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Abstract

Reactive oxygen species (ROS; e.g., superoxide [O2
�-] and hydrogen peroxide [H2O2]) and reactive nitrogen

species (RNS; e.g., nitric oxide [NO�]) at the physiological level function as signaling molecules that mediate many
biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast,
excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease.
Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent
studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic
pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic
pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate
pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review
summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular
metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full
understanding of these mechanisms will be important for the development of new therapeutic strategies to treat
diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319–1354.
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Introduction

Dysregulated redox homeostasis is a hallmark of
cardiovascular disease (CVD) (88, 118, 262). Enzymes

that produce reactive oxygen species (ROS; e.g., superoxide
[O2
�-], hydrogen peroxide [H2O2]) and reactive nitrogen

species (RNS; e.g., nitric oxide [NO�]) are regulated by
location-dependent changes in metabolic flux (Figs. 2 and 3).
Metabolic changes are among the most prominent features
of aging and have been identified in numerous disease states
(Fig. 6), because metabolism impacts cellular function
through various mechanisms (Fig. 1). How these changes
serve to influence the redox balance (and vice versa) is poorly
understood (Figs. 4–6) (1, 102, 178, 254, 283). The ROS play

the role of a double-edged sword in both physiologic and
pathologic processes. Ambient levels at any given time re-
flect the balance between the rate and the magnitude of ROS
production versus its elimination (185, 371, 386). At the
physiological level, ROS are involved in cellular signaling.
However, when present in excess, ROS can drive patholo-
gies associated with aging, cancer, and atherosclerosis (102).
Reductive stress, a state in which ROS levels are too low, can
also promote and exacerbate a wide spectrum of pathologies
ranging from cancer to cardiomyopathy (371).

Metabolism is profoundly affected by oxidative stress
(Figs. 5 and 6) (1, 102, 178, 254, 283). For example, ROS/
RNS can inhibit multiple glycolytic enzymes, including
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and
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pyruvate kinase M2 (PKM2) (4, 259) (Figs. 5 and 6). The
inhibition of glycolytic pathways by ROS/RNS promotes
metabolic reprogramming away from glycolytic flux toward
the oxidative arm of the pentose phosphate pathway (PPP).
This shift results in increased production of nicotinamide
adenine dinucleotide phosphate (NADPH), which is needed
to support antioxidant defense. Cancer cells can promote
their own survival via antioxidant defense, specifically via
metabolic reprogramming, to prevent cell death due to
excessive ROS accumulation (178, 254, 283). Interestingly,
cancer-prone adenomatous polyposis coli-deficient cells
exhibit increased mitochondrial- and NADPH oxidase (NOX)-
mediated ROS production as well as increases in the TP53-
induced glycolysis and apoptosis regulator (TIGAR)-mediated
antioxidant defense; however, both pathways contribute to
cell proliferation (51) (Fig. 4). In this case, NOX enzymes
generate ROS that serve to increase cell proliferation whereas
TIGAR limits the damaging effects of ROS (Fig. 4). These
findings underscore the apparent importance of both tempo-
ral and spatial regulation of redox balance. In this review, we
will summarize our current knowledge of this field with a focus
on the reciprocal regulation of ROS/RNS and metabolic path-
ways and their contributions to vascular biology and disease.

ROS Homeostasis

This section summarizes our current understanding of the
cellular sources of ROS (O2

�- and H2O2) with a focus on the
roles played by the NOX enzymes, the mitochondrial elec-
tron transport chain (ETC), and uncoupled NO� synthases
(NOSs) (81) (Figs. 2 and 3). We will also review the role of
coupled NOSs as a source of RNS (NO�) (Fig. 4). Other
sources of ROS and RNS have been considered extensively
in other reviews (321). In this section, we will also consider
the roles of antioxidant enzymes, including superoxide dis-
mutases (SODs), catalase, glutathione peroxidases (GPXs),
and peroxiredoxins (PRXs), as well as their essential sub-
strates, NADPH and reduced glutathione (GSH) (Figs. 2, 4,
and 5). As an example of redox balance, NADPH is essential
not only for the functioning of the PRX/thioredoxin (TRX)
and GPX/GSH antioxidant systems, but it is also critical for
the activities of NOX and NOS, which are the enzymes that
generate ROS and RNS, respectively (Fig. 2).

Generation of ROS

NADPH oxidases. The NOXs are flavocytochrome en-
zymes (32, 294). Both phagocytic and non-phagocytic cells
throughout the plant and animal kingdom express functional
NOXs, although these enzymes have not been identified in
prokaryote species. The NOX proteins produce O2

�- through
NADPH electron exchange (Fig. 2). NOX-dependent ROS
production has an impact on many metabolic processes and
disease states (Fig. 5). There are five NOX isoforms known
as NOX1, NOX2, NOX3, NOX4, and NOX5. There are also
two isoforms of the related dual oxidases (DUOXes). NOX2
is the prototype NOX enzyme; it is also known as gp91phox
(nb: phox is an abbreviation for ‘‘phagocytic oxidase’’) be-
cause it was first identified in phagocytic cells. The NOX2
complex includes two membrane catalytic subunits, the afore-
mentioned gp91phox and the regulatory subunit, p22phox,
and five cytosolic subunits, including p47phox, p67phox,
p40phox, p22phox, and Rac1. Structurally, NOX2 shares
20%–50% sequence similarity with the other NOXs (50).
These similarities have created difficulties for those design-
ing targeted therapies (184).

NOX1, NOX2, NOX4, and NOX5 are all expressed in
vascular tissues (32, 179, 187). NOX1 and NOX2 are O2

�-

generating enzymes, whereas NOX4 generates H2O2 (32,
179, 187). NOX5 also produces O2

�- in a calcium-dependent
manner (107). Results from previous studies suggest that
NOX1, NOX2, and NOX5 promote endothelial dysfunction,
inflammation, and apoptosis in the vessel wall. By contrast,
NOX4 is primarily vasoprotective, as it increases the bio-
availability of NO and inhibits apoptotic pathways (32, 102).
However, the actions of NOX4 can also be deleterious (15).
NOX2 is found in the plasma membrane or in endosomes
where it produces O2

�-either extracellularly or within the
cytosol, respectively. O2

�- is rapidly scavenged to generate
H2O2 outside the cell by superoxide dismutase 3 (extra-
cellular SOD [ecSOD], SOD3) or within the cytosol by the
actions of coper zinc superoxide dismutase (Cu,ZnSOD,
SOD1). By contrast, NOX4 is located in focal adhesions, the
endoplasmic reticulum, nuclei, and mitochondria and it gen-
erates H2O2 at these locales (32, 179, 187). NOX1 is found
in various subcellular localizations, including the nuclei
and caveolae, whereas NOX5 is localized at the plasma

FIG. 1. Role of metabolism in cellular function. Meta-
bolism regulates cellular function by integrating energy pro-
duction, biosynthesis, control of redox state, cell signaling,
and transcription. The main metabolic task is to produce
ATP to meet energetic demands for cellular function via
glycolysis, oxidative phosphorylation and the TCA cycle.
Metabolism is also necessary for biosynthetic pathways,
including the PPP for nucleotide synthesis, as well as the
glycerolipid synthesis pathway (lipid synthesis) and serine
biosynthesis pathway. Metabolic pathways also regulate the
intracellular redox state by controlling NAD(P)+/NAD(P)H
pools and GSH to fuel the TRX/GSH antioxidant defense
system. NADPH is derived from PPP, IDHs, MEs, and 1C
metabolism, whereas GSH is derived from glutaminolysis.
Further, metabolism regulates ETC to produce mitoROS.
Finally, metabolism influences signaling and transcription
by regulating post-translational modification (e.g., glycosyl-
ation via the hexosamine biosynthetic pathway), epigenetic
modification, and metabolite signaling. 1C, one-carbon;
ATP, adenosine triphosphate; ETC, electron transport chain;
GSH, glutathione; ME, malic enzyme; mitoROS, mito-
chondrial ROS; NADPH, nicotinamide adenine dinucleotide
phosphate; PPP, pentose phosphate pathway; ROS, reactive
oxygen species; TCA, tricarboxylic acid; TRX, thioredoxin.
Color images are available online.
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membrane (32, 107, 179, 187). Other recent reviews include
more detailed examples of the roles of NOX enzymes in the
pathophysiology of CVD (32, 171, 179, 187, 321, 379).

Mitochondria. The primary site of ROS generation in
mitochondria is the ETC (Fig. 2). As shown, Nicotinamide
adenine dinucleotide (NADH)–ubiquinone oxidoreductase
(complex I) accepts electrons from NADH, which are then
transferred to complex II (succinate dehydrogenase [SDH]),
which oxidizes succinate to fumarate (12). Electrons con-
tinue to travel down the electrochemical gradient to com-
plex III (ubiquinol–cytochrome c oxidoreductase) and then
to complex IV (cytochrome c oxidase), where they reduce
molecular oxygen (O2) to water. Approximately 0.2% of
the total O2 undergoes incomplete reduction to become O2

�-

(12, 124, 310, 313). Complexes I and III are the major sites
of electron leakage involved in the premature reduction of
O2, thereby resulting in the formation of O2

�-, whereas
complex II can also contribute to O2

�- formation (267).
Complexes I and II produce O2

�- that is released into the
matrix only (194, 394), whereas complex III can produce
O2
�- on both sides of the inner mitochondrial membrane,

thereby resulting in its release into the intermembrane space
(IMS) (242). O2

�-within the IMS is physiologically more
important with respect to signaling capacity, as it has easier

access to the cytosol from this site; by contrast, matrix O2
�-

needs to cross both the inner and the outer mitochondrial
membranes to have access to the cytosol. O2

�- is a charged
species and, thus, it is not capable of diffusing across mito-
chondrial membranes. Therefore, O2

�- generated at IMS ex-
its mitochondria through a voltage-dependent mitochondrial
anion channel (VDAC) and enters the cytosol, where it is
converted to H2O2 by cytosolic SOD1 (123). Complex III is
the major site of ROS production in human endothelial cells
(ECs) during the process of hypoxia reoxygenation and after
stimulation with the cytokine, tumor necrosis factor a (TNFa)
(63, 327), whereas complex II plays a more important role in
lysophosphatidylcholine-induced ROS formation in these
cells (355). Complexes I and/or III are responsible for ROS
production that elicits dilation in response to shear stress in
human coronary arteriolar ECs (207). Thus, the generation
of O2

�- by each complex in the ETC appears to be agonist/
stimulant-dependent. Several recent reviews provide addi-
tional details on the role of mitochondrial ROS (mitoROS) in
the pathogenesis of CVD (13, 71, 82, 171, 321, 379).

Elimination of ROS

Antioxidant enzymes. The SODs are the primary cellu-
lar antioxidant enzymes that can eliminate O2

�-. The SODs

FIG. 2. Generation and metabolism of ROS/RNS. O2
�- is produced by NOXs, the mitochondrial ETC, XO, lipox-

ygenase, cyclooxygenase, and uncoupled NOS. O2
�- is converted by SODs to H2O2, which, in turn, is reduced to water via

the actions of catalase, GPXs, and PRXs. The PRX/TRX and GPX/GSH systems are fueled by NADPH, which is generated
by the PPP, IDHs, MEs, and 1C metabolism. Of note, NADPH is also a substrate for the ROS-generating NOXs and NOS.
In the presence of reduced transition metals (Fe2+ and Cu2+), H2O2 undergoes spontaneous conversion to reactive OH� or
related metal-associated reactive species. NO� is produced by coupled NOS. The NOS enzymes utilize NADPH and
l-arginine as co-substrates and BH4 (a product of 1C metabolism) as essential co-factors. Although all NOS isoforms
generate NO�, they can also generate O2

�- at the expense of NO� via a process known as uncoupling. The mechanisms
underlying the uncoupling process include the formation of monomers, altered Hsp90 binding, and insufficient levels of
BH4 and l-arginine. Importantly, NO� can be rapidly inactivated via a reaction with O2

�-, which leads to the formation
of the strong oxidant, ONOO-. Thus, SODs are the first line of defense against O2

�--mediated toxicity. The SODs also
participate in cell signaling events via their capacity to regulate levels of ROS (e.g., O2

�-, H2O2) while preserving available
NO�. BH4, tetrahydrobiopterin; GPX, glutathione peroxidase; H2O2, hydrogen peroxide; Hsp, heat-shock protein; NO�,
nitric oxide; NOS, nitric oxide synthase; NOX, NADPH oxidase; O2

�-, superoxide; OH�, hydroxyl radical; ONOO-,
peroxynitrite; PRX, peroxiredoxin; RNS, reactive nitrogen species; SOD, superoxide dismutase; XO, xanthine oxidase.
Color images are available online.
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rapidly scavenge O2
�- and use it as a substrate to generate

H2O2, thereby protecting the cell from the harmful effects
of this highly reactive molecule (Fig. 2). The three distinct
SODs are found in different cellular locations, including the
cytosol (SOD1, or Cu,ZnSOD), the mitochondria (SOD2,
or manganese superoxide dismutase [MnSOD]), and the ex-
tracellular matrix (ECM; SOD3, or ecSOD) (106). Cellular
antioxidant systems capable of scavengingH2O2 include
catalase, the PRXs/TRX system, and the GPXs/GSH system,
which can degrade H2O2 to water and molecular O2 (135)
(Fig. 2). These antioxidant scavenging systems also have
different cellular localizations, including the cytosol, mito-
chondria, endoplasmic reticulum, peroxisomes, and extra-
cellular space (22, 36). In the presence of a reduced transition
metal (e.g., Fe2+ or Cu2+), H2O2 can be converted to a hy-
droxyl radical (OH�), which is extremely reactive. In the
presence of iron (Fe2+), OH� can generate lipid peroxides
that promote ferroptosis; this pathway can be inhibited by
GPX4 (314).

