

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Expert Systems With Applications 186 (2021) 115805

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

CovH2SD: A COVID-19 detection approach based on Harris Hawks
Optimization and stacked deep learning
Hossam Magdy Balaha1, Eman M. El-Gendy ∗,1, Mahmoud M. Saafan1

Computers Engineering and Systems Department, Faculty of Engineering, Mansoura University, Egypt

A R T I C L E I N F O

Keywords:
Computed Tomography (CT)
Convolutional Neural Network (CNN)
COVID-19
Data Augmentation (DA)
Harris Hawks Optimization (HHO)
Transfer Learning (TL)

A B S T R A C T

Starting from Wuhan in China at the end of 2019, coronavirus disease (COVID-19) has propagated fast all
over the world, affecting the lives of billions of people and increasing the mortality rate worldwide in few
months. The golden treatment against the invasive spread of COVID-19 is done by identifying and isolating the
infected patients, and as a result, fast diagnosis of COVID-19 is a critical issue. The common laboratory test for
confirming the infection of COVID-19 is Reverse Transcription Polymerase Chain Reaction (RT-PCR). However,
these tests suffer from some problems in time, accuracy, and availability. Chest images have proven to be a
powerful tool in the early detection of COVID-19. In the current study, a hybrid learning and optimization
approach named CovH2SD is proposed for the COVID-19 detection from the Chest Computed Tomography
(CT) images. CovH2SD uses deep learning and pre-trained models to extract the features from the CT images
and learn from them. It uses Harris Hawks Optimization (HHO) algorithm to optimize the hyperparameters.
Transfer learning is applied using nine pre-trained convolutional neural networks (i.e. ResNet50, ResNet101,
VGG16, VGG19, Xception, MobileNetV1, MobileNetV2, DenseNet121, and DenseNet169). Fast Classification
Stage (FCS) and Compact Stacking Stage (CSS) are suggested to stack the best models into a single one. Nine
experiments are applied and results are reported based on the Loss, Accuracy, Precision, Recall, F1-Score,
and Area Under Curve (AUC) performance metrics. The comparison between combinations is applied using
the Weighted Sum Method (WSM). Six experiments report a WSM value above 96.5%. The top WSM and
accuracy reported values are 99.31% and 99.33% respectively which are higher than the eleven compared
state-of-the-art studies
1. Introduction

The novel Coronavirus (COVID-19) has led to a global crisis due to
its rapid spread from one person to another (Zaim, Chong, Sankara-
narayanan, & Harky, 2020). This crisis began in Wuhan in China in
December 2019. The World Health Organization (WHO) declared the
novel coronavirus caused by SARS-CoV-2 as a pandemic in January
2020 (Xu & Li, 2020). The common symptoms of COVID-19 include,
but are not limited to, fever, dry cough, sleepiness, and loss of smell
and taste (Wang, Kang, Liu, & Tong, 2020). Severe cases may suffer
from the difficulty of breathing and multi-organ damage (Zaim et al.,
2020).

During the first days of the infection, it was very difficult to ex-
amine and diagnose the COVID-19 using the Reverse Transcription
Polymerase Chain Reaction (RT-PCR) test, which is the standard test for
confirming the COVID-19 positive patients (Li, Yao, et al., 2020). RT-
PCR also consumes time and money (Gupta, Anjum, Gupta, & Katarya,

∗ Corresponding author.
E-mail addresses: hossam.m.balaha@mans.edu.eg (H.M. Balaha), eman_elgendy@mans.edu.eg (E.M. El-Gendy), saafan2007@mans.edu.eg (M.M. Saafan).

1 This work has been done by equal efforts of all authors.

2021). In this case, patients with a late diagnosis can develop severe
symptoms due to the delay in treatment. These patients are also a main
source of infection. So, it is necessary to diagnose patients and isolate
them as early as possible to stop the disease spread (Bahgat, Balaha,
AbdulAzeem, & Badawy, 2021).

In recent studies, medical imaging including Chest Computed To-
mography (CT) and chest X-ray have proven to be a valuable method
for COVID-19 detection (Ozturk et al., 2020; Rubin et al., 2020). In
the investigation of the COVID-19 patients, CT images are powerful
for detecting COVID-19 since they are more sensitive than X-ray im-
ages (Wong et al., 2020). While this technique has some advantages
over the current RT-PCR test regarding the early detection of the
COVID-19 and accuracy, this approach requires experts to understand
the chest images (Gupta et al., 2021; Nour, Cömert, & Polat, 2020).

The current evolution in Artificial Intelligence (AI) leads to the
appearance of Deep Learning (DL) approaches (Abdulazeem, Balaha,
vailable online 5 September 2021
957-4174/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2021.115805
Received 26 June 2021; Received in revised form 13 August 2021; Accepted 23 Au
gust 2021

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:hossam.m.balaha@mans.edu.eg
mailto:eman_elgendy@mans.edu.eg
mailto:saafan2007@mans.edu.eg
https://doi.org/10.1016/j.eswa.2021.115805
https://doi.org/10.1016/j.eswa.2021.115805
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.115805&domain=pdf

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Bahgat, & Badawy, 2021). DL can deal with huge datasets containing
millions of data easily and efficiently (Najafabadi, Villanustre, Khosh-
goftaar, Seliya, Wald, & Muharemagic, 2015). The commonly used
deep learning approach in the field of medical imaging is the Con-
volutional Neural Network (CNN) (Huynh, Li, & Giger, 2016). Due to
their remarkable ability to extract features from images, CNN has been
successfully used in image-related problems (Xu, Ren, Liu, & Jia, 2014).
CNN has also proven to have a superior performance in classification
problems (Zhang et al., 2018). Applications of CNNs in medical imaging
include, but are not limited to, skin cancer classification (Dorj, Lee,
Choi, & Lee, 2018), lung tumor detection (Kasinathan et al., 2019),
pancreatic ductal adenocarcinoma (Zhang, Lobo-Mueller, et al., 2020),
and breast cancer diagnosis (Gao et al., 2018). Thus, CNN can be used
for the detection of COVID-19 patients from either Chest X-ray or CT
images accurately and almost at no time (Marques, Agarwal, & de la
Torre Díez, 2020).

