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Abstract
Purpose  Sleep is an important human activity. Comfortable sensing and accurate analysis in sleep monitoring is beneficial 
to many healthcare and medical applications. From 2020, owing to the COVID‑19 pandemic that spreads between people 
when they come into close physical contact with one another, the willingness to go to hospital for receiving care has reduced; 
care-at-home is the trend in modern healthcare. Therefore, a home-use and real-time sleep-staging system is developed in 
this paper.
Methods  We developed and implemented a real-time sleep staging system that integrates a wearable eye mask for high-
quality electroencephalogram/electrooculogram measurement and a mobile device with MobileNETV2 deep learning model 
for sleep-stage identification. In the experiments, 25 all-night recordings were acquired, 17 of which were used for training, 
and the remaining eight were used for testing.
Results  The averaged scoring agreements for the wake, light sleep, deep sleep, and rapid eye movement stages were 85.20%, 
87.17%, 82.87%, and 89.30%, respectively, for our system compared with the manual scoring of PSG recordings. In addition, 
the mean absolute errors of four objective sleep measurements, including sleep efficiency, total sleep time, sleep onset time, 
and wake after sleep onset time were 1.68%, 7.56 min, 5.50 min, and 3.94 min, respectively. No significant differences were 
observed between the proposed system and manual PSG scoring in terms of the percentage of each stage and the objective 
sleep measurements.
Conclusion  These experimental results demonstrate that our system provides high scoring agreements in sleep staging and 
unbiased sleep measurements owing to the use of EEG and EOG signals and powerful mobile computing based on deep 
learning networks. These results also suggest that our system is applicable for home-use real-time sleep monitoring.

Keywords  Automatic sleep-staging method · EEG · EOG · Home use · Eye mask · Real time · Mobile platform · 
MobileNetV2
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1  Introduction

Sleep is an important human activity. Monitoring and recog‑
nizing sleep stages has many healthcare and medical appli‑
cations, such as long-term sleep quality evaluation, sleep 
environment control, and sleep disorder diagnosis [1, 2]. 
Comfortable sensing [compared with that afforded by a poly‑
somnogram (PSG)] with automatic sleep staging is required 
for home-use sleep monitoring. Because of the COVID‑19 
pandemic, which spreads among people when they come 
into close physical contact with one another, the willingness 
to go to a hospital for care has reduced. Care-at-home has 
been considered a practical solution to prevent infection and 
reduce the burden on healthcare systems.

A conventional PSG is a clinically approved sleep-mon‑
itoring device. A PSG can be understood as a multivari‑
ate system that records different biological signals, such as 
electroencephalograms (EEGs), electrooculograms (EOGs), 
electromyograms (EMGs), and electrocardiograms (ECGs). 
The recorded data are divided into 30-s intervals called 
epochs. Then, one or more experts classify each epoch into 
one of five stages [N1, N2, N3, rapid eye movement (REM), 
or wake] by quantitatively and qualitatively examining the 
signals of the PSG in the time and frequency domains. 
Because visual sleep scoring by experts is time consum‑
ing and subjective, various automatic sleep scoring methods 
have been developed [3, 4]. However, the excessive num‑
ber of wired connections in a conventional PSG disturbs a 
user’s sleep, and therefore, automatic sleep-staging methods 
based on a single channel EEG/EOG have been developed to 
reduce the number of wires and disturbance to a user [5–13].

For facilitating convenient sensing at home, various 
approaches without sleep EEGs have been proposed to 
describe sleep behavior/states, such as body activity [14, 
15], ECGs [16–18], voice [19], and breathing [20], that 
can be measured by a self-applicable device for home use. 
The characteristics of these methods are usually part of the 
standard PSG sleep protocol, and owing to a lack of EEG 
information, physiological details and descriptions of the 
sleep for diagnosis cannot be provided.

