 nt of
each ORF, respectively, to avoid counting ribosome pileups
at start codons. RNA-seq read counts used full-length ORFs.
Read counts are provided in Supplemental Dataset S12.

RF length distribution, 3-nt periodicity, and metagene
analysis were performed using in-house Perl scripts.
Comparison among replicates was evaluated with Pearson
correlation and hierarchical clustering using log10 reads per
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kilobase per million reads mapped to nuclear coding
sequences (RPKM) values. Transcript coverage and 30-bias
were analyzed using Picard Tool version 2.6.0 (http://broadin
stitute.github.io/picard/). Samtools (Li et al., 2009) was used
to extract gene-specific read coverages. P-site assignment of
ribo-seq reads was inferred from the RF size-dependent
placements of footprint 50-ends to the P-site location, which
was observed from metagene analysis of reads mapping to
start codons in the data discussed here.

MicroRNA data were trimmed with cutadapt (Martin,
2011). Trimmed reads between 15 and 45 nucleotides were
retained and aligned to the B73 RefGen_v4 assembly using
STAR version 2.5.3a (Dobin et al., 2013). For multi-mapped
reads, STAR parameters were set to distribute each multi-
mapped read randomly to one of the mapped locations
(–outMultimapperOrder Random –outSAMmultNmax 1).
Read counting was performed using featureCounts (Liao et
al., 2014) with maize microRNA annotation release 22 (mir-
base.org), where counting included multi-mapped reads. The
read counts are provided in Supplemental Dataset S11.

Differential expression analysis
Differential expression analysis based on RNA-seq, ribo-seq,
or microRNA data was performed using DESeq2 (Love et al.,
2014). Outputs are reported in Supplemental Dataset S5,
Supplemental Dataset S11 and Supplemental Dataset S13.
Genes were reported as differentially expressed if they
showed an average of at least 100 reads in at least one of
the tissue types, a jlog2 BS/Mj4 1 and FDR5 0.001 for
RNA-seq and ribo-seq or FDR5 0.05 for microRNA data.

For analysis of differential TE, we used XTAIL (Xiao et al.,
2016). Only genes with an average of at least 100 RNA-seq
reads in both tissue types and an average of at least 100
ribo-seq reads in at least one of the tissue types were
reported. Genes were reported as differentially translated if
they showed jlog2(BS/M) TEj4 1.585 with FDR5 0.001.
The XTAIL output is provided in Supplemental Dataset S1.

UTR sequence motif analysis
UTRs from genes that are differentially translated (107 genes
in BS set and 75 genes in M set; jlog2(BS/M) TEj4 1.585 ex-
cluding the buffering genes) were compared with one an-
other and with a set of nondifferentially translated genes
(Control set; 5280 genes; jlog2(BS/M) TEj4 0.585). The
UTR sequences were downloaded from the BioMart of
Ensembl Plants release 50 (https://plants.ensembl.org/).
Missing UTR sequences for genes in the BS and M sets were
manually extracted from GenBank. Analyses used the lon-
gest annotated UTR sequences for each gene. Differences in
UTR lengths and GC content were analyzed with a non-
parametric one-way analysis of variance test, the Kruskal–
Wallis Test, followed by Dunn’s multiple comparisons test
for all possible pairs using Prism 8 (GraphPad, San Diego,
CA, USA). Motif discovery was performed using STREME
(Bailey, 2021) with a motif width of 4–25 nt for the BS or
M sets against the Control set. Motifs with P5 0.05 were
retained. To remove known DNA motifs and identify

known RNA motifs, the motifs were searched against three
DNA and RNA motif datasets (JASPAR CORE, CISBP-RNA Z.
mays and Arabidopsis DAP motifs) using TOMTOM (Gupta
et al., 2007) based on Euclidean distance. No known RNA
motifs were detected. DNA motifs that produced any
match with a P5 0.07 were removed. Motif enrichment
analysis was performed using AME (McLeay and Bailey,
2010) for the BS or M sets against the Control set. FIMO
(Grant et al., 2011) was used to find motif positions in UTR
sequences and only the top score FIMO sites corresponding
to the number of sites found by AME were used. The motif
analysis data are provided in Supplemental Dataset S3.

uORF analysis
Genes with jlog2(BS/M) TEj4 1 and FDR5 0.001 excluding
the buffering genes (n = 335) were screened manually for
ribo-seq reads in the 50-UTR. P-site assignments and identifi-
cation of uORFs beginning with AUG, CUG, or ACG were
determined for those genes with substantial ribo-seq reads
in the UTR. Genes that show P-site coverage in predicted
uORFs are reported in Supplemental Dataset S4. uORF read
count was performed using featureCounts (Liao et al., 2014),
counting only those reads that mapped to a unique site and
excluding the 25-nt region upstream of the main ORF to
avoid counting ribosome pileups at start codons. The total
“TE” of all uORFs in an mRNA was calculated from the nor-
malized ribo-seq abundance (number of ribo-seq reads
mapped to any uORF of the gene per total uORF kilobase
per million reads mapped to nuclear coding sequences) di-
vided by the normalized mRNA abundance (mORF RNA-seq
RPKM).