Nowadays, metaheuristic algorithms are powerful for solving dif-
ferent optimization problems. The main reason behind this is their
flexibility (Yousri et al., 2021). Examples of these algorithms are
Genetic Algorithms (GA) (Holland, 1992), Particle Swarm Optimiza-
tion (PSO) (Kennedy & Eberhart, 1995), Cuckoo Search (CS) algo-
rithm (Yang & Deb, 2010), Grasshopper Optimization Algorithm (GOA)
(Balaha & Saafan, 2021; Saremi, Mirjalili, & Lewis, 2017), and Gray
Wolf Optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 2014). Also, many
learning techniques have been used to improve the performance of the
metaheuristic algorithms (El-Gendy, Saafan, Elksas, Saraya, & Areed,
2020; Feng, Wang, Dong, & Wang, 2018; Li, Li, Tian, & Xia, 2019; Li,
Li, Tian, & Zou, 2019; Li & Wang, 2021; Li, Wang, & Alavi, 2020; Li,
Wang, Dong, et al., 2021; Li, Wang, & Gandomi, 2021; Li, Wang, &
Wang, 2021; Li, Xiao, et al., 2020; Nan et al., 2017; Saafan & El-Gendy,
2021; Wang, Deb, et al., 2016).

An interesting algorithm is the Harris Hawks Optimization (HHO)
introduced by Heidari et al. (2019). HHO is a population-based, nature-
inspired optimization algorithm that mimics the chasing behavior of
Harris’ hawks. This behavior is called the surprise pounce, in which
several hawks cooperatively attack a prey, usually a rabbit, from dif-
ferent directions in a bid to shock it. HHO algorithm works similarly.
There is an interest in the use of HHO in several applications (Bao, Jia,
& Lang, 2019; Chen, Jiao, Wang, Heidari, & Zhao, 2020; Golilarz, Gao,
& Demirel, 2019; Jia, Lang, Oliva, Song, & Peng, 2019).

In the current study, a hybrid Harris hawks optimization deep
learning approach for the COVID-19 detection (CovH2SD) is proposed
to diagnose positive COVID-19 patients using the chest CT images.
The proposed approach consists of two major stages (1) Fast Clas-
sification Stage (FCS) and (2) Compact Stacking Stage (CSS). FCS
makes use of nine fine-tuned pre-trained CNNs, namely ResNet50 and
ResNet101 (He, Zhang, Ren, & Sun, 2016), VGG16, VGG19 (Simonyan
& Zisserman, 2014), Xception (Chollet, 2017), MobileNet (Howard
et al., 2017), MobileNet-v2 (Sandler, Howard, Zhu, Zhmoginov, &
Chen, 2018), DenseNet121, and DenseNet169 (Balaha, Ali, Youssef,
et al., 2021; Huang, Liu, Van Der Maaten, & Weinberger, 2017).

The usage of the pre-trained methods via transfer learning (TL)
can reduce the computational cost and offer more accurate results
especially in the case of the COVID-19, in which there is not enough
data to build CNNs from scratch. Here, we used the HHO algorithm to
optimize these pre-trained models to increase the accuracy of detection.
In CSS, alternative stacking configurations of the different models are
made in order to choose the most suitable model. CovH2SD maps the
different stacking configurations into a proposed Quality Space (QS),
calculates the rank of each model, and the models with the most
significant ranks are used to classify COVID-19. CovH2SD is first trained
and tested to classify chest CT images into patient and normal classes.
The prime contributions of the current research can be summarized
into:
2

1. Proposing a hybrid Harris hawks optimization deep learning
approach for the COVID-19 detection (CovH2SD) using the chest
CT images.

2. Applying transfer learning using nine pre-trained convolutional
neural network models.

3. Injecting Harris haws optimization in the learning process to
select the optimal configurations for each model.

4. Presenting a stacking mechanism from the optimized models.
5. The proposed approach is benchmarked against other state-of-

the-art models.

The rest of the paper is organized as follows. Section 2 gives a
quick survey about the related models for the detection of COVID-19.
Section 3 illustrates the basic knowledge needed to understand the pro-
posed model. The techniques used to build the proposed CovH2SD and
its structure are explained in Section 4. The experimental results and
their discussion, and the comparative study of our proposed approach
are discussed in Section 5. Section 6 presents the conclusion and future
works.

2. Related work

In this section, we introduce a quick overview of the latest research
regarding the use of artificial intelligence in the detection of COVID-19
from chest images, either X-ray or CT.

Ozturk et al. (2020) proposed ‘‘DarkCovidNet’’, a deep learning
model to classify COVID-19 and pneumonia from X-ray scan images.
They classified images into ‘‘COVID-19’’ and ‘‘Normal’’ for binary clas-
sification, and into ‘‘COVID-19’’, ‘‘Pneumonia Bacterial’’, ‘‘Pneumonia
Viral’’, and ‘‘Normal’’ for multi-class classification. They achieved an
accuracy of 89.6%, 95%, and 98.08% for four, three, and binary class
classifications, respectively.