In this study, a real-time sleep-monitoring system that 
integrates a wearable eye mask [21] for EEG/EOG meas‑
urement and a mobile device for stage identification is pro‑
posed. The eye mask includes an embedded module that 
records EEGs and EOGs with high signal quality and cal‑
culates the features. A mobile device is used to receive the 
features through Bluetooth Low Energy (BLE) and analyzes 
them for sleep-stage identification with MobileNetV2. A 
novel performance evaluation strategy that considers sleep-
staging agreements and sleep measures was proposed for 
parameter selection. The results of sleep staging and fun‑
damental sleep measures obtained using our system were 
compared with the manual scorings obtained through PSG 
data for performance evaluation.

2 � Methods and Materials

Figure 1 shows the development flowchart of this study. In 
the experiments, the proposed wearable eye mask and a PSG 
were mounted on the subjects for simultaneous recording. 
These data were used for training and validation. During the 
model training step, signal preprocessing and feature extrac‑
tion were executed on a personal computer. Then, signal 
preprocessing and feature extraction were executed on a sys‑
tem embedded in the wearable eye mask. The mobile plat‑
form received the features sent from the eye mask through 
Bluetooth and used the trained stage classification model for 
real-time sleep scoring.

2.1 � Hardware Design

To achieve a home-use solution, we proposed a portable 
wireless physiological measurement module. This module 
can be used as either a standard PSG measurement device or 
a wearable device in combination with an eye mask frame for 
convenient and comfortable sensing. The module employs 
edge computing for sleep-related feature extraction on the 
embedded system to achieve real-time sleep interpretation 
and extend the application of the system to home-care use.

Fig. 1   System development 
flowchart
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2.1.1 � Portable Wireless Physiological Measurement 
Module

The developed sensing module can be used for microvolt-
level physiological signal recordings, such as EEG, EOG, 
EMG, or ECG, in a single-end/differential mode. The data 
are stored in an SD memory card and/or transferred in real 
time to the application device through BLE. The module 
integrates an nRF52840 microchip unit and an ADS1299 
analog front-end as shown in Fig. 2. The detailed specifi‑
cations are listed in Table 1. The main requirements of the 
module considered for applicability are listed as follows:

(a)	 Light weight: The weight of the module with the bat‑
tery is 19 (± 1) g (the sensing module weighs 9 g and 
the 500 mAh battery weighs 10 g). The light design 
significantly reduces the interference in sleep quality.

(b)	 Continuous 24-h recording: This proposed module can 
record and transfer raw sleep data for up to 30 h con‑
tinuously. In general, a sleep-monitoring device should 
be able to record at least 9 h continuously for over‑
night measurement. In addition, operating in the on-
line sleep-monitoring mode (with edge computing and 
wireless feature transmission), the system can record 
sleep continuously for 9.5 h and perform staging in 
home-use applications.

(c)	 Edge computing: To achieve real-time sleep scoring in 
mobile platforms and to reduce the power consump‑
tion of the measurement module, signal preprocessing 
and feature extraction are implemented in the sens‑
ing module. This approach prevents frequent BLE 
transmissions/connections, effectively reduces power 
consumption, and preserves personal privacy with‑
out releasing raw data. The features are regarded as 
encrypted information, and a matching model (e.g., the 
classification model) is required to translate the actual 
situation of the user.

2.1.2 � Wearable Eye Mask Design

The core design concept for comfortable sleep sensing is to 
integrate a sleep eye mask with EEG and EOG electrodes. 
To reduce pressure on the eyeballs, we use sponges located 
between the sensor and the eye mask to make the sensor 
fit the shape of the orbit. Our eye mask design and soft-
fabric electrodes protect users from interference due to the 
electrode wire and allow them to wear the eye mask con‑
veniently, as shown in Fig. 3. This design has been proven 
to be more comfortable than a traditional PSG [21]. Two 
improvements were made in this study. First, we selected 
softer materials to make the mask lighter (from 63 to > 42 g). 
Second, instead of a single bipolar EOG signal recorded to 
calculate features, the forehead EEG and EOG-R singles 
were recorded in single-end mode to obtain EEG-related 
and EOG-related characteristics during sleep. The differ‑
ence between the signals of these two channels was then 
calculated to obtain the EOG signal.