Oxidized and inactivated TRX is reactivated and reduced
by the enzyme, TRX reductase (TRXR) via the oxidation of a
reducing equivalent, NADPH (Fig. 2). Similar to PRX and
TRX, GPX and GSH cooperate with one another to detoxify
H2O2 and generate H2O (Fig. 2). This process yields oxidized

GSH (GSSG), which is then reduced by glutathione reductase
(GSR) and NADPH (26). Thus, both systems are ultimately
dependent on cellular NADPH-reducing equivalents for
their regeneration. TRXR and GSR use NADPH to reduce
oxidized TRX and GSSG, respectively (Fig. 2). This key
reducing equivalent is generated by a complex network of
metabolic pathways and enzymes, as discussed later (Fig. 4).
Several previous reviews have included a more extensive
consideration of the role of SODs, TRX, and GRX in the
pathogenesis of CVD (22, 36, 85, 106, 135, 171, 321, 379).

Nicotinamide adenine dinucleotide phosphate. NADPH
is an essential electron donor that is found in all eukaryotic
cells. NADPH is essential not only for use by the PRX/TRX
and GPX/GSH antioxidant defense systems that mitigate
ROS-related cellular damage but also as a cofactor for NOS
to generate NO� and similarly for NOXs to generate O2

�- or
H2O2 (Fig. 2). NADPH serves as both a substrate for NOX
to generate O2

�-/H2O2 and a coenzyme for the reductive
removal of peroxides (366). NADPH is also required for
anabolic biosynthetic reactions that are important for cell
growth, such as the synthesis of fatty acids (FAs) and cho-
lesterol, degradation of heme, and metabolism of polyol com-
pounds (160, 372). Approximately 60% of the intracellular

FIG. 3. Interplay between mitoROS production, the ETC, and the TCA cycle. mitoROS are produced by the ETC at
complexes I and III during oxidative phosphorylation. The reducing equivalents NADH and FADH2, which are generated
by the TCA cycle in a series of enzymatic reactions, transfer electrons to the ETC to produce ATP. Thus, mitoROS, the
ETC, and the TCA cycle are closely connected during oxidative phosphorylation. When the pool of CoQ is reduced,
mitoROS are produced by complex I via RET. Further, VDACs control the release of O2

�- from the mitochondria to the
cytosol. NADH is produced during the conversion of a-a-KG to succinyl CoA to provide electrons for complex I in the
ETC. NADH is also produced in the conversion of isocitrate to a-KG and the conversion of malate to OAA in the TCA
cycle. FADH2 is produced during the conversion of succinate to fumarate via the actions of SDH, which is an enzyme that
participates in both the TCA cycle and the ETC. a-KG, a-ketoglutarate; CoA, coenzyme A; complex I, NADH–ubiquinone
oxidoreductase; complex III, ubiquinol–cytochrome c oxidoreductase; coQ, coenzyme Q; Cyt c: cytochrome c; FADH2,
reduced flavin adenine dinucleotide; NADH, nicotinamide adenine dinucleotide; OAA, oxaloacetate; RET, reverse electron
transport; SDH, succinate dehydrogenase; VDAC, voltage-dependent anion channel. Color images are available online.
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NADPH is generated via the oxidative PPP with the re-
maining 40% generated by one-carbon (1C) metabolism,
isocitrate dehydrogenases (IDHs), and malic enzymes (MEs)
(37), as discussed later (Fig. 4). Consequently, cancer cells
maintain high levels of NADPH that sustain their rapid
growth and protect them from the deleterious effects of
excessive ROS (160, 372).

The ROS are closely linked to the systems that generate
NADPH, thereby serving to induce antioxidant defense

(Fig. 2). Oxidative PPP, one of the major sources of
NADPH, is a branch of the metabolic process of glycolysis.
In response to ROS, several enzymes that regulate glycoly-
sis, including GAPDH, PKM2, and TIGAR, can redirect
glycolytic intermediates to the oxidative PPP (4, 259, 352)
(Figs. 4 and 5). The ROS-induced S-glutathionylation and
inactivation of specific cysteine residues in both GAPDH
and PKM2 contribute to this response (4, 259). Further, in-
activation of PKM2 can channel glycolytic precursors into

FIG. 4. Cellular metabolic pathway involved in redox homeostasis. The major metabolic pathways that regulate redox
homeostasis in ECs are as shown. Parts of metabolic pathways that take place in immune cells (e.g., those involving
itaconate) are also included. Metabolic pathways that regulate redox homeostasis are limited to those involved in the
production of NADPH and GSH (shown in green) and that regulate eNOS activity (shown in red). The ECs primarily utilize
glycolysis (shaded in green) to obtain ATP. During this process, ECs generate pyruvate and lactate from glucose, thereby
contributing to four additional pathways. The first of these, known as the PPP (shaded in yellow), includes both oxPPP and
non-oxPPP pathways that contribute to antioxidant defense and nucleotide synthesis, respectively. Second, 1C metabolism
(shaded in gray) contributes to protein and nucleotide methylation. Third, the hexosamine pathway (shaded in blue) uses
F6P to promote protein glycosylation and synthesis of the luminal glycocalyx. Finally, after glycolysis, pyruvate can enter
the mitochondria where it is converted to acetyl-CoA and can then enter the TCA cycle (shown in purple). NADPH is
essential not only for antioxidant defense pathways, including the PRX/TRX and GPX/GSH systems that mitigate ROS-
related cellular damage, but it is also necessary for the generation of NO� (a cofactor for NOS) and O2

�- (a cofactor of the
NOX enzymes). The major metabolic pathways that generate NADPH include oxPPP, ME1, 1C metabolism, IDH1/2,
glutamine metabolism, and CPT1-mediated FAO. De novo synthesis of the antioxidant, GSH (shown in green) involves
CySS import into the cell via the CySS/glutamate transporter (xCT), cysteine generated from methionine via the trans-
sulfuration pathway, and glutamine metabolism. Cysteine is also involved in the synthesis of the gaseous transmitter, H2S.
The primary metabolic pathways contributing to coupled and uncoupled eNOS include the ornithine cycle (shaded in pink),
the mevalonate pathway (shaded in pale blue), and 1C metabolism (via BH4). Lastly, itaconate synthesized from aconitate
in activated macrophages via the actions of IRG1 inhibits the activity of SDH. This inhibits ROS generation by RET at
complex I. CPT1, carnitine palmitoyltransferase-1; CySS, cystine; EC, endothelial cell; eNOS, endothelial NOS; FAO, fatty
acid oxidation; H2S, hydrogen sulfide; IRG1, immune-responsive gene 1; LDH, lactate dehydrogenase; oxPPP, oxidative
PPP; xCT, the cystine/glutamate antiporter SLC7A11. Color images are available online.
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the NADPH-generating 1C metabolism pathway. In this
setting, phosphoglycerate dehydrogenase (PHGDH) cataly-
zes the biosynthesis of serine, and serine hydroxymethyl-
transferase (SHMT) then incorporates 1C from serine into the
folate cycle, which also generates NADPH (28, 381) (Fig. 4).
During hypoxia in Myc-transformed cells, hypoxia-inducible
factor (HIF) and Myc function cooperatively to increase
SHMT levels; this results in the generation of NADPH in the
mitochondria and reduces the elevated levels of mitoROS
(380). Mitochondrial NADPH can also be generated by the
oxidation of malate to pyruvate by MEs, a mechanism that
plays an important role in insulin secretion (126) (Fig. 4).

Different cell types most likely rely on different meta-
bolic pathways to generate basal levels of NADPH. In mu-
tant KRAS-driven pancreatic ductal adenocarcinoma cells,
glutamine-derived malate was used to generate basal
NADPH via ME1, rather than via oxidative PPP; decreased
levels of glucose-6-phosphate dehydrogenase (G6PD) had
no impact on the levels of NADPH in these cells (308).
Another metabolic enzyme, 5¢ adenosine monophosphate-
activated protein kinase (AMPK), also regulates NADPH
homeostasis. In response to glucose-deprivation stress con-
ditions in which generation of NADPH cannot proceed via

the PPP, activation of AMPK maintains NADPH levels by
inhibiting acetyl-coenzyme A (acetyl-CoA) carboxylases
ACC1 and/or ACC2 (154) (Fig. 5).

Reduced GSH. GSH is a highly abundant antioxidant
tripeptide (1–10 mM) that is produced by most mammalian
cells (14, 104, 214) and distributed ubiquitously within the
cell, including in the cytosol (90%) as well as in the mito-
chondria, nucleus, endoplasmic reticulum, and extracellular
space (10%) (104, 214). GSH is an antioxidant and detoxi-
fying agent that scavenges ROS/RNS. GSH can be found in
the cell in one of three main forms: reduced GSH, oxidized
GSSG, and protein-glutathione mixed disulfides (PSSGs)
(Figs. 2 and 5). Under physiological conditions, reduced GSH
is the predominant form in the cell, where it is 10- to 100
times more abundant than its oxidized form. Thus, together
with NADP/NADPH and TRX systems, the relative con-
centrations of GSH/GSSG determine the redox state at cel-
lular homeostasis (Figs. 2 and 5). Further, GSH is involved
in the maintenance of cysteine pools and the detoxifica-
tion of xenobiotics. In response to oxidative stress, steady-
state levels of cellular GSH are regulated by synthesis, re-
cycling of oxidized GSSG, degradation of extracellular

FIG. 5. Interplay between ROS and cellular metabolic pathways. Metabolic pathways contribute to redox homeostasis
by regulating ROS generation via NOX/NADPH and mitochondrial ETC as well as by their impact on antioxidant systems
via production of NADPH and GSH, as outlined in Figure 3. Conversely, cytosolic and mitoROS, which are produced by
NOX, mitochondrial respiration, as well as metabolic and other enzymes, regulate metabolic pathways by targeting specific
enzymes and transcription factors, including AMPK, glycolytic enzymes, mitochondrial enzymes, and HIFs. HIF-1a pro-
motes a shift in metabolism toward glycolysis, while inhibiting mitochondrial O2 consumption. This leads to decreased
production of ATP through oxidative phosphorylation and thus reduced levels of mitoROS. AMPK, 5¢ adenosine
monophosphate-activated protein kinase; HIF, hypoxia-inducible factor; O2, oxygen. Color images are available online.
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GSH, and extrusion of the reduced, oxidized, or conju-
gated forms (14, 104, 214). GSH is synthesized de novo
by adenosine triphosphate (ATP)-dependent glutamate-
cysteine ligase (GCL) and GSH synthetase (GSS) (Fig. 4).
GCL catalyzes the rate-limiting step of this process, which
is a glutamate ligation with cysteine to form a dipeptide.
GCL levels, together with levels of the cystine/glutamate
transporter, are controlled by the critical transcription fac-
tor, nuclear factor erythroid 2-related factor 2 (Nrf2) that
activates antioxidant responsive genes (152). This dipeptide
is then combined with glycine via the actions of GSS to
produce GSH.

Cysteine is a rate-limiting substrate for GSH synthesis.
Levels of this amino acid are controlled by the cystine/
glutamate antiporter SLC7A11 (xCT), which also encodes
the cystine/glutamate transporter (65, 304) (Fig. 4). Cysteine
can also be generated by the transsulfuration of methionine.
In addition to cysteine, glutamine, glutamate, and glycine are
also important for GSH synthesis (Fig. 4). The availability
of glutamine regulates GSH production in three ways (391)
(Fig. 4). First, glutamine is the primary source of glutamate
via the actions of glutaminases (GLSs) 1 and 2. GLS activity
is tightly regulated to maintain appropriate intracellular
GSH concentrations. Glutamine can be transported into cells
by various amino acid transporter systems, including solute
carrier family 1, member 5 (SLC1A5, also known as alanine/
serine/cysteine-preferring transporter 2, or ASCT2), which is
among the most commonly overexpressed transporters in
cancer cells. SLC1A5 and GLSs regulate intracellular GSH
levels by controlling glutamine availability and its conver-
sion to glutamate, respectively. Second, glutamine contrib-
utes to the maintenance of GSH levels via the production of
NADPH by ME, as described in the previous section. Third,
the cystine/glutamate transporter system also regulates the
levels of intracellular glutamine (304). Thus, an overall abun-
dance of glutamine and glutamate is crucial to maintaining
appropriate levels of intracellular GSH, which can promote
tumor initiation and proliferation (125). In addition, GSH is
an essential cofactor of GPX4 and can thus prevent ferrop-
tosis; it also regulates the levels of cysteine, which also can
trigger ferroptosis (378). Taken together, these findings high-
light the importance of GSH-mediated antioxidant pathways
in maintaining cell survival and promoting their growth.

Generation of NO� by NOS:NO�/ROS generation

Coupled NOS (NO� generation). NO� is a free radical
gas that is synthesized in humans by three distinct NOS
isoforms, neuronal NOS (nNOS, NOS1), inducible NOS
(iNOS, NOS2), and endothelial NOS (eNOS, NOS3) (Figs. 2,
4, and 6). NO� has several distinct biological roles that
range from mediating antimicrobial immune response, neu-
rotransmission, and endothelium-dependent relaxation; these
properties are dictated in an isoform- and cell-specific man-
ner. The nNOS isoform is expressed primarily in the central
and peripheral nervous systems, the gastrointestinal tract, and
skeletal muscle. At these sites, NO� is synthesized on demand
in a calcium-dependent manner to regulate neurotransmis-
sion, peristalsis, and penile erection. By contrast, expression
of iNOS takes place primarily in activated immune cells,
most notably in macrophages and neutrophils that constitu-
tively produce large amounts of NO� and RNS that are used

in their microbicidal and immunomodulatory functions. The
eNOS isoform is expressed primarily in ECs within the blood
vessels where, similar to nNOS, it produces NO� on-demand
in a calcium-dependent manner to relax vascular smooth
muscle cells (VSMCs), thereby reducing vascular tone and
blood pressure. The enzymology underlying NO� biosyn-
thesis by each of the three NOS isoforms is well conser-
ved and involves the NADPH-dependent conversion of
l-arginine to NO� with l-citrulline as a byproduct. The three
NOS isoforms each contain two domains, including NADPH-
binding oxygenase and heme-containing reductase domains
that are found in a head-to-tail configuration as parts of a
functional homodimer. NADPH binds to a C-terminal bind-
ing domain in the reductase domain of one monomer, which
delivers electrons via a flavin bridge (i.e., flavin adenine
dinucleotide [FAD], flavin mononucleotide [FMN]) to an
N-terminal heme moiety that binds O2 at the oxygenase do-
main of the other monomer. This results in the reduction of
molecular O2 and its insertion into the guanidine nitrogen
of l-arginine (103). Electron flow to the heme occurs
constitutively in iNOS, but it is controlled by calcium-
calmodulin-dependent binding in eNOS and nNOS and is
further fine-tuned by post-translational modifications.