Apostolopoulos and Mpesiana (2020) used the TL-based CNN mod-
els on a database of X-ray images including COVID-19 disease, bacterial
pneumonia diseases, and normal images; obtaining an accuracy of
98.75% for VGG19 and 97.40% for MobileNetV2.

Hemdan, Shouman, and Karar (2020) proposed ‘‘COVIDX-Net’’, a
deep learning model including seven different architectures to detect
the COVID-19 from chest X-ray images. The best-achieved accuracy was
90% from both VGG19 and DenseNet201. Khan, Shah, and Bhat (2020)
proposed a novel CNN model called ‘‘CoroNet’’ built using Xception
architecture. They could achieve an average accuracy of 89.6%.

Toraman, Alakus, and Turkoglu (2020) proposed a Convolutional
‘‘CapsNet’’ model for the COVID-19 detection from X-ray images and
applied it to both binary classification and multi-class classification,
achieving an accuracy of 97.24% and 84.22%, respectively.

Gupta et al. (2021) proposed ‘‘InstaCovNet-19’’, an integrated
stacked deep convolution network. The architecture of the model is
based on the pre-trained models such as ResNet101, Xception, and
InceptionV3. They classified Chest X-ray images into ‘‘COVID-19’’,
‘‘Pneumonia’’, and ‘‘Normal’’ (multi-class classification), and ‘‘COVID-
19’’ and ‘‘Normal’’ (binary classification), achieving an accuracy of
99.08% and 99.53%, respectively.

Furthermore, Gour and Jain (2020) proposed a stacked model con-
sisting of the VGG19 model and developed a model called ‘‘CovNet30’’
consisting of a 30-layered CNN model. They applied the model on chest
X-ray images and achieved an accuracy of 92.74%. Mangal et al. (2020)
proposed ‘‘CovidAID’’, a deep neural network-based model for detecting
COVID-19 in chest X-ray, achieving an accuracy of 90.5%.

Aslan, Unlersen, Sabanci, and Durdu (2020) used a hybrid approach
by applying TL to AlexNet architecture and adding a Bidirectional
Long Short-Term Memories layer to detect COVID-19 in X-ray images.
They could achieve an accuracy of 98.70%. Zhang, Liu, et al. (2020)
proposed a CNN model based on ResNet18 architecture for multi-class
classification of COVID-19 using CT images. They achieved an accuracy
of 92.49%.

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Ardakani, Kanafi, Acharya, Khadem, and Mohammadi (2020) ap-
plied 10 CNN structures to detect COVID-19 in CT images. The best
performance was achieved by ResNet101 with an accuracy of 99.51%
and Xception with an accuracy of 99.20%.

Zhang, Zhang, and Zhu (2021) proposed an attention network for
the diagnosis of COVID-19 using a convolutional block attention mod-
ule. They also used Grad-CAM to give an explicable diagnosis. They
achieved an accuracy of 96.32% ± 1.06%, and 96.00% ± 1.03% using two
different datasets.

In the work proposed by Zhang, Zhang, Zhang, and Wang (2021),
they proposed a multiple-input deep convolutional attention network
using a convolutional block attention module. There are two inputs
to the model, one for 3D chest CT image, and the other for 2D X-ray
image. They could achieve an accuracy of 98.02% ± 1.35%.

The previous studies are just examples of the existing research in
the application of artificial intelligence to the diagnosis of COVID-19
patients. As seen from the studies, the most important factors affecting
the accuracy are the structure of the model and the dataset used in the
learning process. What distinguishes this study from all of the presented
works is that HHO is used to select the optimal hyperparameters for
the different CNN pre-trained models. We believe that we can achieve
better results by stacking the optimized pre-trained models. In the
next section, we discuss the basic knowledge, concepts, and algorithms
required to implement the suggested approach.

3. Background

In the current section, all the basic knowledge used in the suggested
approach about Convolutional Neural Networks, Transfer Learning,
and Stacking are explained. Moreover, we demonstrate the important
aspects of the Harris Hawks Optimization algorithm.

3.1. Convolutional Neural Networks (CNN)

The main inspiration behind the artificial neural network (ANN) is
the human nervous system and the structure of the cerebral cortex. A
simple ANN consists of at least one neuron. It mimics the natural neu-
ron, thus it has two main functions: summing the different inputs, and
the result passes through an activation function. The activation function
is used to output a predefined value based on a threshold (Wang, 2003).

The structure of ANN is usually in the form of layers. Each layer
contains a different number of neurons. This type of ANN is called a
feedforward neural network. These networks consist basically of an
input layer, an output layer, and one or more hidden layers. The
network can learn to classify, recognize, and identify different objects
by adjusting the weights of the hidden layers (Livingstone, 2008). The
algorithm used for learning in feedforward neural networks is called the
back-propagation algorithm. The adaptation of the weights is done in a
way that a certain loss (cost) function is to be minimized. In summary,
the ANN objectives can be described in two steps: (1) finding the ideal
values of the different weights, while (2) minimizing a certain loss
function (Abiodun et al., 2018).

It is worth mentioning that, other algorithms have been proposed to
overcome the disadvantages of traditional learning algorithms such as
the time taken by the network to learn, the dependency of the learning
process on the learning rate parameter, and the risk of falling in local
minimum (Cui et al., 2018; Wang, Guo, & Duan, 2013; Wang, Lu, et al.,
2016; Yi, Wang, & Wang, 2016).