25
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H:32mm

30mm

20
m
m

(A) (B) (C)

Fig. 2   Circuits of the designed portable wireless physiological meas‑
urement module: A Top board circuit with MCU, USB plugin, SD 
card, and other parts; B Bottom board circuit with ADC and signal 
input pin; C Packaging with battery for wearable application

Table 1   Specifications of the designed portable wireless physiologi‑
cal measurement module

Item PID Function

MCU nRF52840 Frequency: 2.4 GHz
RAM: 256 kB
Microcontroller: ARM Cortex-M4F
Bluetooth: 5.0

ADC ADS1299 4 channels
Resolution: 24 Bits
Sample rate: 250 Hz ~ 16 kHz
Input range (V): 0–5.25
Gain: 1–24

Accelerometer ADXL362 3-axis
Sensor range: ± 8 g
Resolution: 12 Bits

Memory Card With FAT32 page system
Total power
cost

About 16.38 mAh

Forehead
EEG-FP1 EOG Right

(B)

(A) (C)

Fig. 3   A Packaged sensing module, which is connected to the eye 
mask with metal snap buttons; B Outside and C inside of the eye 
mask, which can measure the forehead EEG and EOG-R signals; The 
entire eye mask wearable device weighs 74 g (± 1)
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Figure 4 shows the sleep measurement results obtained 
by using our sensing module (Fig. 2) to function as a 
mini-PSG (to record 2 EEG channels, 1 EOG channel, 
and 1 EMG channel) and the eye mask (Fig. 3) to perform 
simultaneous recordings. In the wake stage (Fig. 4A), the 
alpha rhythm (8–12 Hz) is observed in the EEG channels 
of both devices. The alpha rhythm is also observed in the 
EOG signal of the eye mask. In the light sleep stage (N1 
stage, Fig. 4B), the theta rhythm (4–7 Hz) is the major 
component in the EEG channels of both devices. In the 
deep sleep stage, characteristics of high-amplitude, slow-
wave activity (1–3 Hz) are observed in all channels of the 
two devices. In the REM stage, the EOG signals indicate 
REM with large amplitude. These recordings indicate 
that the eye mask can fix the dry electrodes to capture 
the EEG and EOG characteristics during different sleep 
stages. However, because the forehead EEG was recorded 
instead of typical C3-M2/C4-M1 channels, the EEG signal 
of the eye mask was not identical to the EEG signal of the 
PSG; therefore, a specific automatic sleep scoring model 
is required for the eye mask to perform home-use sleep 
monitoring.

2.2 � Subjects and Recording

These measurements were approved by the internal review 
board of National Cheng Kung University. A total of 25 
overnight PSG and wearable eye mask sleep recordings were 
obtained simultaneously from 25 subjects (12 men and 13 
women, aged 23.2 ± 1.8 years, college students of NCKU) 
in this study. All subjects had no prior history of smoking or 
drug or alcohol abuse or neurological, psychiatric, or sleep 
disorders. No outside interference was observed during data 
collection, and no medications were used to induce sleep. 
To maintain the subjects’ sleeping habits and body clocks 
as much as possible, we provided an independent and user-
controlled sleeping environment (temperature: 25–28 °C, 
light, and airflow), and the scheduled bedtime was at their 
leisure. Subjects arrived at the laboratory at approximately 
10:00 PM and were given instructions for the experiment. 
Before execution the experiments, they did not take any tea, 
coffee, alcohol, etc.… Then, two sleep monitors (a mini-
PSG and the eye mask) were set up, which took 30–40 min. 
The mini-PSG recordings (utilizing the sensing module in 
Fig. 2) included two EEG (C3-M2 and C4-M1) channels, 
one EOG (EOG_R—EOG_L) channel, and a chin EMG 
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Fig. 4   Sleep recordings corresponding to different sleep stages obtained simultaneously by a PSG and the eye mask
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channel. The eye mask recordings contained a forehead EEG 
(FP1) and an EOG (EOG_R) channel, as shown in Fig. 3. 
The sampling rate of these two devices was 250 Hz, and the 
data were transmitted to the terminal computer in real time 
and were saved to the on-board SD card. All 25 PSG sleep 
recordings (EEG, EOG and EMG) were visually scored by 
a sleep specialist using the AASM guidelines in 30-s inter‑
vals (named an epoch) as the gold standard to develop the 
automatic scoring model for the recordings obtained from 
the eye mask. To efficiently and effectively construct and 
evaluate our method, we sorted the recordings based on the 
sleep efficiency (SE) obtained from the manual scoring of 
the mini-PSG. The recordings of every third subject from 
the sorted list of the recordings based on SE were used for 
verification (8 subjects), and the remaining data from 17 
subjects were used for model construction.