Functional-enrichment analysis
The enrichment analysis was performed with MapMan
(Thimm et al., 2004) as described (Zones et al., 2015), using
maize X4.2 functional assignments and Mapman terms
Levels 1–3. In brief, a set of genes showing an average ribo-
seq RPKM value 41 in at least one tissue type (18,980
genes) was used to calculate background distribution of each
MapMan term among the expressed gene set. To evaluate a
pair of BS and M datasets of sizes m and n genes, a total of
10,000 permutations by random sampling without replace-
ment for pair sets of m and n genes from the expressed
gene pool were performed. The term occurrences in these
10,000 permutated dataset pairs produced the mean and
standard deviation (SD) for each term occurrence in the
background. The observed term occurrence in each dataset
together with the mean and SD of the term occurrence in
the background from the corresponding permutation set
were used to calculate z-score and P-value. The adjusted P-
values or FDR values were calculated using the Benjamini–
Hochberg method in R as described previously (Zones et al.,
2015). The output is provided in Supplemental Dataset S8.

Reanalysis of external data
Previously published RNA-seq analyses of maize BS and M
fractions used noncurrent maize genome assemblies and
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gene models. For comparison to our data, we re-analyzed
the + 9 cm data (also called section 14) from Tausta et al.
(2014) and the slice 1 data from Denton et al. (2017) using
our pipeline. To compare our ribo-seq data to proteome
data from Friso et al. (2010), those data were matched to
B73 version 4 gene identifiers using the gene ID history (gra-
mene.org). For comparison to our differential translatomes
in Figures 3E, 5, and 6; Supplemental Figures S6 and S7, the
originally reported BS/M values were compiled from the BS
and M data from Li et al. (2010), Chang et al. (2012), the
section 14 data from Tausta et al. (2014), and the slice 1
data from Denton et al. (2017). The values reported with
older gene IDs were matched using the gene ID history
(gramene.org).

Antibodies
Antibodies to NdhH and PPDK were generously provided by
Tsuyoshi Endo (Kyoto University) and Kazuko Aoyagi
(University of California, Berkeley), respectively. Antibodies
to PEPC, malic enzyme, and Rubisco large subunit (RbcL)
were gifts of William Taylor (University of California,
Berkeley). The antibody to the D2 subunit of PSII was
obtained from Agrisera.

Accession numbers
The ribo-seq and RNA-seq data were deposited at the NCBI
Sequence Read Archive (SRA) with accession number
PRJNA667075. RNA-seq data from Tausta et al. (2014) and
Denton et al. (2017) were downloaded from SRA (accession
numbers SRP035577 and SRP052802, respectively).
Alignments of reads to the maize chloroplast genome used
Genbank accession X86563. B73 RefGen_v4 assembly with
annotation release 38 (gramene.org) was used for alignments
to the nuclear and mitochondrial genomes.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1 Characteristics of ribo-seq and
RNA-seq data from BS and M fractions.

Supplemental Figure S2 Comparison of RNA-seq data
characteristics with those from prior studies.

Supplemental Figure S3 Comparison of RNA-seq, ribo-
seq, and proteome data collected for maize BS and M leaf
fractions.

Supplemental Figure S4 Comparison of our RNA-seq and
prior RNA-seq data for genes exhibiting preferential transla-
tion in M or BS fractions.

Supplemental Figure S5 Normalized read coverage of
translationally regulated genes.

Supplemental Figure S6 Differential expression of eIF1,
eIF5, and eIF5A genes.

Supplemental Figure S7 Differential expression of biogen-
esis factors for PSII, Rubisco, and the NDH complex.

Supplemental Figure S8 Alignment of microRNA sequen-
ces of zma-MIR160 and zma-MIR166 families.

Supplemental Dataset S1. XTAIL output and related
data.

Supplemental Dataset S2. Genes reported by XTAIL as
having a greater than three-fold difference in TE between BS
and M fractions.

Supplemental Dataset S3. Sequence motif enrichment
data.

Supplemental Dataset S4. Data on uORF translation for
differentially translated genes.

Supplemental Dataset S5. DESeq2 output of ribo-seq
data.

Supplemental Dataset S6. BS-enriched genes in ribo-seq
data.

Supplemental Dataset S7. M-enriched genes in ribo-seq
data.

Supplemental Dataset S8. Enrichment of MapMan terms
in gene sets that are differentially expressed in BS versus M
fractions based on ribo-seq data.

Supplemental Dataset S9. Differential expression of
nucleus-encoded proteins involved in expression and assem-
bly of Rubisco, NDH-like, and PSII complexes.

Supplemental Dataset S10. Data for TF genes that are
differentially expressed based on ribo-seq data.

Supplemental Dataset S11. MicroRNA data.
Supplemental Dataset S12. Ribo-seq and RNA-seq read

counts, including re-analyzed data from Denton S1 and
Tausta Sec 14 samples.

Supplemental Dataset S13. DESeq2 outputs of RNA-seq
data, including re-analyzed data from Denton S1 and Tausta
Sec 14 samples.
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