Uncoupled NOS (ROS generation). Although all NOS
isoforms generate NO�, they can also generate O2

�- at the
expense of NO� via a process known as uncoupling (Figs. 2,
4, and 6). The mechanisms underlying uncoupling have un-
dergone intensive investigation and various schemes have
been proposed ranging from the formation of monomers,
NOS phosphorylation at threonine (T)495, altered heat-shock
protein (Hsp)90 binding, and insufficient levels of tetrahy-
drobiopterin (BH4) and l-arginine. Of these mechanisms,
low levels of BH4 or low BH4 to dihydrobiopterin (BH2)
ratios are the most reproducible findings associated with
NOS uncoupling (111). BH4 is an essential cofactor for all
NOS isoforms; two molecules of BH4 are bound stoichio-
metrically to a single NOS dimer. A BH4 binding site can be
found near the dimer interface on NOS isoforms. This site
also binds to the heme iron and converts it from a low-spin to
a high-spin state (21). Reduced BH4 facilitates the oxidation
of l-arginine; oxidized biopterin (BH2) can also bind to
NOS but it does not facilitate NO� production. Bound BH4

also facilitates arginine binding and is important for isoform-
specific dimerization (338). BH4 is a redox-sensitive
molecule and is particularly susceptible to degradation by
peroxynitrite (ONOO-), which is more potent at oxidizing
BH4 than is either O2

�- or H2O2 (188). Indeed, high intra-
cellular levels of O2

�- are not sufficient to block the eNOS-
mediated synthesis of NO�; however, this condition does
reduce its bioavailability (392). Under physiological condi-
tions, there is typically a high ratio of BH4 to BH2. By con-
trast, in disease settings, particularly those associated with
increased levels of ROS, BH2 levels are elevated to the point
at which they can become dominant. However, the BH4:BH2

ratio is believed to be more important for NOS uncoupling
than are the absolute levels of BH4. BH2 and BH4 bind to
NOS enzymes with equal affinity, although BH2 does not
facilitate the insertion of activated O2 into l-arginine; this
leads to O2

�-escape (337). In addition to the direct oxidation
of BH4, conditions including hyperglycemia and availability
of ONOO- can also prevent BH4 synthesis by promoting the
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ubiquitin-dependent degradation of GTP cyclohydrolase
(GTPCH) 1 (373) (Fig. 4). Patients with diabetes, athero-
sclerosis, and/or hypertension typically have lower levels of
BH4 and thus the potential for dysregulated eNOS activity.
Supplementation with BH4 or folate and increased expres-
sion of GTPCH can all serve to improve endothelial func-
tion (340, 373). BH4-deficient macrophages have improved
microbicidal activity compared with those that are iNOS-
deficient. These findings suggest a functional role for un-
coupled NOS enzymes (234). Unexpectedly, reduced levels
of BH4 can promote increased production of mitoROS along
with the accumulation of the tricarboxylic acid (TCA) cycle
metabolites succinate and fumarate (7). The mitoROS have
been shown to have an important role in killing bacteria
(359). Low levels of BH4 in human macrophages have been
proposed as a mechanism to explain their comparatively
weak ability to generate NO� when compared with rodent
macrophages, although they maintain potent microbicidal
activity (193). Loss of BH4 in human macrophages was also
linked to impaired activation of Nrf2 (233). To counteract
BH4 deficiency, ascorbic acid, folic acid, and overexpression
of the rate-limiting enzyme in BH4 synthesis, GTP cyclo-
hydrolase (GCH1, the gene encoding GTPCH), have all been
shown to promote NO� production and thus to protect against
the development of atherosclerosis (79, 182, 312). In another
proof-of-concept study, novel analogs of BH4 have been
developed that are resistant to oxidation; administration of
these analogs results in improvements in eNOS expression
endothelial function and eNOS expression (114). Uncoupled
eNOS has been identified as a source of ROS in multiple
CVD states. Additional information on this subject can be
found in previous reviews (2, 165, 171, 321, 379).

Metabolic Pathways and ROS

Cellular metabolism maintains redox homeostasis by gen-
erating ROS via the mitochondrial ETC as well as by the
actions of the antioxidant systems via NADPH and GSH
(Figs. 2–6). Further, metabolic reprogramming and increased
flux through specific pathways play important roles in shap-
ing both inflammatory and immune responses, to which ROS/
RNS are also important contributors (10, 102, 108, 177). In
this section, we will highlight how specific metabolic path-
ways regulate ROS production and inflammation.

Glycolysis and ROS

The ROS and glycolysis are closely linked to one another
(Figs. 4–6, shaded in green). For example, to minimize the
potential damage to DNA that can occur in cells proliferating
under oxidative stress, tumor cells can increase their uptake
of glucose and shift the metabolism toward glycolysis to
release lactate even in the presence of molecular O2 (i.e.,
aerobic glycolysis, also known as the Warburg effect) (354).
This results in reduced ROS levels compared with cells
undergoing mitochondrial oxidative phosphorylation (200).
Pharmacological inhibition or knockdown of glycolytic en-
zymes will result in the suppression of tumor growth in a
variety of cancers (284, 368), whereas induction of mito-
chondrial respiration will result in slower growth rates both
in vitro and in vivo (48, 290). Similarly, cells with mutant
mitochondria with a reduced capacity for oxidative phos-

phorylation will promote growth through induction of gly-
colysis (399). The necessity of glycolytic flux in angiogenic
ECs (both tip and stalk cells) is supported by observations
that include impaired spheroid sprouting, postnatal outgrowth,
and branching of murine retinal vasculature in cultured ECs
devoid of the glycolytic enzyme, 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase 3 (PFKFB3) as well as in vivo
(74, 375). PFKFB3 overexpression in zebrafish stimulates tip
cells (74). Increased glycolysis in ECs provides energy not
only for cell proliferation but also for cell migration; this
was clear from the results of experiments that colocalized
PFKFB3 or other glycolytic enzymes with F-actin in filopo-
dia and lamellipodia, which are sites at which ATP is pro-
duced to support rapid remodeling. A recent report showed
that loss of PFKFB3 from ECs impairs ischemic muscle re-
vascularization and regeneration by reducing the extent of
lactate-mediated macrophage polarization (390).

The role played by glycolysis in promoting oxidative
stress associated with atherosclerosis is complex and not
fully understood. Disturbed blood flow at aortic bifurcations
promotes atherosclerosis as well as induces glycolysis and
reduces mitochondrial respiratory capacity in ECs via the
activation of HIF-1a by NOX4-derived ROS (369) (Figs. 5
and 6). Activated HIF-1a induces the expression of glycolytic
enzymes and pyruvate dehydrogenase kinase 1 (PDHK1).
This results in a reduction in the mitochondrial respiratory
capacity, vascular inflammation, and atherosclerosis (369).
The metabolite signatures identified in high-risk atheroscle-
rotic plaques showed increased levels of glycolysis, elevated
amino acid utilization, and decreased fatty acid oxidation
(FAO), compared with those from low-risk atherosclerotic
plaques (329). By contrast, another study revealed that
adaptive increases in AMPKa1 induced by disturbed blood
flow stimulated EC glycolysis and regeneration and was
atheroprotective (376). Further, proinflammatory signaling
enhances glycolysis in ECs, which can promote nuclear
factor-kappa B (NF-jB)-driven vascular inflammation via
lactate signaling (393); this will promote a cycle that results
in sustained proinflammatory signaling (326). Activated
neutrophils responding to oxidative stress shift toward
hyperglycolysis via the phosphorylation of phosphofructo-
kinase 2 (PFK2) by NOX2-derived ROS (9). Other reports
have highlighted the metabolic dependency of astroglial cells
on glucose availability for regeneration of the NADPH (181).
Finally, hyperproliferative ECs due to pulmonary hyperten-
sion also rely on increased glycolytic flux and reduced O2

consumption, both of which are associated with HIF-1a
overexpression (334).

Similar to tumor cells, ECs and brain tissue obtain ATP
mainly from glycolysis rather than from oxidative phos-
phorylation, even in O2-rich environments (16, 74, 200).
Eighty percent of the ATP in ECs is generated by glycolysis,
even in the presence of O2 (74). As glycolysis produces
much less energy than does oxidative phosphorylation, the
physiologic mechanism underlying this observation remains
unclear, although several potential advantages have been
proposed (1, 16, 200). For example, one of the benefits of
the metabolic shift toward glycolysis in ECs is to reduce the
production of ROS by decreasing oxidative phosphorylation,
which is the main source of ROS production (199), as well
as by generating NADPH via PPP to counteract ROS that
are produced. Glycolysis is also O2-sparing and can generate
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ATP more rapidly than can be achieved with oxidative
phosphorylation. This may be an important adaptive mech-
anism to promote rapid vascularization of hypoxic tissue.

Therapeutic implications. Given that ECs are both highly
glycolytic and angiogenic, therapeutic modulation of glucose
metabolism and glucose transporters (GLUTs) are of great
interest from a therapeutic perspective (73, 74). However,
complete and permanent inhibition of glycolysis with 2-
deoxy-D-glucose was associated with unacceptable levels of
toxicity and yielded minimal success as monotherapy (324).
Interestingly, partial and transient reduction of glycolysis in
response to low doses, but not high doses of the PFKFB3
inhibitor, 3PO, reversed excessive vascular growth observed
in response to genetic ablation of Notch or vascular endo-
thelial growth factor receptor (VEGFR) 1 in mice with no
effect on EC maintenance (287). Other PFKFB3 inhibitors
that improve the pharmacokinetic properties and toxicolog-
ical parameters include PFK-158, an agent that recently en-
tered Phase I clinical trials (57), as well as a phenoxyindole
derivative with higher selectivity for PFKFB3 over the other
PFKFB isoforms (31). Because glycolysis plays an essential
role in controlling redox homeostasis via regulation of PPP-
derived NADPH, inhibition of glycolysis by the lactate de-
hydrogenase A inhibitor, FX11, impaired cancer cell growth
by decreasing the intracellular ATP levels and inducing
oxidative stress (189). Further, inhibition of glycolysis and
the PPP combined with the disruption of the TRX system
selectively increased its cytotoxicity in several cancers, but
not in normal counterparts (285). Thus, one might speculate
that a combined approach that included inhibition of gly-
colysis and the antioxidant system may prove to be an im-
portant therapeutic strategy for the treatment of various
vascular diseases that depend on glycolysis.

PPP and ROS

Once glucose enters the cell via a GLUT, it undergoes
phosphorylation by hexokinase (HK) to generate glucose-6-
phosphate (G6P) and thus becomes a substrate for glycoly-
sis, glycogen formation, and the PPP. The PPP includes both
oxidative and non-oxidative pathways (Figs. 4–6 shaded in
yellow). The oxidative PPP produces cellular NADPH that is
required for antioxidant defense and FA synthesis, whereas
the non-oxidative PPP produces pentose (5-carbon) sugars.
Both of these pathways produce ribose 5-phosphate, which is
a precursor for nucleotide synthesis. Glycolytic flux can
supply the oxidative PPP pathway via the actions of G6PD,
which is the first committed and rate-limiting step.

The functional significance of oxidative PPP and ROS is
revealed by a common human enzyme defect known as
X-linked G6PD deficiency, which is an enzyme that protects
against oxidative stress. Erythrocytes are very sensitive to
oxidative stress and highly dependent on oxidative PPP to
maintain adequate levels of NADPH and GSH. One pheno-
type commonly associated with G6D deficiency is hemolytic
anemia after ingestion of agents that can induce oxidative
stress (e.g., sulfonamides and fava beans, among others).
Under conditions of oxidative stress, glucose utilization is
shifted from glycolysis to PPP to produce more NADPH and
to generate GSH from GSSG (276). The glycolytic enzyme,
GAPDH, has critical cysteine residues in its active site that

can be oxidized and thus inactivated by H2O2 (259). PKM2 is
another key glycolytic enzyme that can be S-glutathionylated
at C358 by H2O2; this compromises its enzymatic activity,
thereby reducing the rate of glycolysis and increasing flux
into the PPP pathway to increase levels of NADPH (4).

Although NADPH functions to maintain the GSH and
TRX levels (Figs. 2 and 5), in some tissues, NADPH may
take on a pro-oxidative role via its actions as a cofactor for
the enzyme, NOX (32) (Figs. 2 and 4). The enzyme, G6PD,
which is a rate-limiting enzyme for PPP (a key source of
NADPH in oxidative stress), can play distinct roles depend-
ing on the specific cell types and conditions. Under condi-
tions of pathologic oxidative stress, for example, vascular
tissue challenged with angiotensin II (228) or macrophages
responding to lipopolysaccharide (LPS) (122), G6PD pro-
motes ROS production in VSMCs (228), while also pro-
tecting against ROS in ECs (195). G6PD deficiency inhibits
oxidant-mediated angiotensin II-induced signaling pathways
by limiting the production of NADPH, which, in these situ-
ations, serves as a substrate for NOX (228). In the context of
atherosclerosis, G6PD-mutant/apolipoprotein E (ApoE)-/-

mice display reduced G6PD activity (20%) together with
decreased levels of vascular O2

�-, inflammatory responses,
and atherosclerotic lesions (229). By contrast, G6PD over-
expression in ECs reduces TNFa-induced ROS production
and increases eNOS activity because NADPH is also a sub-
strate for eNOS (195). Thus, whether or not NADPH-derived
from G6PD can function as an antioxidant seems to be de-
pendent on the levels of NOX and peroxidases that are up-
regulated in disease states associated with oxidative stress.