However, when dealing with images and computer vision problems,
there is an incredible number of features to extract and learn. Feed-
forward neural networks are not powerful to deal with this massive
data. CNNs are designed to deal with images (Albawi, Mohammed, &
Al-Zawi, 2017). They depend on the convolutional operation that can
be processed in parallel. CNNs can learn only the important features
from images with much fewer connections and parameters (Krizhevsky,
Sutskever, & Hinton, 2012). To improve the performance of CNN, many
3

Fig. 1. Graphical Illustration of the Convolution Process.

factors should be considered; including the initialization of weights,
the optimization algorithm used, the learning rate, the type of chosen
activation function, the proper choice of the loss function, and the
number of epochs (Qin, Yu, Liu, & Chen, 2018). The information
(extracted features) passes through the different layers of the CNN
(e.g. convolution, pooling, and fully-connected (FC) layers) (Yamashita,
Nishio, Do, & Togashi, 2018).

Convolution Layer: Convolution means to convolve a matrix (i.e.
kernel) that slides through the entire input image and is multiplied to
that image to extract some features of this image. Thus, the convolution
layer performs feature extraction. Neurons at this layer are called
filters, and they take the inputs and convert them into output feature
maps. Mathematically, the filter shifts from left to right until reaching
the maximum width of the image. Then, the filter begins at the left-
most pixel of the next row. The process continues till the entire image
is completed (Balaha, Ali, & Badawy, 2021).

The convolution of a (5 × 5) image by a (3 × 3) kernel is illustrated
in Fig. 1.

The original image in Fig. 1(a) is padded by zeros as shown in
Fig. 1(b). Padding helps to work with the boundary pixels. A stride of
(2×2) is applied as shown in Fig. 1(d). The stride is the size of the sliding
window in both directions. The result of this process is a matrix called
the feature map. The size of a feature map is calculated based on the
convolutional size, stride, padding, and filter size as shown in Eq. (1).

𝐶𝑜𝑛𝑣𝑂𝑢𝑡𝑆𝑖𝑧𝑒 = (
𝑤𝑖𝑛 − 𝑓𝑐𝑤 + 2 × 𝑝𝑐𝑤

𝑠𝑐𝑤
,
ℎ𝑖𝑛 − 𝑓𝑐ℎ + 2 × 𝑝𝑐ℎ

𝑠𝑐ℎ
, 𝑓𝑐𝑛) (1)

where 𝑤𝑖𝑛 is the input width, ℎ𝑖𝑛 is the input height, 𝑓𝑐𝑤 is the
convolutional filter width, 𝑓𝑐ℎ is the convolutional filter height, 𝑝𝑐𝑤
is the convolutional padding width, 𝑝𝑐ℎ is the convolutional padding
height, 𝑠𝑐𝑤 is the convolutional stride width, 𝑠𝑐ℎ is the convolutional
stride height, and 𝑓𝑐𝑛 is the number of convolutional filters.

Activation Functions: The output of the convolution layer passes
through an activation function. The reason behind that is to calculate

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Table 1
The different activation functions.

Function Equation

Linear 𝑓 (𝑧) = 𝑧

Step 𝑓 (𝑧) =

{

0, if 𝑧 < 0.
1, otherwise.

Exponential 𝑓 (𝑧) = exp(𝑧)

ELU 𝑓 (𝑧) =

{

𝛼 × (exp(𝑧) − 1), if 𝑧 < 0.
𝑧, otherwise.

SELU 𝑓 (𝑧) =

{

𝑠𝑐𝑎𝑙𝑒 × 𝛼 × (exp(𝑧) − 1), if 𝑧 < 0.
𝑠𝑐𝑎𝑙𝑒 × 𝑧, otherwise.

Sigmoid 𝑓 (𝑧) = 1
1+exp (−𝑧)

Tanh 𝑓 (𝑧) = 2
1+exp (−2×𝑧)

− 1

ReLU 𝑓 (𝑧) =

{

0, if 𝑧 < 0.
𝑧, otherwise.

Leaky ReLU 𝑓 (𝑧) =

{

𝛼 × 𝑧, if 𝑧 < 0.
𝑧, otherwise.

Fig. 2. Graphical Illustration of the Activation Functions.

the output of the neural network. Depending on the type of the used
activation function, the output of the network changes. So, the choice
of a suitable activation function is required to get the correct response.
This choice depends mainly on the type of the problem, this means
that every problem can have the right activation function. There are
different types of activation functions. Two main categories exist, which
are: linear and nonlinear activation functions. The output of each type
is different, and hence we have different options for the outputs of the
neurons. Table 1 shows some different well-known activation functions
and they are summarized in Fig. 2.

Pooling Layer: Pooling layers are used to reduce the dimensions
of the feature maps. It is preferred to add a pooling layer after every
convolution layer to reduce the computational complexity and help
overcome the overfitting problem. There are different types including
max-, average- (i.e. mean-), and sum-pooling. In max-pooling, the max-
imum value is used. In average-pooling, the average value is calculated
while in sum-pooling, the summation is applied. Fig. 3 presents a
graphical illustration of the different pooling types.

The output size of a pooling layer is calculated based on the input
size, stride, and pooling size as shown in Eq. (2).