Table 2 lists the statistics of sleep measures obtained 
from the 25 subjects. From the 24,029 epochs, the average 
percentages of the wake, light sleep, deep sleep, and REM 
stages were 10.78%, 53.6%, 17.38%, and 18.23%, respec‑
tively. The SE ranged between 66 and 96%, and the SE of 
two subjects was < 80% (72.42% and 66.7%, respectively). 

The average total sleep time was > 7 h, ranging 325–524 min, 
and two subjects slept < 7 h (379 and 325 min, the same sub‑
jects with poor SE).

2.3 � Edge Computing for Feature Extraction

To effectively reduce power consumption as well as pre‑
serve personal privacy, the embedded physiological sensing 
module in the eye mask provides a signal recording mode 
and a sleep scoring mode. In the scoring mode, an ARM 
processor in the embedded sensing module performs signal 
processing and feature extraction to reduce the data size of 
the BLE package and avoid the leaking of private informa‑
tion. Figure 5 shows the flowchart of the real-time sleep 
analysis procedure, wherein edge computing is employed 
by the embedded physiological sensing module in the eye 
mask to extract features and mobile computing is employed 
in a mobile device for sleep-stage identification. The embed‑
ded sensing module in the eye mask records the forehead 
EEG and EOG signals at a sampling rate of 250 Hz. Before 
feature extraction, the EEG and EOG raw data were filtered 
with a cutoff frequency of 0.5–30 Hz by using a 30-order 

Table 2   Statistics of sleep measures obtained from the 25 subjects

Sleep stage Wake Light Deep REM

Avg(%) 10.78 53.60 17.38 18.23
S.D 7.26 8.16 3.89 3.88
Avg(mins) 51.3 255.1 82.7 86.7

Sleep parameters SE (%) TST (min) SOT (min) WASOT (min)

Avg 89.22 429.0 29.6 17.3
S.D 7.26 61.4 19.7 22.2

Fig. 5   Flowchart of the real-
time sleep analysis procedure, 
wherein edge computing is 
employed by the embedded 
physiological sensing mod‑
ule in the eye mask to extract 
features and mobile computing 
is employed in a mobile device 
with MobileNETV2 for sleep-
stage identification
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FIR low-pass filter and a 125-order FIR high-pass filter to 
remove artifacts and maintain the data characteristics for 
sleep analysis. Every 0.2 s of data and the previous 0.8 s of 
data were combined as 1 s of data to perform a 256-point fast 
Fourier transform calculation. The resultant spectrograms 
of the EEG and EOG signals were sent from the eye mask 
through BLE to the mobile platform to generate the feature 
map and identify sleep stages by using MobileNetV2.