Glutaminolysis and ROS

Glutamine is the most abundant non-essential amino acid
in the human body. Circulating concentrations of glutamine
are typically between 400 and 600 lM. Glutamine is a key
source of carbon and nitrogen for biosynthetic processes. The
enzyme, GLS, converts glutamine to glutamate, which then
undergoes decarboxylation to produce a-ketoglutarate (a-KG)
(Figs. 4 and 5, shaded in blue). The Krebs cycle intermediate,
a-KG, is ultimately used to produce ATP. The importance of
glutamine as a carbon source to supply the TCA cycle in ECs
was also demonstrated by the enhanced levels of glutamine
metabolism observed in association with pulmonary artery
hypertension (89). Further, the ongoing metabolism of glu-
tamine is essential to meet the metabolic needs of hyper-
proliferative vascular cells and proceeds via a mechanism
that relies on both mechanotransducer Yes-associated protein
(YAP) and the transcriptional coactivator with PDZ binding
motif (TAZ) (23). The ECM stiffening results in mechan-
oactivation of YAP/TAZ, which then stimulates GLS ex-
pression. The GLS is critical for proliferation and migration
via its role in replenishing the amino acid, aspartate (23).
Glutamine metabolism is also essential for EC proliferation.
Inhibition of glutamine metabolism in ECs by inhibiting
GLS-1 or glutamine deprivation prevents EC proliferation by
impairing lipid biosynthesis via reductive carboxylation
and complete loss of TCA intermediates. This inhibition of
glutamine metabolism also increases oxidative stress by de-
creasing the rate of GSH synthesis (141, 174). The impor-
tance of glutamine in angiogenesis has been demonstrated by
observations on the proliferation of aggressive cancer cells
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and its dependence on glutamine availability (45, 347). As
one example, glutamine deprivation induces apoptosis in
human breast cancer cells (47). However, the role of glu-
tamine metabolism in EC migration remains controversial
(141, 174, 260). Glutamine metabolism also plays a role in
injury-induced neointimal formation in arteries by regulating
VSMC proliferation (250). The TEA domain transcription
factor 1 (TEAD1) promotes VSMC proliferation via tran-
scriptional induction of the glutamine uptake transporter,
SLC1A5. This results in the activation of the mammalian
target of rapamycin complex 1 (mTORC1) signaling and
promotion of neointima formation (250).

Glutamine is involved in ROS homeostasis as a precursor
for GSH. To be available to cells, glutamine must be trans-
ported into cells by specific transporters, including SLC1A5/
ASCT2, and converted to glutamate by GLS. Glutamate di-
rectly contributes to GSH synthesis by promoting the uptake
of cystine through the cystine/glutamate exchanger, Slc7a11.
Thus, the availability of glutamine, glutamate, and cysteine
regulates the biosynthesis of cellular GSH. Glutamine can
also produce NADPH via the malate system, and it also
serves as a precursor for the GSH system. Similarly, TCA
cycle intermediates, for example, citrate, can be exported
into the cytosol, where ME or IDH1 uses them to generate
NADPH (39). Since NADP/NADPH levels control the oxi-
dative state of GSH, tumor cells maintain the GSH pool in a
reduced state, thereby supporting the TRX system. Further,
the mitochondrial enzyme, glutamate dehydrogenase 1,
positively regulates the enzymatic activity of the antioxidant
enzyme GPX by controlling intracellular levels of fumarate
(157). Thus, glutamine promotes ROS homeostasis by reg-
ulating the synthesis of GSH, NADPH, and the mitochondrial
antioxidant enzyme, GPX.

Therapeutic implications. Given the importance of glu-
tamine in promoting angiogenesis (141, 174), GLS1 inhibi-
tors have been used in clinical trials for solid tumor and
leukemia cells and might ultimately be repurposed for the
treatment of pathologic angiogenesis in vascular disease
(168). The GLS inhibitors include compound 968, BPTES,
and CB-839 (149, 168). Because glutamine also plays an
important role in maintaining redox balance, inhibition of
glutaminolysis can result in the depletion of the intracellular
GSH and subsequent generation of ROS, both of which
contribute to impaired cell proliferation (117, 147).

FAO and ROS

The FAO is important for NADPH homeostasis and redox
balance (Fig. 4). The FAs are an excellent source of energy, as
they can produce twice as much ATP as can be obtained from
carbohydrates. They are also a source of NADPH and thus
serve as an alternative to the PPP. When NADPH generation
by the PPP is impaired under conditions of energy stress, for
example, glucose deprivation, the actions of AMPK result in
an increase in NADPH via FAO, which will ultimately inhibit
cell death (154). Inhibition of FAO results in decreased
NADPH and GSH levels and elevated levels of intracellular
ROS (261). In macrophages, inhibition of FAO results in the
generation of mitoROS; this promotes the recruitment of
NOX to the phagosomal membrane to limit the growth of the
pathogen, Mycobacterium tuberculosis (Mtb) (41).

The FAO includes a series of cyclic oxidation reactions via
which long- and short-chain FAs are degraded, resulting
in the generation of NADH, FADH2, and acetyl-CoA. The
FAO-derived acetyl-CoA can be introduced into the TCA
cycle to generate ATP and aspartate for the synthesis of
deoxynucleotide triphosphates (dNTPs) that are required for
DNA replication in proliferating ECs. In cancer cells, how-
ever, only a fraction of the acetyl-CoA produced completes
the TCA cycle to produce ATP; the acetyl-CoA that remains
is used to generate citrate. Citrate is then exported into the
cytosol, where it ultimately supports the production of large
amounts of NADPH with the help of ME and IDH1 (39)
(Fig. 4). In ECs, stalk cells depend on FAO for vessel sprout
elongation, specifically via its capacity to sustain the syn-
thesis of dNTPs (80, 286, 367). By contrast, tip cells depend
on PFKFB3-driven glycolysis for rapid production of ATP
for vessel sprouting (74, 375). Interestingly, Notch signal-
ing serves as a molecular switch and promotes the transi-
tion from FAO from nucleotide synthesis pathways in
proliferating ECs to NADPH regeneration in quiescent
ECs. This promotes the protection of the vasculature against
oxidative stress-induced cell damage (162). Mice with an
EC-selective deletion of the FAO rate-limiting enzyme,
carnitine palmitoyltransferase-1 (CPT1) showed endothelial
dysfunction, including inflammatory cell recruitment and
barrier disruption typically associated with increased oxida-
tive stress (162).

In the heart, FAs are the main source of energy. In normal
states, FAO, followed by carbohydrate (glucose and lactate)
oxidation from mitochondrial oxidative phosphorylation, are
the major sources of ATP production (98, 153). Interestingly,
there is a reciprocal relationship between FAs and glucose
oxidative metabolism; this is known as the Randle Cycle
or the glucose/FA cycle (271). In various heart diseases,
including ischemic heart disease and heart failure, the rela-
tionship between FAO and glucose oxidation is disrupted;
this results in impaired cardiac efficiency and function
(167, 209). During ischemia/reperfusion, circulating FAs and
cardiac FAO levels are elevated. This results in decreased
glucose oxidation through the inhibition of pyruvate dehy-
drogenase (PDH) activity, which is the rate-limiting enzyme
that catalyzes the conversion of pyruvate to acetyl-CoA and
NADH in mitochondria (167, 209). It has been proposed that
reduced cardiac efficiency in disease states associated with
elevated FAO is due to the use of a less efficient energy
source than glucose oxidation based on the amount of ATP
produced per O2 molecules consumed (97, 209). Consistent
with this concept, inhibiting FAO and/or increasing glucose
oxidation can result in improved cardiac function in ische-
mic heart disease, heart failure, and diabetic cardiomyopathy
(87, 98, 153, 166).

Therapeutic implications. The introduction of FAO in-
hibitors has provided clear therapeutic benefits to patients
with type II diabetes or myocardial ischemia (39), because
inhibition of FAO alleviates both O2 shortage and insulin
resistance. The CPT1 inhibitor, perhexiline, has been evalu-
ated as a potential treatment for heart disease. Many other
CPT1 inhibitors are undergoing preclinical evaluation (e.g.,
oxfenicine) or exhibited toxic side effects in clinical trials
(e.g., etomoxir) (137). Both trimetazidine (164) and ranola-
zine (245) inhibit 3-ketoacylthiolase (3-KAT), the enzyme
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that catalyzes the final step in FAO, and they are in use for the
treatment of angina. In macrophages, inhibition of FAO
promotes key antimicrobial functions and overcomes the
immune evasion mechanisms associated with infection with
Mtb (41), as mentioned earlier. The FAO also plays a critical
role in tumor growth via its capacity to regulate NADPH
homeostasis and oxidative stress (261). In human glioblas-
toma cells, pharmacological inhibition of CPT1 by etomoxir
enhances cell death by promoting decreased levels of
NADPH and GSH and by elevating the levels of intracellular
ROS (261). Overexpression of CPT1A has been associated
with a high tumor grade, unfavorable clinical outcomes in
acute myeloid leukemia and ovarian cancer (218). Thus,
targeting FAO may be a promising approach toward reducing
pathologic angiogenesis and heart failure (80, 166).

1C metabolism and ROS

In proliferating cells, 1C metabolism (in particular, serine-
glycine 1C metabolism, or SGOC) is one of the major sources
of NADPH (Fig. 4, shaded in gray) other than the oxidative
PPP (94, 196, 226). SGOC is mediated by a folate cofac-
tor and is a universal metabolic process that serves to activate
and transfer 1C units to support the biosynthesis of purines
and thymidine, amino acid homeostasis (glycine, serine, and
methionine), epigenetic maintenance, and redox balance (3).
Serine and glycine 1C metabolism involves three pathways
(Fig. 4, shaded in gray), including the folate cycle, the me-
thionine cycle, and the transsulfuration pathway. PHGDH
catalyzes the biosynthesis of serine; SHMT subsequently
introduces 1C unit from serine into the folate cycle. Carbon
units then enter the methionine cycle, resulting in the gen-
eration of S-adenosyl-methionine (SAM), which undergoes
further conversion to homocysteine and ultimately to cyste-
ine that can be diverted toward the synthesis of GSH. A
tracing study of NAPDH compartmentalization revealed
that serine was used predominantly in the mitochondria of
mammalian cells to generate NADPH (196) (Fig. 4). During
hypoxia, HIF-1a and MYC work cooperatively to increase
the expression of SHMT2 (the mitochondrial isoform of
SHMT) to promote the production of mitochondrial NADPH
and to counteract the elevated levels of mitoROS (380).
Upregulation of 1C metabolism is another metabolic shift
used to evade ROS-induced cell death.

In addition to reducing ROS production by supplying
NADPH, 1C metabolism plays an important role in support-
ing endothelial function and preventing CVD (Fig. 4, shaded
in gray). These activities are mediated via the modulation of
eNOS activity and the regulation of its cofactor, BH4 (20), and
the methylation of arginine residues in proteins, which will
be discussed in the section focused on RNS to follow (Figs. 4
and 6, shaded in orange). Further, 1C metabolism is also
involved in the generation of homocysteine. For example,
inactivating mutations in the 1C folate metabolism gene en-
coding methylenetetrahydrofolate reductase (MTHFR) result
in hyperhomocysteinemia, which is a prominent risk factor
associated with CVD (110) (Fig. 4, shaded in gray).

Therapeutic implications. Anti-folates that target 1C me-
tabolism have been explored as treatments for cancer (84).
Further studies will be needed to develop therapeutic strate-
gies that selectively inhibit SHMT2 for the treatment of

CVD. Since 1C metabolism is involved in supporting anti-
oxidant defense via the actions of GSH and NADPH in a
cell-type and context-dependent manner, it may be possible
to achieve greater selectivity than the simple inhibition of
DNA synthesis alone. Therapeutic approaches that modulate
NOS activity by targeting SGOC in BH4 and arginine me-
tabolism will be discussed in the section focused on RNS.

Branch-chain amino acids and ROS

Branch-chained amino acids (BCAAs), including valine
(V), leucine (L), and isoleucine (I), function as critical ni-
trogen donors in processes involving intracellular nitrogen
shuttling. BCAA uptake is facilitated by the large neutral
aminoacid transporter (LAT/SLC7a5); once inside the cells,
BCAAs are converted to branched-chain ketoacids (BCKAs)
by the actions of the enzyme, branched-chain aminotrans-
ferase (BCAT). BCKAs undergo further conversion to
acetyl-CoA and succinyl-CoA via the actions of the BCKA
dehydrogenase (BCKD) complex, which is linked to the TCA
cycle (Fig. 3). Although most amino acids are metabolized in
the liver, catabolism of BCAAs takes place in several non-
hepatic tissues, including cardiac muscle, adipose tissue,
brain, and kidney (49, 143, 151, 358). Treatment with
BCAAs can be beneficial, but, paradoxically, increased cir-
culating levels of BCAA have also been associated with
obesity and diabetes. For example, Tanada et al. (319)
showed that supplementation with BCAAs resulted in clini-
cal improvement in a rat model of heart failure. Further, Zhao
et al. (395) found that leucine (L) supplementation reduced
the size of atherosclerotic lesions in ApoE-/- mice; this find-
ing was associated with an improved plasma lipid profile and
reduced levels of systemic inflammation. By contrast, 3-
hydroxy-isobutyrate (3HIB), a catabolic intermediate of the
BCAA valine (V), activates trans-endothelial FA transport
and thus stimulates FA uptake in muscle tissue in vivo and
promotes lipid accumulation and insulin resistance (151).
Thus, BCAAs may provide a novel therapeutic strategy for
atherosclerosis and cardiometabolic disease (387).

Oxidative stress has been closely associated with the
pathophysiology of an inherited metabolic genetic disorder
of BCAA metabolism known as maple syrup urine disease
(MSUD). The MSUD results from a BCKD dehydrogenase
deficiency and results in the accumulation of all BCAAs
(151, 274). The patients with MSUD show high levels of lipid
and protein oxidation in plasma (17) and an inflammatory
profile that results from unbalanced ROS production (235).
The importance of oxidative stress in the pathophysiology of
other inherited metabolic disorders of BCAA metabolism,
including methylmalonic acidurias (MMAs) and homo-
cystinuria, has been well characterized. Fibroblasts derived
from these patients showed elevated ROS, apoptosis, and
phosphorylation of the stress kinases p38MAPK and JNK
(274). Interestingly, BCATs have redox-active CXXC mo-
tifs. When these enzymes are S-glutathionylated, they sup-
port the chaperone role of BCAT and promote appropriate
protein folding (60, 90). Therefore, BCAA metabolism also
plays an important role in regulating the redox balance (274).