𝑃𝑜𝑜𝑙𝑂𝑢𝑡𝑆𝑖𝑧𝑒 =
(𝑤𝑖𝑛 − 𝑓𝑝𝑤 ,

ℎ𝑖𝑛 − 𝑓𝑝ℎ , 𝑓𝑖𝑛

)

(2)
4

𝑠𝑝𝑤 𝑠𝑝ℎ
Fig. 3. Graphical Illustration of the Pooling Layer Types.

where 𝑓𝑝𝑤 is the pooling width, 𝑓𝑝ℎ is the pooling height, 𝑠𝑝𝑤 is the
pooling stride width, 𝑠𝑝ℎ is the pooling stride height, and 𝑓𝑖𝑛 is the
number of input filters.

Fully-Connected (FC) Layer: The output of the pooling layer is
then flattened. Flattening is the process of converting a matrix into a
vector. This vector is fed to the fully connected layer. FC Layers are the
last layers in the CNN. They are simply feed-forward neural networks.

Dropout: It is simply to drop out some neurons in a neural network.
The CNN is supposed to be fully connected. However, sometimes it is
useful to randomly set the output of some hidden layer neurons to 0 at
the training phase. The introduction of dropout can cause the weights
of the network to be larger than normal. As a solution to this problem,
it is recommended to scale the weights by a chosen suitable dropout
rate. The use of dropout is useful because it helps avoid overfitting in
networks.

Parameters Optimizers: The selection of the proper parameters’
optimizer plays an important role in evaluating the performance of
the CNN. It is necessary to choose a suitable optimizer to converge
faster and avoid the local minima. There are different types of op-
timizers for the CNN such as Adaptive Momentum (Adam) (Kingma
& Ba, 2014), Adaptive Gradient (AdaGrad) (Luo, Xiong, Liu, & Sun,
2019), Nesterov Adaptive Momentum (NAdam) (Dozat, 2016), Adap-
tive Delta (AdaDelta) (Dogo, Afolabi, Nwulu, Twala, & Aigbavboa,
2018), Root Mean Square Propagation (RMSProp) (Wu, Shen, & Hengel,
2016), Stochastic Gradient Descent (SGD) (Bottou, 2012), and Adaptive
Max-Pooling (AdaMax) (Vani & Rao, 2019).

Adaptive Momentum (Adam): Adam is an efficient and simple
optimization technique that can be used in stochastic optimization. It
uses the first-order gradients and updates the parameters (i.e. weights)
using Eq. (3).

𝑈𝑝𝑑𝑎𝑡𝑒𝐴𝑑𝑎𝑚 = −
𝜎 × 𝑚𝑡
√

𝜃𝑡 + 𝜖
(3)

where 𝜎 represents the learning rate, 𝑚𝑡 is the exponentially decaying
average of the past gradient (i.e. first mean of gradients), 𝜃𝑡 is the
exponentially decaying average of the square of the past gradient
(i.e. second uncentered variance of gradients), and 𝜖 is a small value
to avoid the division by zero.

Adaptive Gradient (AdaGrad): AdaGrad is an adaptive optimiza-
tion technique. It adjusts the learning rate to update the parameters.

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.

w
i

g
p
u

𝑈

d
r
s
E

𝑈

w

t
c
t

w

3

a
&
C
I
a
l
t
e
m
n
d
u
b
t

s
M
t
a
b
s
f
t
i
a
t

n
l
t
v
5

t
t
l
b
p
2

t
t
e
l
Y
i
D
c
p
c

l
c
e

Thus, it performs massive updates when parameters are inconsistent
and vice versa. AdaGrad updates the weights using Eq. (4).

𝑈𝑝𝑑𝑎𝑡𝑒𝐴𝑑𝑎𝐺𝑟𝑎𝑑 = − 𝜎
√

𝛹𝑡 + 𝜖
⊙ 𝜓𝑡 (4)

here 𝜓𝑡 is the gradient of the loss function and 𝛹𝑡 is a diagonal matrix
n which each diagonal element is the sum of squared gradients.
Stochastic Gradient Descent (SGD): SGD is an optimization al-

orithm that represents a variation of the gradient descent to solve
roblems with huge datasets (Ruder, 2016). SGD updates the weights
sing Eq. (5).

𝑝𝑑𝑎𝑡𝑒𝑆𝐺𝐷 = −𝜎 × 𝜓𝑡 (5)

Root Mean Square Propagation (RMSprop): RMSprop is an up-
ated version of AdaGrad to overcome the problem of monotonicity in
educing the learning rate. RMSprop applies a moving average of the
quared gradient (Ruder, 2016). RMSprop updates the weights using
q. (6).

𝑝𝑑𝑎𝑡𝑒𝑅𝑀𝑆𝑃𝑟𝑜𝑝 = −
𝜎 × 𝜓𝑡

√

𝑅[𝜓2]𝑡 + 𝜖
(6)

where 𝑅[𝜓2]𝑡 represents an exponentially decaying average of squared
gradients.

Adaptive Delta (AdaDelta): AdaDelta is an updated version of
the AdaGrad to overcome the problem of monotonicity in reducing
the learning rate. It applies a fixed size window in collecting past
gradients (Zeiler, 2012). AdaDelta updates the weights using Eq. (7).

𝑈𝑝𝑑𝑎𝑡𝑒𝐴𝑑𝑎𝐷𝑒𝑙𝑡𝑎 = −
𝑅𝑀𝑆[△𝛾]𝑡−1
𝑅𝑀𝑆[𝜓]𝑡

× 𝜓𝑡 (7)

where 𝑅𝑀𝑆 represents the root mean square error of the gradient.
Adaptive Max-Pooling (AdaMax): AdaMax represents an updated

version of Adam. The square root in the denominator is replaced by
an exponentially weighted infinity norm (Ruder, 2016). It updates the
weights using Eq. (8).