2.4 � Mobile Computing for Feature Map Generation 
and Sleep Staging

For home-use healthcare applications, mobile devices, such 
as smart phones and pads, provide acceptable computing, 
communication, display, and management functions. Tak‑
ing advantage of the advances in powerful deep learning 
networks, we used MobileNetV2, a convolutional neural 
network (CNN)-based next-generation portable computer 
vision network developed by Google Inc., to identify the 
sleep stages based on the features calculated and transmitted 
from the eye mask. The network program is small enough 
to be deployed on a mobile device. This API contained a 
new architecture called “linear bottlenecks” and simplifies 
the layer connection through a shortcut. The shortcut helps 
improve the encoding of the model’s intermediate inputs and 
outputs, whereas the inner layer allows the model to trans‑
form from lower-level concepts, such as pixels, to higher-
level descriptors, such as image categories [22].

The mobile-based sleep scoring method proposed in this 
study generated two MobileNetV2 models to compose a 
hierarchical classification process. The level-1 model first 
classifies the epoch into three classes—wake, deep sleep 
stage (N3), and other stages (N1, N2, and REM)—based 
on their EEG features. Next, the other stages are further 
classified as light sleep (N1 and N2) and REM through the 
level-2 model, based on their EOG features. Therefore, any 
unknown epoch is identified as one of the four stages: wake, 
light sleep, deep sleep, and REM.

Because MobileNetV2 is a pretrained deep learning net‑
work by using the ImageNet dataset, we generated feature 
maps (images) based on the spectrograms of the EEG and 
EOG signals to fit the input structure of MobileNetV2. The 
completeness and coverage of essential information in the 
feature map and the suitable objective to achieve for the 
model are two major factors that influence the performance 
of model tuning and optimization. For sleep scoring, the 
following are considered.

2.4.1 � Temporal Context for Feature Maps

For manual sleep scoring, in addition to the signal character‑
istics of the current epoch to be identified, the characteristics 
of nearby epochs are observed by experts to consider the 

temporal context of sleep cycles. Therefore, in this study, 
the input feature maps were not limited to the spectrogram 
of the current epoch. Some portion of the previous and sub‑
sequent epochs were also included. The received spectro‑
grams 15 s before and after the current 30-s epoch were 
included in the current 30-s spectrogram, to obtain a 60-s 
spectrogram as the feature maps (EEG and EOG). Moreover, 
the regular input image size of MobileNetV2 is 224 × 224 
pixels, so the feature maps were resized into 224 × 224 pixels 
before they were fed into the MobileNetV2 network. In the 
experiments, the performances of including 20 s of previous 
and subsequent data in the current 30-s spectrogram were 
also compared. Similarly, the feature maps were resized to 
224 × 224 pixels. If the generated feature map was smaller 
than 224 × 224 pixels, the empty portions were designated 
as zero. If the generated feature maps were larger than 
224 × 224, the maps were resampled.

2.4.2 � Objective Selection for the Classifier

Most of the automatic sleep scoring method compares the 
epoch-by-epoch agreements between the model outputs 
and manual scorings to adjust parameters or select models. 
However, for sleep diagnosis, beyond sleep staging, sleep 
indices calculated from the hypnograms are also important 
for evaluating a subject’s objective sleep quality. Consid‑
ering or evaluating only the epoch-based agreement may 
cause overfitting and not ensure that accurate diagnostic 
sleep measurements are reported. Therefore, in addition 
to the average agreement of epoch staging, objective sleep 
measurements such as SE, sleep latency, wake after sleep 
onset time (WASOT), and total sleep time (TST) in model 
optimization were proposed and evaluated in this paper.

3 � Results

In total, 25 overnight PSG and wearable eye mask sleep 
recordings were obtained simultaneously from 25 sub‑
jects (12 men and 13 women, aged 23.2 ± 1.8 years). The 
SE ranged between 66 and 96%, and the recordings were 
sorted based on the SE. From the sorted list, every third 
recording from the subjects were used for verification (8 
subjects), and the remaining data from 17 subjects were 
used to establish and fine-tune the MobileNetV2 model. 
The spectrogram 15 s before and after the current 30-s 
epoch was included with the current 30-s spectrogram to 
obtain a 60-s spectrogram as the feature image (resized 
to 224 × 224 pixels) to be fed into MobileNetV2. The 
length of neighbor data to be included was determined 
by averaging the ranks of agreements corresponding to 
the wake, light sleep, deep sleep, and REM sleep stages, 
as well as the accuracies corresponding to objective sleep 
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measurements (SE), sleep latency, TST, sleep onset time 
(SOT), and WASOT). The feature map with the 60-s spec‑
trogram (including 15 s before and after the current 30-s 
epoch) helps achieve a good balance between sleep staging 
and accuracy in sleep measurements.