Alpha-ketoglutarate dehydrogenase and ROS

The primary sources of ROS in mitochondria are com-
plex I and III of the ETC. Also, metabolic enzymes, including
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alpha-ketoglutarate dehydrogenase (a-KGDH) and PDH com-
plexes, produce mitoROS (266, 332) (Fig. 5). The enzyme,
a-KGDH catalyzes the conversion of a-KG to succinyl-CoA
via the actions of IDH2 or IDH3 and produces NADH that
provides electrons for the ETC. Importantly, a-KGDH to-
gether with PDH complexes are believed to produce more
ROS than complex I, which is regulated by NADH/NAD
ratio (266, 332). In addition to generating ROS, KGDH can
also be inactivated by oxidative stress (332), which, in turn,
limits the supply of NADH to the ETC. In tumors grown
under hypoxic conditions or in the presence of a defective
ETC, a-KGDH plays an important role in maintaining cell
proliferation and lipogenesis (236, 364). During hypoxia,
citrate is generated from glutamine-derived a-KG via reduc-
tive carboxylation by cytosolic and mitochondrial NADPH-
dependent IDH1 and IDH2. The generation of isocitrate from
a-KG implies a reduced level of a-KGDH activity and an
unbalanced a-KG/citrate ratio. This will lead to a reverse
TCA cycle that ultimately promotes FA synthesis and favors
tumor growth. a-KGDH can also be inhibited via the degra-
dation of its E3 subunit by HIF-1 (96).

Inflammation, metabolic shifts, and ROS

Chronic low-grade inflammation plays a key role in pro-
moting CVD via the regulation of energy metabolism (10).
The master transcription factor, NF-jB, is one of the critical
regulators of metabolic reprogramming that promotes aero-
bic glycolysis in innate immune defense and during acute
inflammation (10, 230, 331). By contrast, activation of sirtuin
1 (SIRT1) inhibits NF-jB signaling, enhances oxidative me-
tabolism, and promotes the resolution of inflammation (140).
Thus, both innate immunity and energy metabolism can
be regulated by antagonistic crosstalk between NF-jB-and
SIRT1-mediated signaling pathways (169). Given that ROS
regulate the actions of NF-jB in response to inflammatory
agonists (227) and that SOD2 overexpression inhibits ROS-
induced NF-jB (43), ROS, inflammation, and metabolism
appear to be closely linked.

To meet their bioenergetic, biomass, and redox demands,
T cell activation and differentiation require coordinated pro-
gramming of cellular metabolism. However, several studies
have revealed that the T cell metabolic program differs de-
pending on the specific cell type (99, 216, 256). For example,
activated effector T (Teff) cells generate energy by aug-
menting aerobic glycolysis, whereas memory T cells (Tm)
engage FAO. Moreover, regulatory T cells (Tregs) activate
AMPK and depend on lipid oxidation for their energy re-
quirements (237, 257, 303, 351). The results of several stud-
ies suggest that mitochondrial dynamics control T cell fate
through metabolic reprogramming and by altering the
morphology of their cristae (35). Tm cell fusion configures
the ETC complex associations to favor oxidative phos-
phorylation and FAO, whereas fission in Teff cells leads to
expansion of the cristae, reduced ETC efficiency, and aug-
mented glycolysis (35). Cell growth, clonal expansion, and
the effector functions of Teff cells require enhanced aero-
bic glycolysis, the PPP, and glutaminolysis (5, 100, 105,
112, 148).

During T cell activation, increased mitochondrial biogen-
esis results in more mitochondria, an expanded mitochondrial-
dependent metabolic flux, and the production of ROS (68).

Also, mitoROS-induced by fission contributes to NF-jB-
mediated activation in T cells (278). T cell activation, pro-
liferation, differentiation, and immune responses all require
ROS-mediated signaling and activation of transcription fac-
tors such as NF-jB and activator protein 1 (AP-1) (76, 163,
243). However, excessive ROS production induces apoptosis
in T cells via mechanisms that depend on B cell lymphoma 2
(Bcl-2), FAS ligand (FasL), and the mitochondrial membrane
potential (130, 131). Thus, a fine-tuned balance between
glycolysis, the PPP, and glutaminolysis ensures appropriate
levels of intracellular ROS that drive T cell activation, dif-
ferentiation, and immune responses (296).

Activation of proinflammatory macrophages during in-
flammation is caused by metabolic reprogramming from ox-
idative phosphorylation to glycolysis. The mitoROS stabilize
and activate hypoxia-inducible factor HIF-1a, which, in turn,
increases both glycolytic capacity and expression of the
proinflammatory cytokine, interleukin (IL)-1b (66, 238); this
pathway also regulates the formation and activation of in-
flammasomes. Of note, succinate can drive mitoROS pro-
duction at complex I via reverse electron transport (RET) as
part of the pathogenesis of ischemia–reperfusion injury (53,
258, 292) (Fig. 3). The SDH deficiency directs macrophages
toward an anti-inflammatory phenotype (i.e., production of
IL-10), thereby resulting in RET-induced generation of mi-
toROS. This, in turn, enhances ATP production via oxida-
tive phosphorylation and reduced mitochondrial membrane
potential (158, 238, 398). Interestingly, the endogenous
metabolite, itaconate, which is highly induced in activated
macrophages, inhibits SDH-mediated succinate oxidation,
thereby promoting anti-inflammatory effects (186) (Fig. 4).
Thus, mitoROS produced in response to metabolic repro-
gramming and itaconate-induced succinate oxidation plays
a key role in macrophage phenotype switching from M1
(inflammatory) to M2 (anti-inflammatory).

The NLR family pyrin domain containing 3 (NLRP3) in-
flammasome functions as a sensor of metabolic stress and
regulates inflammation via interactions with thioredoxin-
interacting protein (TxNIP) (289, 299, 333, 397, 398); TxNIP
binds to TRX, thereby reducing its activity (382). In response
to glucose stimulation, TxNIP dissociates from TRX and
interacts with NLRP3 via an ROS-sensitive mechanism to
activate inflammasome and inflammatory cytokine signaling
(289, 299, 333, 397, 398). In addition to inflammasome ac-
tivation, ROS also promote critical efferocytotic activities
(i.e., removal of apoptotic cells) of macrophages, which is a
critical aspect of the resolution of inflammation (101). Ly-
sophosphatidylcholine released from apoptotic cells reduces
mitochondrial membrane potential and ATP production; this
results in the generation of mitoROS and activation of AMPK
(156). The AMPK activation facilitates metabolic repro-
gramming toward glycolysis and induces the synthesis of
tubulin that is needed to promote macrophage chemokinesis
and efferocytosis (156). Thus, ROS play an important role in
inflammasome activation by regulating the actions of TXNIP
and macrophage-mediated efferocytosis by metabolic re-
programming via AMPK.

Therapeutic implications. The results of the Canakinumab
Anti-Inflammatory Thrombosis Outcome Study (CANTOS)
trial support the inflammatory hypothesis of atherosclerosis
and cancer in humans by demonstrating the beneficial
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effects of canakinumab, which is an anti-IL-1b neutralizing
monoclonal antibody (204, 357). However, limited effects on
cardiovascular mortality and the prominence of side effects,
including the higher incidence of fatal infections, warrant
further investigations directed at new therapeutic strategies.
Although promising clinical outcomes have resulted from
immunotherapy, including immune checkpoint blockade,
these therapies have proven to be ineffective for a significant
number of patients (119). Given that metabolic reprogram-
ming of immune cells influences the responses to immuno-
therapy and that metabolic programs differ among immune
cell subsets, inhibitors designed to target specific metabolic
pathways may be a promising therapeutic approach for in-
flammatory CVD. This topic is covered in detail in previous
reviews (24, 119, 370).

Itaconate and ROS

Itaconate is one of the most abundant metabolites in acti-
vated macrophages (186). Itaconate is synthesized from
aconitate, a molecule that would otherwise contribute to
the TCA cycle via the actions of aconitate decarboxylase 1
(ACOD1, also known as immune-responsive gene 1 [IRG1])
(Fig. 4). Itaconate inhibits the activity of SDH; inhibition
or knockout of SDH suppresses succinate-mediated inflam-
matory processes (including responses mediated by IL-1b
and HIF-1a) (238) and induces the expression of anti-
inflammatory Nrf2 factor 3 (ATF3) (248). Interestingly, ita-
conate formation contributes to the decreased mitochondrial
O2 consumption observed in response to LPS (186). Succi-
nate oxidation leads to an elevated mitochondrial membrane
potential and ROS production likely via RET at complex I of
the ETC (Fig. 3). Elevated levels of mitoROS are responsi-
ble for driving the increased inflammatory response (238).
Alternatively, elevated levels of succinate can promote the
succinylation of susceptible lysine residues. Numerous suc-
cinylated substrates have been identified in the cytosol,
nucleus, and mitochondria that play major roles in modu-
lating metabolic processes (309). The enzyme, PKM2, plays
an important role in promoting glycolysis; elevated levels
of succinate can induce succinylation of PKM2 on K498,
thereby inhibiting its activity (344). The SDH converts suc-
cinate into fumarate, and endogenous fumarate can succi-
nylate and covalently modify cysteine residues of numerous
substrates (Fig. 4). One of the best-characterized examples
of this process is the succinylation of C152 found within the
active site of GAPDH, thereby resulting in reduced levels
of glycolysis and inflammation (180). Kelch-like ECH-
associated protein 1 (KEAP1) can also undergo succinyla-
tion. Both dimethyl fumarate and monomethyl fumarate
promote succinylation of KEAP1, which results in the acti-
vation of Nrf2 (291). Itaconate can also form covalent
attachments via post-translational modification. A cell-
permeable form of itaconate can form a covalent linkage with
C22 of GAPDH, thereby inhibiting its enzyme activity and
glycolytic flux (203).

Metabolism and RNS

Since all NOS activity (i.e., the actions of nNOS, iNOS,
and eNOS) depends on the availability of l-arginine and
BH4, the metabolic pathways leading to the synthesis of these
factors (i.e., 1C metabolism) may have an impact on the

availability of NO�(Figs. 2 and 4). In the sections that follow,
we review the pathways via which various metabolic pro-
cesses regulate RNS homeostasis.

l-arginine metabolism and RNS

Cellular metabolism plays an important role in the gener-
ation of RNS. As described in the earlier sections, NOS
enzymes utilize NADPH and l-arginine as co-substrates,
whereas BH4 is an essential co-factor that is not consumed
(Figs. 2 and 4). l-arginine levels are typically high in the
circulation (*100 lM) and are even higher within ECs
(>400 lM). Depletion of cellular l-arginine has been identi-
fied as an important mechanism to prevent full activation of
NOS isoforms and eNOS-mediated uncoupling and endo-
thelial dysfunction in CVD. Elevated expression arginase I
and arginase II, which are enzymes that consume l-arginine,
has been observed in association with CVD and has been
proposed as a mechanism that might be used to decrease
l-arginine levels to a point at which the NOS enzymes no
longer have sufficient fuel to promote catalysis. However,
despite many beneficial effects that have been attributed to
l-arginine in animal models (62) and humans (365), long-
term l-arginine consumption has not been associated with the
reduced incidence of myocardial infarction nor has it been
implicated in reducing the rates of post-infarction mortal-
ity (343). Mechanistically, the Michaelis constant (Km) for
l-arginine with respect to the NOS enzymes is *2 lM; it is
unlikely (and potentially threatening to cell viability) that
arginine levels can be reduced to an extent that will severely
compromise NO� synthesis. Indeed, it has been shown that
high levels of arginase expression can result in decreased
eNOS activity, but only by *10%. The specific intracellular
location of arginase has no impact on this ability (91). High-
dose l-arginine can also induce compensatory changes over
time, including the upregulation of arginase enzymes. This
response may result in the synthesis of deleterious quantities
of metabolites such as ornithine and thus contribute to ma-
ladaptive vascular remodeling. The metabolite, l-citrulline,
is recycled to l-arginine by the actions of argininosuccinate
synthase and argininosuccinate lyase (121). This has been
proposed as an alternative approach, as supplementation with
l-citrulline has been associated with cardiovascular benefits,
including reducing systemic blood pressure (170).

Asymmetric dimethylarginine (ADMA) and N-monomethyl
l-arginine (l-NMMA) are naturally occurring metabolites
that regulate NOS activity. Concentrations of ADMA and
l-NMMA are increased in renal failure (336), atherosclerosis
(240), and homocysteinemia (316). Although l-NMMA is a
potent inhibitor of NOS activity, ADMA is a weak inhibitor.
However, ADMA can promote uncoupling of eNOS more
effectively than l-NMMA (83) (Fig. 4). High levels of
methylated arginines promote endothelial dysfunction (61),
which is believed to involve both reduced NOS activity and
uncoupled NOS and ROS production (318). ADMA and
l-NMMA are metabolized by the enzyme, dimethylarginine
dimethylaminohydrolase 1 (DDAH1), to form l-citrulline.
The activity of DDAH1 can be compromised by ROS and
RNS (191), a response that leads to increased levels of
ADMA. Homocysteinemia has been associated with im-
paired endothelium-dependent relaxation responses (335).
Elevated levels of homocysteine and methionine can promote
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increased protein methylation and thus increased levels of
ADMA, thereby compromising endothelial function (27).
Administration of folate can restore endothelial function
and eNOS uncoupling (340). Similarly, NO� may be capable
of regulating homocysteine levels via direct inhibition of
methionine synthase (MTR), an enzyme that uses 5-
methyltetrahydrofolate to convert homocysteine to methio-
nine (70). This mechanism could limit the effectiveness of
high levels of NO� donors on cardiovascular health.