𝑈𝑝𝑑𝑎𝑡𝑒𝐴𝑑𝑎𝑀𝑎𝑥 = −
𝜎 × 𝑚𝑡

max(𝜆1 × 𝜃𝑡−1, 𝜓𝑡)
(8)

here 𝜆1 represents a hyperparameter.
Nesterov Adaptive Momentum (NAdam): NAdam is a variant of

he weight update rule. In this optimization algorithm, the gradient is
omputed after applying the velocity (Ruder, 2016). NAdam updates
he weights using Eq. (9).

𝑈𝑝𝑑𝑎𝑡𝑒𝑁𝐴𝑑𝑎𝑚 = − 𝜎
√

𝜃𝑡 + 𝜖
×

(

𝜆2 × 𝑚𝑡 −
1 − 𝜆2
1 − 𝜆𝑡2

× 𝜓𝑡

)

(9)

here 𝜆2 represents a hyperparameter.

.2. Transfer Learning (TL)

In real-world problems, training data is not always sufficiently
vailable to be used to make a CNN from scratch (Weiss, Khoshgoftaar,
Wang, 2016). The main idea behind the TL is to reuse the pre-trained

NN models that have been already trained on large datasets such as
mageNet in other applications, especially when the available datasets
re limited (Deepak & Ameer, 2019). ImageNet is a huge dataset of
abeled and categorized images (about 22,000 categories) used for
raining CNN models to correctly classify different images (Krizhevsky
t al., 2012). In other words, when it becomes difficult to build CNN
odels from scratch, we can transfer all the knowledge learned by the
etwork to a new application. So, TL is needed in scenarios where the
ata for training is not enough for constructing CNN from scratch. The
navailability of data may happen because of many reasons including,
ut not limited, to paucity of data, costly in the collection, or a new
opic with a limited amount of data (Pan & Yang, 2009).
5

2

Several pre-trained models exist that can be applied using the TL
uch as ResNet50, ResNet101, VGG16, VGG19, Xception, MobileNet,
obileNetV2, DenseNet121, and DenseNet169. The usage of these pre-

rained models can result in an accuracy that is much better than the
ccuracy of a CNN built from scratch. The implementation of the TL can
e done in one of two approaches, namely (1) Feature Extraction (Oren-
tein & Beijbom, 2017) and (2) Fine-Tuning (Guo et al., 2019). In the
irst approach, the feature extractor that is part of the network is pre-
rained on the standard dataset (usually ImageNet) while the classifier
s replaced and trained on the new data. On the other hand, the second
pproach updates the weights of the entire pre-trained model, including
he feature extractor part (Zhuang et al., 2020).
ResNet50: ResNet stands for Residual Network; it means a deep

etwork that is built upon the idea of residual learning. Residual
earning is an interesting paradigm that is used to express a network
hat extracts residuals instead of features. This can help in solving the
anishing gradient problem. ResNet50 is a version of ResNet that has
0 layers and 16 residual blocks (He et al., 2016).
ResNet101: ResNet101 is another version of ResNet that applies the

paradigm of residual learning. So, the vanishing gradient problem is
solved in this type of network. This network contains 101 layers with
33 residual blocks (He et al., 2016).

VGG16: VGG16 has 16 layers consisting of five convolutional blocks
with 13 convolutional layers, and 3 FC layers. This network is an
enhanced version of AlexNet with an improved kernel structure. It
was initially trained on the ImageNet dataset (Simonyan & Zisserman,
2014).

VGG19: VGG19 has an architecture with more deep layers than
VGG16. It has 19 layers consisting of 5 convolutional blocks with 16
convolutional layers, and 3 FC layers. It was initially trained on the
ImageNet dataset (Simonyan & Zisserman, 2014).

Xception: Xception stands for ‘‘extreme inception’’. It is a deep CNN
that is built on the idea of depth-wise separable convolution layers. It
has 36 layers consisting of 2 convolution layers, depth-wise separable
convolution layers, and 4 convolution layers. All the previous layers are
followed by an FC layer at the end (Chollet, 2017).

MobileNet: MobileNet is also based on the idea of depth-wise
separable convolution layers. This is an efficient way to reduce the
complexity and size of the model. It has 28 layers consisting of con-
volution layers, followed by depth-wise separable convolution layers.
All the previous layers are followed by an FC layer at the end (Howard
et al., 2017).

MobileNetV2: MobileNetV2 is a modified version of the MobileNet
o include inverted residual blocks and linear bottlenecks. Therefore,
his network is faster than the traditional MobileNet. It has 52 deep
ayers consisting of 3 convolution layers, 16 inverted residual and linear
ottleneck blocks, and ends with a single convolution layer. All the
revious layers are followed by an FC layer at the end (Sandler et al.,
018).
DenseNet121: DenseNet stands for ‘‘Densely Connected Convolu-

ional Networks’’. It requires much fewer parameters than other CNN
ypes. However, its architecture takes a long time for training because
very layer is connected to all its following layers and as a result, every
ayer has to wait for the previous layers to take its input (Celik, Talo,
ildirim, Karabatak, & Acharya, 2020). This problem was solved by

ntroducing both the input image and the gradient values to all layers.
enseNet121 is a dense network with 121 layers. This type of networks
ontains 4 dense blocks. Transition layers consisting of convolution and
ooling layers are also included between every two adjacent blocks to
hange the feature-map sizes (Huang et al., 2017).
DenseNet169: DenseNet169 is another dense network with 169

ayers. This type of networks contains 4 dense blocks. Transition layers
onsisting of convolution and pooling layers are also included between
very two adjacent blocks to change the feature-map sizes (Huang et al.,

017).