The confusion matrix of the four-stage epoch classifica‑
tion obtained using the data from eight test subjects and 
sensed by the eye mask and the classifier on the smart phone 
(Google Pixel 3a) is presented in Table 3. For the sleep 
stages, the overall agreement between the scores provided 
by the expert and those obtained by the proposed system was 
86.72% (± 1.85%); all interscorer agreements were higher 
than 82% [3]. The sensitivities of the wake, light sleep, deep 
sleep, and REM stages were 85.20%, 87.17%, 82.87%, and 
89.30%, respectively. The agreements between the predicted 
scores and the scores provided by experts for all stages were 
good and exceeded 80%. In addition, the mean average error 
absolute error was also calculated to measure the agree‑
ments between the results of the expert and the proposed 
method with respect to various sleep measurements. The 
mean absolute errors (MAEs) with respect to four objec‑
tive sleep measures—SE error, TST error, SOT error, and 
WASOT error—were 1.68% (± 2.5 9%), 7.56 (± 7.88) min, 
5.50 (± 9.07) min, and 3.94 (± 2.35) min, respectively.

For healthy adults, a deep sleep stage constitutes 
approximately 20% of the TST and the REM stage consti‑
tutes approximately 25% of the TST. Therefore, the report 
addresses percentage of TST that each sleep stage occupies 
is essential for sleep diagnosis. Figure 6 shows the com‑
parisons of the subject-by-subject percentage of the TST 
each sleep stage occupies, as estimated by our system and 
manual PSG scoring. The MAE between the results esti‑
mated by our system and those estimated through manual 
PSG scoring corresponding to the four sleep stages—wake, 
light sleep, deep sleep, and REM—were 1.68% (± 1.92%), 

2.94% (± 1.66%), 1.99% (± 1.54%), and 2.10% (± 2.10%), 
respectively.

In the statistics analysis, no significant differences were 
observed between the proposed system and manual PSG 
scoring in terms of the percentage of each stage and the 
objective sleep measurements (p-values of the wake, light 
sleep, deep sleep, REM, SE, TST, SOT, and WASOT were 
0.9, 0.8, 0.33, 0.26, 0.9, 0.96, 0.7, and 0.32, respectively). 
Figure 7 shows the hypnograms of two test subjects, includ‑
ing the PSG manual scoring results and the results of our 
system. These experimental results demonstrate the applica‑
bility of our system for home-use sleep monitoring.

4 � Discussion and Conclusion

From 2020, owing to the COVID‑19 pandemic that spreads 
between people when they come into close physical contact 
with one another, the willingness to go to hospital for receiv‑
ing care has reduced; care-at-home is the trend in modern 
healthcare. In this study, a home-use and real-time sleep-
monitoring system that integrates a comfortable eye mask 
and a mobile device was developed. The wearable eye mask 
[21] obtains high-quality EEG and EOG signals, uses edge 
computing for essential feature calculation, and facilitates 
real-time data transmission through BLE. A mobile device 
was used to receive the calculated features, generate the 
feature maps, and analyze the feature maps with Mobile‑
NETV2 for sleep-stage identification. The averaged scoring 
agreements between our proposed system and the manual 
scoring of PSG recordings for the wake, light sleep, deep 
sleep, and REM stages were 85.20%, 87.17%, 82.87%, and 
89.30%, respectively. In addition, the MAEs with respect 
to the objective sleep measurements—SE, TST, SOT, and 
WASOT—were 1.68%, 7.56 min, 5.50 min, and 3.94 min, 