BH4 metabolism and RNS

It is not clear whether NADPH is rate-limiting for eNOS
activity, as it also has many important roles in regulating
other enzyme systems, including those contributing to both
prooxidant and antioxidant pathways. The affinity of eNOS
for NADPH (i.e., calmodulin-bound eNOS) is *1 lM (231).
Cellular levels of NADPH levels have been estimated
at *100 lM (202) and are tightly regulated (372). NADPH in
the cytosol is primarily generated by the PPP, including
the actions of G6PD, which converts NADP+ to NADPH.
Overexpression of G6PD results in increased eNOS activity
(195) although it is not clear whether or not this response is
due to increased levels of NADPH. NADPH is also important
for the synthesis of BH4 (Fig. 4). Dihydrofolate reductase
(DHFR) and dihydropteridine reductase (DHPR, also known
as quinoid dihydropteridine reductase [QDPR]) can catalyze
the reduction of BH2 to BH4 in an NADPH-dependent man-
ner. Human DHFR has a reduced affinity for BH2. Likewise,
conversion to BH4 can be inhibited by folate, which may limit
the effectiveness of folic acid for the treatment of endothelial
dysfunction (362). Mitochondrial function is also critical
for BH4 synthesis. Depletion of CR6-interacting factor 1
(CRIF1), a factor that is important for the assembly of mi-
tochondrial subunits and complexes, leads to loss of GTPCH
expression, diminished BH4 levels, and uncoupled eNOS
(190). The expression of NOS enzymes can also be regulated
by cellular metabolism, most notably by glycolysis. For ex-
ample, LPS-dependent expression of iNOS can be inhibited
by glycolysis (301). C-terminal-binding protein (CtBP) is an
NADH-sensitive transcription factor that can regulate tran-
scription of genes via mechanisms that are dependent on
cellular metabolism. Suppression of CtBP activity impairs
LPS-mediated induction of iNOS, thereby connecting chan-
ges in metabolism with gene transcription (301). The expres-
sion of eNOS can also be regulated by glycolysis in ECs.
Lactate promotes increases and 2-deoxyglucose results in
inhibition of the expression of eNOS messenger RNA
(mRNA) (134).

1C metabolism and RNS

1C metabolism plays an important role in modulating
eNOS activity via the regulation of its cofactor BH4 (20) and
methylation of arginine residues in proteins. These actions
contribute to endothelial function and CVD (Fig. 4). DHFR,
which is a key enzyme in both folate and 1C metabolism,
plays an important role in regulating eNOS activity via a
salvage pathway in which BH2 is consumed to maintain en-
dothelial BH4 levels, together with de novo biosynthesis
via the rate-limiting enzyme, GTPCH (20). Reduced BH4

availability contributes to eNOS uncoupling and results in
the production of O2

�- instead of NO�, thereby inducing

endothelial dysfunction. Similarly, ADMA inhibits the ac-
tivity of eNOS via competition with its cofactor, l-arginine;
this results in increased ROS production and reduced bio-
availability of NO� (26, 192). The ADMA is generated by
protein arginine methyltransferase (PRMT) in the presence of
SAM as part of the methionine cycle of 1C metabolism. The
SAM also plays a major role in promoting epigenetic modi-
fications in its role as a universal methyl group donor for
methyl transfer reactions (Fig. 3).

Therapeutic implications. Although impaired metabo-
lism can lead to the production of RNS, therapeutic strate-
gies, there are currently few to no metabolic strategies
available to counter the resulting endothelial dysfunction.
Supplementation with BH4 limits atherosclerosis (127) and
sepiapterin, which can result in increased levels of BH4

in vivo, and it improves endothelial function in numerous
models (64, 77). However, the impact of folate or BH4 sup-
plementation as a means to prevent CVD in clinical and
preclinical settings remains controversial (55, 67, 339). There
is a considerable body of evidence in support of the notion
that preserving endothelial function has positive effects on
metabolism. The loss of endothelial NO� observed in eNOS-
deficient mice results in insulin resistance and hyperlipid-
emia (86, 142) secondary to lower energy expenditures,
reduced O2 consumption, and mitochondrial dysfunction
with lower rates of beta-oxidation.

Metabolic Enzymes and ROS

The ROS induce a variety of post-translational protein
modifications, including cysteine oxidation in the form
of sulfenylation (SOH) and S-glutathionylation (136). These
modifications can have a direct influence on the activity of
susceptible metabolic pathways. In this section, we will
highlight how ROS can affect metabolic enzymes, including
mitochondrial protein dynamics.

AMPK and ROS

AMPK is a critical metabolic redox sensor in glucose
metabolism that promotes angiogenesis in ECs and postnatal
neovascularization. AMPK also protects against atheroscle-
rosis (201, 244, 311, 374, 376). Interestingly, ROS can stim-
ulate AMPK activity to regulate metabolic requirements even
in the presence of appropriate levels of ATP (38) (Fig. 4). For
example, H2O2 can induce GLUT4 translocation via the ac-
tivation of AMPK in cardiac myocytes. (139). H2O2 directly
activates AMPK via oxidative S-glutathionylation of the
AMPKa and AMPKb subunits at C299 and C304 (401). The
mitoROS can regulate autophagy (307), efferocytosis (156),
and HIF-1a-dependent longevity (132, 144) via activation of
AMPK. In response to hypoxic conditions, mitoROS activate
AMPK via a mechanism that functions independently of
the adenosine monophosphate (AMP)/ATP ratio (92). As an
adaptive response, mitoROS-induced AMPK activation
induces upregulation of peroxisome proliferator-activated
receptor-gamma coactivator (PGC)-1a-dependent expres-
sion of antioxidant enzymes, which, in turn, limits excess
mitoROS production (268). Taken together, AMPK functions
not only as a metabolic sensor but also as a redox sensor to
regulate cellular metabolism and redox state (38, 401).
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AMPK also contributes to vascular health via its capacity
to confer potent antioxidant defense. For example, under
metabolic stress, AMPK increases NADPH levels and thus
decreases levels of H2O2 by induction of FAO (154). AMPK
activation also improves endothelial function by reducing
oxidative stress associated with atherosclerosis via in-
creasing the expression of uncoupling protein 2 (UCP2) in
ECs (349). UCP2 deficiency in mice increases oxidative
stress, which amplifies the progression of atherosclerotic
plaques (25). Additional evidence supporting AMPK-
mediated protection against oxidative stress has emerged
from studies that demonstrate its capacity for negative
regulation of NOX via reduced phosphorylation of the
p47phox NOX subunit. This prevents p47phox transloca-
tion from cytosol to membrane, which is required for the
activation of NOX (232).

Therapeutic implications. AMPK activators (e.g., met-
formin) have been used to treat type 2 diabetes and CVD (72,
116, 388). Metformin activates the Reperfusion Injury
Salvage Kinase (RISK) pathway (388) as part of its cardio-
protective mechanism. Recently, a small molecule activa-
tor of AMPK (e.g., A-769662, MIF20) showed efficacy at
protecting the heart tissue from the negative sequelae of
ischemia–reperfusion injury (172, 346).

PKM2 and ROS

Pyruvate kinase (PK) catalyzes the final rate-limiting step
in glycolysis by transferring the phosphate from phospho-
enolpyruvate (PEP) to ADP to generate pyruvate and ATP.
There are four isoforms of PK, including PKM1, PKM2
(encoded by PKM), PKL, and PKR (encoded by PKLR)
(377). PKM1 and PKM2 are alternatively spliced products
of the PKM gene (247). Interestingly, PKM2 (but not PKM1)
is expressed exclusively in growing and confluent ECs (173).
The PKM1 homo-tetramer has high constitutive PK activ-
ity, whereas the activity of PKM2 is regulated by post-
translational modifications that promote the formation of
the less active dimer or the more active tetrameric form
(4, 54, 133, 215).

Oxidative stress due to H2O2, diamide, or hypoxia inacti-
vates PKM2 and prevents the formation of the active tetramer
via oxidation of Cys358; oxidation can be inhibited in the
presence of the reducing agent, dithiothreitol (DTT) (4)
(Fig. 4). Inhibition of PKM2 increases the levels of G6P and
redirects the glycolytic flux toward the oxidative PPP path-
way to generate additional NADPH. Since NADPH is one of
the factors required to maintain appropriate levels of reduced
GSH, inactivation of PKM2 leads to the reduction of oxida-
tive stress (4). Also, PKM2 has been shown to promote in-
creased expression of genes encoding glycolytic proteins
(e.g., SLC2A1 [solute carrier family 2 member 1, Glut1],
LDHA, PDHK1) and VEGFA via its interactions with the
transcription factors HIF-1a and HIF-2a (212, 213). There-
fore, PKM2 not only reduces oxidative stress by generating
NADPH but also alleviates ischemia by increasing the ex-
pression of vascular endothelial growth factor (VEGF).
Further, in the setting of pulmonary arterial hypertension,
Guo et al. (120) reported that ROS-induced phosphorylation
and inhibition of PKM2 stimulates cell proliferation and
survival via increased flux through the PPP pathway. In pro-

liferating human T cells (e.g., acute lymphoblastic leukemia),
phosphorylation of PKM2 reduces glycolytic flux and acti-
vates the PPP (345). In proliferating ECs, PKM2 maintains
cell cycle progression by suppressing p53-mediated sig-
naling (173). By contrast, in quiescent ECs, PKM2 main-
tains vascular barrier function by suppressing NF-jB/
angiopoietin 2 signaling (173, 315) independent of its ca-
nonical protein kinase activity. PKM2 activation also pro-
motes angiogenic differentiation that maintains ROS at low
levels; this has been associated with enhanced glycolysis
and mitochondrial fission (273). The mitoROS promote
dimerization of the PKM2 in monocytes and macrophages
from atherosclerotic patients. PKM2 dimerization stimu-
lates its nuclear translocation and thereby promotes signal
transducer and activator of transcription 3 (STAT3) phos-
phorylation and production of IL-6 and IL-1b (305).
Moreover, activation of PKM2 promotes angiogenesis via
its actions on vascular resident endothelial progenitor cells
via modulation of glycolysis as well as mitochondrial fission
and fusion, which are required for the treatment of diseases
and injuries requiring strategies that promote or inhibit
angiogenesis (273).

Therapeutic implications. Many studies have reported
the clinical relevance and therapeutic potential of agents that
target PKM2 in CVD. The results of one study revealed
significant increases in PKM2 expression in failing compared
with non-failing hearts. Thus, induction of PKM2 is a sig-
nature of not only cardiotoxicity but also cardiac stress
in general (272). Tetrameric PKM2–stabilizing drugs (e.g.,
TEPP-46) suppress p53-mediated transcriptional activity and
cardiomyocyte apoptosis, thereby preventing anthracycline-
induced cardiotoxicity (280). The therapeutic potential of
PKM2 was further demonstrated in cardiomyocytes in which
PKM2 participates in cell cycle regulatory mechanisms
that enhance myocardial regeneration after myocardial in-
farction (220).

PFKFB3 and ROS

PFKFB is a bifunctional and rate-limiting enzyme in
glycolysis that controls the cellular levels of fructose-2,
6-bisphosphate (F-2, 6-BP), which is an allosteric activator of
PFK-1 (249, 275). Mammalian PFKFB (also known as
PFK2) consists of four isoenzymes, including PFKFB 1, 2, 3,
and 4. Among them, PFKFB3 plays the most crucial role
in promoting the production of fructose-2, 6-bisphosphate
(F-2,6-BP) and glycolysis, as it has the highest kinase to
bisphosphatase activity ratio (740:1). PFKFB3 is expressed
mainly in leukocytes, vascular cells, and cancer cells. Oxi-
dative stress regulates PFKFB3 activity and protein stability
mainly via post-translational modification (217, 277, 297)
(Fig. 4). In cancer cells, oxidative stress inactivates PFKFB3,
but not other PFKFB isoenzymes, by S-glutathionylation of
C206. This results in a shift from glycolysis to the PPP, and
thus NADPH production, regeneration of GSH, and ROS
detoxification (297). The ROS generated by NOX2 in cells
from patients with acute myeloid leukemia promotes gly-
colysis by increasing the expression of PFKFB3 (277). Fur-
ther, activation of cSrc promotes cell proliferation and
migration via PFKFB3 phosphorylation at Y194; this results
in increased flux through the glycolytic and
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TCA cycle pathways and increasing ROS levels via associ-
ated reductions in the oxidative PPP, NADPH, and antioxi-
dant systems (217). Given that ROS are known to activate
cSrc, the cSrc-pY-PFKFB3-ROS axis may represent a posi-
tive feedback loop that can induce sustained ROS production.
Taken together, these findings suggest that persistent gly-
colysis and redox regulation are closely linked to one another.
The therapeutic implications of these observations are dis-
cussed in the section focused on glycolysis and ROS.

HIF-1 and ROS

HIF-1 is a key regulator of the developmental and physi-
ological states required for the maintenance of O2 homeo-
stasis. HIF-1 also promotes the adaptive responses to reduced
O2 availability by regulating gene expression (161, 222, 295).
HIF contributes to the metabolic shift from glucose oxidation
to aerobic glycolysis in various CVDs and cancer (222, 295).
HIF-1 is a heterodimeric transcription factor that consists
of an O2

�--labile a subunit and a stable b subunit. Under
conditions of normoxia, two proline residues on HIF-1a are
hydroxylated by prolyl hydroxylase domain-containing pro-
teins (PHDs) to become substrates for ubiquitination; they are
then degraded by the von Hippel-Lindau (VHL) complex. By
contrast, in response to hypoxia, mitoROS derived from re-
spiratory complex III or cytosolic ROS can stabilize both
HIF-1aand HIF-2a by inhibiting PHDs (19, 222) (Figs. 5 and
6). The actions of HIF-1a and HIF-2a serve to increase the
expression of angiogenic genes such as VEGF and thereby
promote angiogenesis associated with embryonic vascular
development (270), hindlimb ischemia (29), hypertrophic
cardiomyopathy (281), myocardial infarction (129), skin
wound healing (219), and retinal neovascularization (155).