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Fig. 4. Data Augmentation Graphical Illustration using a CT Image.
3.3. Stacking

Stacking was proposed by Wolpert (1992), who suggested building
a model consisting of sub-models of different neural networks as clas-
sifiers and use the outputs of these models in another neural network.
In this way, only one model is used for both feature extraction and
classification (Ju, Bibaut, & van der Laan, 2018). The idea behind
stacking is that several models are trained on the same dataset to solve
the same problem and then these models are integrated into a single big
model. This can extremely enhance the performance and robustness of
the resulting system.

3.4. Data augmentation (DA)

Another solution to the unavailability and diversity of data is to
apply data augmentation (DA) techniques. DA helps to increase the size
of the training set by producing more images from the original set by
applying some image processing techniques (Salamon & Bello, 2017).
On the other hand, DA can help to avoid the overfitting problem by
providing more training examples so that the network can learn and
extract important features only (Shorten & Khoshgoftaar, 2019). DA can
be achieved by manipulating the original image to get a new image that
is quite different from its source by using several methods (Başaran,
Cömert, & Çelik, 2020) such as cropping, zooming, shearing, rotating,
flipping, and changing the brightness.

To crop an image means to take only a selected part of the image
and neglect the remaining parts. Zooming in (or out) means to either
make the image closer (or farther away). Shearing an image is to
transfer one part of an image in a direction and the other part in the
opposite direction. Rotating an image means changing the angle of the
image around its center either in a clockwise or a counterclockwise
direction. Flipping has a mirror-like effect, which means that the image
is changed either vertically, horizontally, or both as if in a mirror.
Brightness affects the light amount in an image so that the image
can be darker or lighter. Fig. 4 shows the result of applying different
augmentation methods on a sample CT chest image.
6

Fig. 5. Graphical Summary on the Harris Hawks Optimization (HHO) Phases (Heidari
et al., 2019).

3.5. Harris Hawks Optimization (HHO)

Harris Hawks Optimization (HHO) was introduced by Heidari et al.
(2019) as a population-based swarm algorithm for solving different op-
timization problems. This algorithm mathematically mimics the feeding
behavior of the Harris hawks in that they collaborate to explore, hunt,
surprise, and chase preys (e.g. rabbits). Similar to most of the optimiza-
tion algorithms, HHO has both the exploration and exploitation phases.
The phases are summarized in Fig. 5.

Exploration Phase: During the exploration phase, the hawks pa-
tiently search and explore for the desired prey after perching on some

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.

w
n
l
t
o

b
d
d
w
b
T
T
o
p
p

e

1

o
p
e
w

𝑟
t

𝛶

w
i

n

𝛶

T
p
I
m
t
u
l
E

𝑄

𝑉

w
1

𝐿

random locations. There are two different followed strategies by the
hawks where each of them has a probability 𝑝 of the half for selection.

For the first strategy 𝑝 < 0.5, the hawks can observe the prey based
on the positions of other members in the hunting swarm. On the other
hand, the second strategy 𝑝 ≥ 0.5 means that hawks can perch randomly
on the trees to explore the entire search area. These two states can be
expressed by Eq. (10).

𝛶 (𝑖𝑡 + 1) =

{

𝛶𝑟(𝑖𝑡) − 𝑟1 × |𝛶𝑟(𝑖𝑡) − 2 × 𝑟2 × 𝛶 (𝑖𝑡)|, if 𝑝 ≥ 0.5.
(

𝛶𝑝(𝑖𝑡) − 𝛶𝑚(𝑖𝑡)
)

− 𝑟3 ×
(

𝐵𝑈 + 𝑟4 ×
(

𝐵𝑈 − 𝐵𝐿
))

, if 𝑝 < 0.5.

(10)

where 𝛶 (𝑖𝑡+1) represents the position vector update of the hawks in the
next iteration 𝑖𝑡+1, 𝛶 (𝑖𝑡) represents the position vector of the hawks in
the current iteration 𝑖𝑡, 𝛶𝑟(𝑖𝑡) represents the position of a random hawk,
𝛶𝑝(𝑖𝑡) represents the position of the prey, 𝑟1, 𝑟2, 𝑟3, 𝑟4, and 𝑝 represent
random numbers in the range [0, 1], 𝑈𝐵 and 𝐿𝐵 represent the lower and
upper bounds of the variables, and 𝛶𝑚(𝑖𝑡) is the average of the positions
of the hawks calculated using Eq. (11).

𝛶𝑚(𝑖𝑡) =
1
𝑁𝑝

×
𝑁𝑝
∑

𝑗=1
(𝛶𝑗 (𝑖𝑡)) (11)

where 𝛶𝑗 (𝑖𝑡) is the current position of hawk 𝑗, and 𝑁𝑝 is the population
size (i.e. total number of hawks in the swarm).

Transition from Exploration to Exploitation Phase: HHO has an
additional phase, namely ‘‘transition from exploration to exploitation’’,
in which the hawks calculate the energy of the prey. This phase is the
intermediate state between exploration and exploitation in which the
prey tries to escape from the hawks’ attacks. As the prey is running
away, its escaping energy 𝐸𝑒 is reduced based on Eq. (12).