Table 3   Confusion matrices between the mobile scoring method and the visual scorings obtained with eight test subjects with respect to sleep 
stages and sleep measurements

Sleep stage Predict

Wake Light Deep REM ACC​

Scorer
 Wake 85.20% (616) 13.96% (99) 0.28% (2) 0.83% (6) 85.20%
 Light 2.49% (97) 87.17% (3389) 4.22% (164) 6.12% (238) 87.17%
 Deep 0.35% (5) 16.70% (236) 82.27% (1171) 0.07% (1) 82.87%
 REM 0.55% (8) 10.15% (148) 0.00% (0) 89.30% (1302) 89.30%
 ACC​ 86.72%

Error of sleep measurement SE (%) TST (min) SOT (min) WASOT (min)

Errors
 Average 2.10 1.68 7.56 5.50
 STD 2.10 2.59 7.88 9.07
 p-value 0.26 0.90 0.96 0.70
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respectively. No significant differences were observed 
between the proposed system and manual PSG scoring in 
terms of the percentage of each stage and the objective sleep 
measurements. The experimental results demonstrate the 
applicability of the proposed home-use and real-time sleep-
monitoring system.

Various automatic sleep-staging methods based on a 
single EEG channel have been developed for home-used 
sleep monitoring. These methods were developed with the 
objective of using less recording wires to reduce sleep 

disturbance [7, 9–13, 23]. However, most of these meth‑
ods use the EEG signals from PSG recordings instead of 
home-based wearable devices, and although commercial 
wearable devices, such as wristbands [15, 24], are easy to 
use, they may not provide accurate sleep hypnograms and 
unbiased objective sleep measurements [25]. Our system 
provides high scoring agreements in sleep staging and 
unbiased sleep measurements owing to the use of EEG 
and EOG signals and powerful mobile computing based 
on deep learning networks.

Fig. 6   Comparisons of subject-
by-subject percentage of TST 
each sleep stage occupies, as 
estimated by the proposed sys‑
tem and manual PSG scoring
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Fig. 7   Hypnograms of two test subjects, including those of the mini-PSG manual scoring results and results of our system
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To enhance the performance of sleep staging, the tem‑
poral context is considered for feature map generation. As 
[23, 26] suggested, a trade-off exists between performance 
and length. As reported, the improvement in performance 
was marginal, and an overly long context extension may 
affect the detection of some sleep stages [11, 12, 23, 26]. 
We investigated the benefits of context extension from 0 
to 20 s in 5-s steps. We found that a context extension of 
5 s improved the performance of stage scoring, and the 
improvement tended to be smooth when using 15-s or 20-s 
context extensions. The experimental result showed that 
the feature map with the 60-s spectrogram (including 15 s 
before and after the current 30-s epoch) aids in achieving a 
good balance between sleep staging and accuracy in sleep 
measurements. Our proposed system also helps overcomes 
the limitations of computing capability, communication 
speed, and power consumption for the mobile platform.

The major limitation of this study was the young aver‑
age age (under 30 years old) of the respondents. Elders 
need to be included and analyzed in future research. Older 
people find it more difficult to sleep for as long as possible 
and tend to wake up several times throughout the night. 
In addition, these insomnia symptoms of elders are more 
likely to be caused by sleep disordered breathing, such 
as sleep apnea syndrome. Although the current dataset 
includes subjects with low sleep quality, most of symp‑
toms are difficulty in falling asleep. Our future studies 
should include sleep disordered breathing-related insom‑
nia symptoms in the dataset.

On-line sleep monitoring is required for applications 
such as memory consolidation [27], efficient and effective 
napping [28, 29], and sleep environment enhancement [30]. 
These applications usually provide stimuli or change condi‑
tions at specific sleep stages or when specific events occur. 
The proposed eye mask integrated with a smart phone meets 
such requirements; moreover, it is portable and can be used 
by someone on their own, which is critical for day-to-day 
living. In the future, more applications or advanced sleep 
research can be developed by using our system.
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