HIF-1-mediated regulation of the glycolytic pathway is
closely linked to ROS homeostasis (Figs. 5 and 6). Over-
expression of HIF-1 increases the uptake of glucose through
GLUTs (i.e., GLUT1 and sodium-glucose transporters
[SGLTs]) (75). Hypoxia-induced HIF-1a increases the extent
of metabolic pathway reprogramming from oxidative phos-
phorylation to glycolysis to maintain ATP production. This
metabolic reprogramming results from the upregulation of
GLUTs and glycolytic enzymes (222), downregulation of
PDH complexes via activation of PDHK1 (175, 211), or
through suppression of mitochondrial respiration by inducing
the expression of NADH dehydrogenase 1 alpha subcomplex,
4-like 2 (NDUFA4L2) (322). Loss of SIRT3, another regu-
lator of HIF, results in impaired glycolysis via the reduction
of signaling via the HIF-2a-PFKFB3 axis. This will ulti-
mately result in impaired myocardial angiogenesis and car-
diac dysfunction (128). Macrophage proinflammatory
signaling is also induced in part via HIF-1a, which prefer-
entially promotes ATP production via glycolysis (238). In
this case, RET-derived mitoROS generated by mitochondrial
hyperpolarization and succinate oxidation serve to stabilize
HIF-1a; this leads to increases in glycolytic capacity and IL-
1b mRNA and protein expression (320).

PDHK1 activation by HIF-1a shunts pyruvate away from
the mitochondria, resulting in decreased flux through the
TCA cycle and the ETC and potential attenuation of mi-
toROS production. The functional significance of this adap-
tive response has been demonstrated as follows: (i) Chronic
hypoxia in HIF-1a-deficient fibroblasts results in cell

death due to excessive accumulation of ROS accumulation
(175, 295); (ii) hypoxia-induced expression of HIF-1a in-
duces mitophagy via the actions of BCL2/adenovirus E1B
19 kDa protein-interacting protein 3 (BNIP3), which results
in a reduction in mitochondrial mass, O2 consumption, and
ROS generation (389); and (iii) hypoxia-induced HIF-1 in-
creases the expression of the mitochondrial isoforms of
SHMT1 and SHMT2, leading to increased mitochondrial
NADPH and decreased mitoROS levels in Myc-transformed
cells (380). Thus, the critical adaptive response involving
the hypoxia-HIF1 axis reduces the production of mitoROS
via decreases in mitochondrial mass, O2 consumption, and
increased NADPH, in addition to the impact of metabolic
reprogramming.

Therapeutic implications. Given the importance of HIF
for both physiological and pathological angiogenesis, several
strategies have been developed to target HIF-related path-
ways for the treatment of ischemic diseases and cancer (222).
PHD inhibitors (e.g., FG-2216, FG-4592), HIF activators
(HIF-1a adenoviral-based therapy), and HIF inhibitors
(EZN-2968, digoxin, anthracyclines) are all under consider-
ation for clinical use (222). Additional details on these issues
can be found in several excellent reviews (222).

Mitochondrial dynamics, ROS, and metabolism:
mitochondrial dynamics and ROS

Mitochondrial dynamics refers to a multifaceted process
that includes both the fission and fusion of the mitochondrial
outer and inner membranes. Mitochondrial fission and fusion
proteins coordinate this dynamic process. These proteins are
closely associated with mitochondrial function and can in-
fluence and be regulated by mitoROS production (Figs. 3 and
5). The ROS can regulate mitochondria dynamics and vice
versa. The ROS induce post-translational modifications of
proteins that regulate mitochondrial dynamics, thereby influ-
encing their expression and/or their activity. These actions
serve to regulate mitochondrial dynamics, morphology, and
function (221, 282, 353, 363). Increases in ROS generation
during conditions of oxidative stress, high glucose concen-
trations, or elevations in FAs can contribute to mitochondrial
fragmentation whereas sublethal amounts of H2O2 can in-
duce hyperfusion.

Mitochondrial fission is mainly mediated by small GTPase,
dynamin-related protein 1 (Drp1), and its receptor proteins
mitochondrial fission factor (Mff), mitochondrial fission 1
protein (Fis1), mitochondrial dynamics protein of 49 kDa
(MiD49), and MiD50. Drp1 is localized in the cytosol during
resting states. When activated, Drp1 is recruited to the mi-
tochondria outer membranes where it induces constriction
and scission of the mitochondria in a GTP-dependent manner
(360). The ROS can induce phosphorylation of S616 of Drp1
and activation of Drp1 GTPase activity. For example, ROS
(including mitoROS) induced by ischemia/reperfusion injury
promote Drp1 oligomerization and phosphorylation at S616.
This leads to excessive mitochondrial fission in target ECs
(115). In the setting of neurodegenerative diseases, NO� has
been found to induce S-nitrosylation of Drp1, which in-
creases its GTPase activity and mitochondrial fragmentation
(52); however, this finding remains controversial (30). Sul-
fenylation (Cys-OH formation) is a reversible initial step in

INTERPLAY BETWEEN ROS/RNS AND METABOLISM 1335



ROS-mediated oxidation of reactive cysteine residues of
proteins that participate in redox signaling (255, 263). We
reported that Drp1 sulfenylation at C644 as a result of the loss
of protein disulfide isomerase A1 augments Drp1 GTPase
activity and mitochondrial fragmentation. These events drive
the production of mitoROS, which leads to EC senescence
(176). Thus, targeting cysteine oxidation or other modifica-
tions of Drp1 may be a potential therapeutic strategy for
diseases associated with mitochondrial dysregulation and
dysfunction associated with oxidative stress. Several reports
document a link between Drp1-mediated mitochondrial fis-
sion and ROS. First, hyperglycemia induces mitochondrial
fragmentation via Ca2+ and extracellular signal-regulated
kinase (ERK)1/2-dependent phosphorylation of Drp1 S616
or increases in Drp1 expression. These responses induce the
overproduction of mitoROS (223, 279, 302, 341, 350, 383,
384). Second, H2O2 stimulation of cardiac myocytes pro-
motes increased mitochondrial fragmentation. This response
results in mitochondrial membrane depolarization and increa-
sed resistance to insulin via the upregulation of Drp1 (356).
Thus, mitochondrial fission and ROS are interconnected.

Mitochondrial fusion is mediated by three GTPases, in-
cluding the dynamin proteins mitofusin 1 (Mfn1), Mfn2, and
optic atrophy 1 (Opa1). Mfn1 and Mfn2 are outer membrane
proteins that facilitate the fusion of this membrane, whereas
Opa1 is associated with the inner membrane and facilitates
inner membrane fusion. Increased expression of Mfn2 in-
duced by H2O2 is both necessary and sufficient to induce
apoptosis of heart muscle cells in response to oxidative stress
(300). In ECs, knockdown of the Mfns disrupts mitochondrial
networks and decreases mitochondrial membrane potential,
VEGF-induced migration, and capillary network formation
(210). Depletion of Mfn2 limits ROS generation and blunts
expression of components of the ETC and transcription fac-
tors associated with oxidative metabolism, whereas ablation
of Mfn1 inhibits VEGF-induced Akt-eNOS signaling (210).
GSSG stimulates mitochondrial fusion by inducing disulfide
bond-mediated oligomerization of Mfn1 and via the C684 of
Mfn2 (306). Taken together, these findings point to the reg-
ulation of redox-regulated mitochondrial hyperfusion of the
mitochondrial IMS. Importantly, mutation of C684, which is
found within a disulfide bridge when cells are in an oxidative
state, renders Mfn2 more susceptible to alterations in the
redox environment. Thus, the thiol switching of C684 in
Mfn2 plays an important role in mediating redox-induced
alternations of mitochondrial shape and activity (325).
Thus, an understanding of how the mechanisms that define
the relationships between redox homeostasis, mitochon-
drial structure, and mitochondrial dynamics are disrupted in
pathological conditions may lead to the development of new
therapeutic strategies.

Mitochondrial dynamics and metabolism

Mitochondrial dynamics mediated by fission and fusion
and bioenergetics have a reciprocal influence on one another.
Dynamic properties of the mitochondria are regulated by
cellular signaling events and have a discernible impact on
cellular metabolism (239, 342). Changes in mitochondrial
morphology are frequently observed in response to alter-
ations in the surrounding cellular milieu (e.g., metabolic
flux), which influence cellular bioenergetics. Thus, an

understanding of the mechanisms that govern mitochondrial
morphology and their emerging role in mitochondrial bio-
energetics will be of critical importance (109). Deletion of
any of the components that support mitochondrial dynamics
will perturb oxidative phosphorylation and glycolysis even at
baseline (205). Several reports suggest roles for Mfn and
Drp1 in cell metabolism and the pathogenesis of metabolic
disorders (239, 288, 342). Mitochondrial fusion is particu-
larly important in cells undergoing cellular respiration, as it
facilitates the dissemination of metabolites, enzymes, and mi-
tochondrial gene products throughout the entire mitochon-
drial compartment. This serves to optimize mitochondrial
function and counteracts the effects of mitochondrial muta-
tions that accumulate during the aging process. Muscle-
specific gene-deletion of Mfn2 disrupts glucose homeostasis
(293). Similarly, Mfn deficiency in ECs inhibits migration,
network formation, viability, and mitoROS production via
reduced expression of coenzyme Q and transcription factors
associated with oxidative metabolism (210). Although Mfn
gene-deleted embryos show developmental delays, expres-
sion of Mfn2 is increased in tissues under conditions of nu-
trient deprivation in the nervous system, skeletal muscle, and
heart (6, 93). Loss of Mfn2 reduces mitochondrial membrane
potential, O2 consumption, and activity of the ETC and the
TCA cycle whereas anaerobic respiration increases as a
compensatory mechanism (44, 241). Depletion of Mfn2 also
results in the decreased expression of complexes that support
oxidative phosphorylation. By contrast, Mfn2 overexpres-
sion increases both glycolysis and mitochondrial membrane
potential (95) as well as the expression of ETC proteins,
including subunits that contribute to complexes I, IV, and V
(208). Recently, Buck et al. (35) reported that, by remodeling
mitochondrial cristae, fusion in Tm configures associations
of the ETC complex that favor oxidative phosphorylation and
FAO. By contrast, fission in Teff cells leads to expansion of
the mitochondrial cristae, thereby reducing ETC efficiency
and promoting aerobic glycolysis. Thus, remodeling of the
mitochondrial cristae via fusion/fission is a signaling mech-
anism that directs T cell fate via metabolic programing.

Fragmented mitochondria are frequently found in resting
cells. Mitochondrial fission plays an important role in re-
moving damaged organelles by autophagy. Thus, both mi-
tochondrial fusion and fission contribute to the maintenance
of mitochondrial function and the optimization of bioener-
getic capacity. Multiple signaling pathways regulate the
machinery of mitochondrial dynamics so that the shape of the
mitochondrial compartment will adapt to specific metabolic
conditions within the cell (361). Ablation of Drp1 in liver
cells results in reduced adiposity and elevated whole-body
energy expenditure, thereby protecting mice from diet-
induced obesity (348). Drp1-mediated fission also regulates
glycolysis during cell transformation (298). Activation of
protein kinase A/A-kinase anchoring protein 1 (AKAP1)
results in the phosphorylation of Drp1 at S637. This modi-
fication inhibits Drp1 activity and mitochondrial fission,
thereby resulting in enhanced mitochondrial tubulation that
promotes ATP production (42).

Mitochondrial dynamics as a therapeutic target

Alterations in the proteins that support mitochondrial dy-
namics can lead to CVD. As an example, reduced expression
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of Mfn2 led to hyperproliferation of VSMCs and accelerated
cardiac hypertrophy and cardiomyopathy in mouse and rat
models (46). Another report suggested that lactate accel-
erated vascular calcification that resulted from excessive
Drp-mediated mitochondrial fission and a deficiency in
BNIP3-related mitophagy (400). Also, increased mitochon-
drial fission contributes to impaired endothelial function in
patients diagnosed with diabetes mellitus (302) as well as to
the hyperproliferation of pulmonary artery smooth muscle
cells in patients with pulmonary arterial hypertension (225).
Drp1 is also crucial for the O2-induced constriction and
closure of the ductus arteriosus at birth in healthy humans
and rabbits (138) as well as for arterial constriction (206).
Finally, Drp1 is upregulated in response to pathological
conditions of the heart; excessive mitochondrial fission
appears to be detrimental in this setting (145, 330).

Given that mitochondrial dynamics include responses and
adaptations to metabolic demands and are involved in the
regulation of mitophagy, compounds that target mitochon-
drial fission and fusion are currently of great interest. For
example, mitochondrial division inhibitor (Mdivi)-1, which
can inhibit the GTPase activity of Drp1, protects the heart
from ischemia–reperfusion injury via the inhibition of
mitochondria outer membrane permeabilization, which will
result in mitochondrial-mediated cell death (146). In addition
to Mdivi-1, the Drp1 inhibitor P110 can also protect the heart
against ischemia–reperfusion injury (330). The antihyper-
tensive drug, cilnidipine, is a small molecule that inhibits the
interaction between filamin and Drp1. Administration of
cilnidipine to mice after the induction of myocardial infarc-
tion limited the extent of mitochondrial fission, cardiomyo-
cyte senescence, and myocardial dysfunction independent of
its capacity to block Ca2+ channels (246). P110 also blocks
the interaction between Drp1 and Fis1. This drug was
shown to be neuroprotective in the 1-methyl-4-phenyl-1,2,
3,6-tetrahydropyridine (MPTP) animal model of Parkinson’s
disease via its capacity to inhibit hyperactivation of Drp1
(265, 317). Similarly, 15-oxospiramilacone (S3) is an anti-
cancer agent that inhibits Wnt/beta-catenin signaling that
can also enhance Mfn1/2 activity and induce mitochondrial
fusion by targeting the deubiquitinase ubiquitin carboxyl-
terminal hydrolase 30 (USP30) in mitochondria. USP30
enhances the irreversible ubiquitination of Mfn1/2 (385).
However, administration of S3 can restore mitochondrial
fusion and function in cells that are deficient in either Mfn1 or
Mfn2, suggesting its potential therapeutic potential as a means
to target mitochondrial dynamics in patients with CVD.

Metabolic Enzymes and RNS

NO� and its metabolites have long been associated with
maintaining metabolic homeostasis within cells. NO� can in-
hibit and activate numerous metabolic pathways as described
in the sections to follow.

Glycolytic enzymes and NO�

NO� is a regulator of glycolysis. Endothelial NO� pro-
motes glycolysis via activation of HIF-1a (33) and the
AMPK-dependent activation of PFK1. NO� also supports
glycolysis in dendritic cells (328). NO� derived from eNOS
can limit ischemic injury by inhibiting the activity of PKM2,
a response that is mediated via direct nitrosylation of a spe-

cific cysteine residue. Inhibition of PKM2 leads to the ac-
cumulation of glycolytic intermediates, which can then be
shunted to other pathways including the PPP for the produc-
tion of NADPH, a molecule that is necessary for antioxidant
activity (396). Alternatively, iNOS can promote the nuclear
translocation of PKM2, thereby increasing glycolytic flux
(198). The relative concentration of NO� may be one mech-
anism to account for its different effects on metabolism. For
example, low concentrations of NO� can promote glycolysis
whereas higher concentrations can be inhibitory.

Mitochondrial enzymes and NO�

Aside from its role in promoting vasodilation, physiologic
levels of NO� can support reversible binding and inhibition of
the mitochondrial enzyme, complex IV, an action that serves
to suppresses mitochondrial respiration (34, 56). Complex IV
is the terminal oxidase (i.e., complex IV) of the mitochondrial
ETC (Fig. 3). NO�, but not O2 binding to heme results in the
accumulation of O2. NO�-mediated inhibition of complex IV
is a competitive process that can be reversed by O2. Phy-
siological levels of NO� may repress complex IV, thereby
beneficially reducing O2 consumption and ATP formation
due to the inhibition of electron flux at this site. This inhi-
bition results in the redistribution of O2 to other sites, most
notably under conditions of increased O2 demand (323).
By contrast, prolonged exposure to NO� can lead to
S-nitrosylation and inhibition of complex I (58), which will
also inhibit cellular respiration. In ECs, endogenous NO� can
suppress mitochondrial respiration (59).

NO� has been shown to stimulate the biogenesis of mito-
chondria via activation of peroxisome proliferator-activated
receptor-gamma (PPARc) and PGC1-a (30). NO� can also
stimulate mitochondrial fragmentation that results from ac-
tivation of mitochondrial fission or suppression of fusion,
which can lead to mitochondrial dysfunction. In carbon
tracing studies and via an analysis of O2 consumption, NO� -
mediated inhibition of metabolism was tracked to the TCA
cycle, mitochondrial aconitase, and PDH (253). Ultimately,
NO� accumulation leads to suppression and loss of mitochon-
drial ETC complexes. The cytokine IL-10 can alter glycolytic
responses by regulating the production of NO� to limit iNOS-
mediated suppression of oxidative phosphorylation (18).

The reaction between NO� and O2
�- generates ONOO- and

occurs at or near-diffusion-limited rates and more rapidly
than SOD-mediated O2

�- dismutation. ONOO- reacts avidly
with proteins and contributes to the nitration of tyrosine
residues. Within cells, nitrotyrosine staining is concentrated
in the mitochondria (76); ONOO- is a potent inhibitor of the
mitochondrial ETC (269). ONOO- generated outside or
within the mitochondria can oxidize and inhibit complexes I
and II of the ETC, as well as aconitase and manganese (Mn)-
dependent SOD, also known as SOD2 (40). Mitochondria
are known to emit O2

�- and have a dedicated SOD (i.e.,
SOD2). In pathological states, the amount of O2

�- produced
increases. Therefore, in the presence of NO�, mitochondria
are the major sites of ONOO- production. ONOO- promotes
the depolarization and cyclosporine-sensitive calcium efflux
from the mitochondria via the mitochondria permeability
transition pore or mitochondrial permeability transition pore
(251). The formation of ONOO- in mitochondria is largely
driven by O2

�- flux. Although there have been reports of a
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mitochondrial NOS isoform that is similar to NOS1 that
might contribute to ONOO- formation in the mitochondria
(114), this issue remains controversial (183). Forced subcel-
lular targeting of NOS isoforms to the mitochondria revealed
that although levels of BH4 and l-arginine are sufficient to
support NO� synthesis, only calcium-independent enzymes
are active in the mitochondrial IMS (150). This result suggests
that the mitochondrial NOS isoform involved in this process
must either reside outside the mitochondria or be an isoform
of NOS2 (as opposed to NOS1).

Mitochondrial enzymes and NO in inflammation

Macrophages that express NOS2 and generate large
amounts of NO� have been found to suppress mitochondrial
respiration. NO� is important for metabolic reprogramming
as part of the proinflammatory shift toward glycolysis (8). Of
note, these findings have been reported in mouse macro-
phages, but not in human macrophages, which produce
comparatively lower levels of NO�. In addition to its ability
to suppress the ETC and respiration, under conditions of
relative hypoxia, NO� can stimulate the production of mi-
toROS that promotes proinflammatory signaling (59, 252).
Suppression of mitochondrial respiration is not an essential
feature of inflammatory polarization, compared with the
upregulation of glycolysis. NO� is important for the regula-
tion of TCA metabolism and its intermediates, citrate, and
succinate, as well as production of the immunometabolite,
itaconate (8). Itaconate production and its ability to shape the
immune response are examples of the importance of meta-
bolic reprogramming in support of this phenotypic change.

Therapeutic implications. Pharmacological modification
of NO� signaling can have a direct impact on metabolism.
NO� donors can promote glycolysis in multiple cell types (78,
224). Further, NO� and elevated levels of cyclic guanosine
monophosphate (cGMP) contribute to the browning of adi-
pose tissue in lean animals. However, in obesity, treatment
with sildenafil and elevated levels of cGMP does not promote
adipose tissue browning and result in compromised glucose
disposal (159). In the heart, elevated levels of cGMP can
promote glycolysis associated with the accumulation of both
malate and a-KG and the increased activity of malate dehy-
drogenase (113). In pulmonary hypertension, a disorder as-
sociated with the upregulation of glycolytic pathways,
administration of sildenafil results in the decreased expres-
sion of HK 2 (197). Thus, although NO� donors and modu-
lators of cGMP signaling can have an impact on cellular
metabolism via the inhibition of phosphodiesterase, these
actions can be both dose and context-dependent. As one ex-
ample of an intriguing connection between glycolysis and
NO� signaling, GAPDH has been shown to function as a
heme chaperone for soluble guanylate cyclase, an action that
is necessary for binding NO� and production of cGMP (69).
Similarly, H2O2 can activate PKG-1a to control vasodilation
and blood pressure via a mechanism that is independent of the
NO�-cGMP pathway (264). The role of crosstalk between
ROS and RNS in metabolism warrants future investigation.

Summary and Conclusion

Mitochondrial oxidative phosphorylation, glycolytic me-
tabolism, and redox homeostasis are all closely connected in

vascular and inflammatory cells and are important in shaping
cell behavior (Figs. 5 and 6). Imbalances in any of these
pathways will compromise cellular function and contribute
to CVD and cancer. Reciprocal interactions between the path-
ways that regulate metabolic flux and redox balance are im-
portant drivers of both physiological and pathophysiological
processes (Figs. 5 and 6). For example, inhibition of gly-
colysis by ROS/RNS promotes metabolic reprogramming so
that the cells shift from glycolytic flux to the oxidative arm of
the PPP to generate NADPH. This shift will serve to increase
antioxidant defense, which is important for preserving NO�

and endothelial function. In macrophages, NO� is important
for metabolic reprogramming and contributes to the proin-
flammatory shift away from mitochondrial oxidation and
toward the glycolytic pathways. Thus, these are not merely
passive metabolic adaptations; these changes play active
roles in shaping physiological and pathological processes.

Given the pivotal role of metabolism in the process of an-
giogenesis, there is substantial interest in the therapeutic pos-
sibilities associated with the manipulation of EC metabolism
(Fig. 1). However, strategies that target single pathways have
been largely unsuccessful. Combined approaches using both
metabolic inhibitors and ROS-modulating agents may offer
greater promise, as they can function synergistically to stim-
ulate angiogenesis required for cell repair or eradicate cancer
cells via the regulation of intracellular ROS levels and cellular
metabolism to achieve the desired outcome. An improved
understanding of these mechanisms and how they are inte-
grated into and contribute to various disease settings may lead
to new opportunities for intervention and improved therapeutic
strategies for CVD. Drugs targeting metabolic pathways are
currently in use for the treatment of cancer; the findings ob-
tained may have critical implications for the development of
treatments for CVD. For CVD, drugs targeting ATP citrate
synthase (ACLY), which links carbohydrate and lipid metab-
olism, may serve to reduce cholesterol levels and limit ath-
erosclerosis via its actions primarily in the liver. The roles in
this process played by other cell types are currently emerging.
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Abbreviations Used

a-KG¼ a-ketoglutarate
a-KGDH¼ alpha-ketoglutarate dehydrogenase

1C¼ one-carbon
ACC¼ acetyl-CoA carboxylase

ADMA¼ asymmetric dimethylarginine
AMPK¼ 5¢ adenosine monophosphate-

activated protein kinase
ApoE¼ apolipoprotein E
ATP¼ adenosine triphosphate

BCAA¼ branch-chained amino acid
BCAT¼ branched-chain aminotransferase
BCKA¼ branched-chain ketoacids
BCKD¼BCKA dehydrogenase

BH2¼ dihydrobiopterin
BH4¼ tetrahydrobiopterin

BNIP3¼BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3

cGMP¼ cyclic guanosine monophosphate
CoA¼ coenzyme A

Complex I¼NADH–ubiquinone oxidoreductase
Complex III¼ ubiquinol–cytochrome c

oxidoreductase
Complex IV¼ cytochrome c oxidase

CoQ¼ coenzyme Q
CPT1¼ carnitine palmitoyltransferase-1
CtBP¼C-terminal-binding protein

Cu,ZnSOD, SOD1¼ coper zinc superoxide dismutase
CVD¼ cardiovascular disease
CySS¼ cystine
Cyt c¼ cytochrome c

DDAH1¼ dimethylarginine
dimethylaminohydrolase 1

DHFR¼ dihydrofolate reductase
dNTPs¼ deoxynucleotide triphosphates

Drp1¼ dynamin-related protein 1
EC¼ endothelial cell

ECM¼ extracellular matrix
ecSOD, SOD3¼ extracellular SOD

ETC¼ electron transport chain
F6P¼ fructose-6-phosphate
FA¼ fatty acid

FAD¼ flavin adenine dinucleotide
FAO¼ fatty acid oxidation
Fis1¼mitochondrial fission 1 protein
G6P¼ glucose-6-phosphate

G6PD¼ glucose-6-phosphate dehydrogenase
GAPDH¼ glyceraldehyde 3-phosphate

dehydrogenase
GCL¼ glutamate-cysteine ligase

GGPP¼ geranylgeranyl pyrophosphate
GLS¼ glutaminase

GLUT¼ glucose transporter
GPX¼ glutathione peroxidase
GSH¼ glutathione
GSR¼ glutathione reductase
GSS¼GSH synthetase

GSSG¼ oxidized glutathione
GTPCH¼GTP cyclohydrolase

H2O2¼ hydrogen peroxide
H2S¼ hydrogen sulfide
HIF¼ hypoxia-inducible factor

HK¼ hexokinase
Hsp¼ heat-shock protein
IDH¼ isocitrate dehydrogenase

IL¼ interleukin
IMS¼ intermembrane space

IRG1/ACOD1¼ immune-responsive gene 1/aconitate
decarboxylase 1

KEAP1¼Kelch-like ECH-associated protein 1
LDH¼ lactate dehydrogenase

l-NMMA¼N-monomethyl l-arginine
LPS¼ lipopolysaccharide

Mdivi¼mitochondrial division inhibitor
ME¼malic enzyme
Mfn¼mitofusin

mitoROS¼mitochondrial ROS
MnSOD, SOD2¼manganese superoxide dismutase

mRNA¼messenger RNA
MSUD¼maple syrup urine disease

Mtb¼Mycobacterium tuberculosis
NADH¼ nicotinamide adenine dinucleotide

NADPH¼ nicotinamide adenine dinucleotide
phosphate

NF-jB¼ nuclear factor-kappa B
NLRP3¼NLR family pyrin domain containing 3

NO�¼ nitric oxide
NOS¼ nitric oxide synthase

NOS1, nNOS¼ neuronal NOS
NOS2, iNOS¼ inducible NOS
NOS3, eNOS¼ endothelial NOS

NOX¼NADPH oxidase
Nrf2¼ nuclear factor erythroid 2-related

factor 2
O2¼ oxygen

O2
�-¼ superoxide

OAA¼ oxaloacetate
�OH¼ hydroxyl radical

ONOO-¼ peroxynitrite
Opa1¼ optic atrophy 1
PDH¼ pyruvate dehydrogenase

PDHK1¼ pyruvate dehydrogenase kinase 1
PDHK¼ pyruvate dehydrogenase kinase

PFK¼ phosphofructokinase
PFKFB3¼ 6-phosphofructo-2-kinase/fructose-

2,6-bisphosphatase 3
PGC¼ peroxisome proliferator-activated

receptor-gamma coactivator
PHD¼ prolyl hydroxylase domain-containing

protein
PHGDH¼ phosphoglycerate dehydrogenase

PK¼ pyruvate kinase
PKC¼ protein kinase C

PKM2¼ pyruvate kinase M2
PPP¼ pentose phosphate pathway

PRX¼ peroxiredoxin
RET¼ reverse electron transport
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
SAM¼ S-adenosyl-methionine
SDH¼ succinate dehydrogenase

SGOC¼ serine-glycine one-carbon metabolism

SHMT¼ serine hydroxymethyltransferase

SIRT¼ sirtuin
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Abbreviations Used (Cont.)

SLC1A5/ASCT2¼ solute carrier family 1, member 5/
alanine/serine/cysteine-preferring
transporter 2

TAZ¼ transcriptional coactivator with PDZ
binding motif

TCA¼ tricarboxylic acid
Teff¼ effector T

TIGAR¼TP53-inducible glycolysis
and apoptosis regulator

Tm¼memory T cells
TNF¼ tumor necrosis factor
TRX¼ thioredoxin

TRXR¼ thioredoxin reductase
TxNIP¼ thioredoxin-interacting protein

UCP¼ uncoupling protein
USP30¼ ubiquitin carboxyl-terminal

hydrolase 30
VDAC¼ voltage-dependent mitochondrial

anion channel
VEGF¼ vascular endothelial growth factor
VSMC¼ vascular smooth muscle cells

xCT¼ the cystine/glutamate antiporter
SLC7A11

XO¼ xanthine oxidase

YAP¼ yes-associated protein
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