𝐸𝑒 = 2 × 𝐸𝑒0 × (1 − 𝑖𝑡
𝑖𝑡𝑒𝑟𝑠

) (12)

here 𝐸𝑒0 is the initial escaping energy of the prey, and 𝑖𝑡𝑒𝑟𝑠 is the total
umber of iterations of the algorithm. The value of the escaping energy
ies in the interval [−1, 1]. The values of 𝐸𝑒 outside this interval indicate
hat the exploration phase has not terminated yet. The exploration
ccurs when |𝐸𝑒| ≥ 1 while the exploitation occurs when |𝐸𝑒| < 1.
Exploitation Phase: In the exploitation phase, the hawks move

ased on the calculated energy to surround the rabbit from different
irections. The positions of the hawks in nature are mapped to the
esired possible solutions and the best position belongs to the hawk
ith the closest position to the prey. This phase contains two basic
ehaviors, namely attacking hawks and running away from the prey.
he hawks attack their victims in a behavior called ‘‘surprise pounce’’.
he attacking of the hawks has four different techniques, depending
n specific conditions, which are (1) soft besiege, (2) soft besiege with
rogressive rapid dives, (3) hard besiege, and (4) hard besiege with
rogressive rapid dives.

The choice between the different techniques depends on two param-
ters, namely the probability of escape of the prey 𝑟 and the escaping

energy of the prey 𝐸𝑒. 𝑟 is a probability that lies in the range from 0 to
1. However, we have already mentioned that 𝐸𝑒 lies between −1 and
. The possibilities of 𝑟 and 𝐸𝑒 divided as shown in Fig. 6.

If 𝑟 < 0.5, this means that the prey has more chance of escape;
therwise, the prey will not be able to escape. |𝐸𝑒| < 0.5 means the
rey has insufficient energy to escape; otherwise, the prey has enough
nergy. 𝐸𝑒 is used to specify whether the surrounding is hard or soft,
hile 𝑟 is used to choose between rapid and normal steps.
First Technique: Soft Besiege: This technique is applied when

≥ 0.5 and |𝐸𝑒| ≥ 0.5. In this case, the prey is not able to escape and
he hawks apply soft surroundings as shown in Eq. (13).

(𝑖𝑡 + 1) = 𝛥𝛶 (𝑖𝑡) − 𝐸𝑒 ×
(

𝐽 × 𝛶𝑝(𝑖𝑡) − 𝛶 (𝑖𝑡)
)

(13)

here 𝛥𝛶 (𝑖𝑡) is the distance between the prey and the current hawk in
teration 𝑖𝑡 (i.e. 𝛶 (𝑖𝑡) − 𝛶 (𝑖𝑡), and 𝐽 is the amount of escape made by
7

𝑝

the prey and is calculated using Eq. (14) where 𝑟5 is a random value
between 0 to 1.

𝐽 = 2 × (1 − 𝑟5) (14)

Second Technique: Hard Besiege: This technique is applied when
𝑟 ≥ 0.5 and |𝐸𝑒| < 0.5. In this case, the prey is drained that the hawks
eed no power to catch them as shown in Eq. (15).

(𝑖𝑡 + 1) = 𝛶𝑝(𝑖𝑡) − 𝐸𝑒 × |𝛥𝛶 (𝑖𝑡)| (15)

Third Technique: Soft Besiege with Progressive Rapid Dives:
his technique is applied when 𝑟 < 0.5 and |𝐸𝑒| ≥ 0.5. In this case, the
rey still has some energy to run away and the hawks use soft besiege.
n this situation, the hawks react in a way such that they choose the
ost suitable steps towards the prey. They calculate the consequence of

heir possible next step towards the prey. If this step is useful, then they
se Eq. (16) to update their current position. Otherwise, they apply the
evy flight (LF) technique to approach the prey in rapid dives based on
q. (17).

= 𝛶𝑝(𝑖𝑡) − 𝐸𝑒 ×
(

𝐽 × 𝛶𝑝(𝑖𝑡) − 𝛶 (𝑖𝑡)
)

(16)

= 𝑄 + 𝑆 × 𝐿𝐹 (𝐷) (17)

here 𝐷 is the search space dimensions, 𝑆 is a random vector of size
×𝐷, and 𝐿𝐹 is levy flight function expressed by Eq. (18).

𝐹 = 0.01 × 𝜈 × 𝛿

|𝜄|
1
𝛽

(18)

where 𝜈 and 𝜄 are random values from 0 to 1, and 𝛽 is a constant value
of 1.5. 𝛿 is calculated using Eq. (19).

𝛿 =
⎛

⎜

⎜

⎝

𝛤 (1 + 𝛽) × sin(0.5 × 𝜋 × 𝛽)

𝛤 (0.5 × (1 + 𝛽)) × 𝛽 × 2
(

𝛽−1
2

)

⎞

⎟

⎟

⎠

(

1
𝛽

)

(19)

The final equation for the position update in case of soft besiege
with progressive rapid dives is Eq. (20).

𝛶 (𝑖𝑡 + 1) =

{

𝑄, if 𝐹 (𝑄) < 𝐹 (𝛶 (𝑖𝑡)).
𝑉 , if 𝐹 (𝑉) < 𝐹 (𝛶 (𝑖𝑡)).

(20)

where 𝐹 is a fitness function.
Fourth Technique: Hard Besiege with Progressive Rapid Dives:

This technique is applied when 𝑟 < 0.5 and |𝐸𝑒| < 0.5. In this case, the
prey has no energy to run away and the hawks use hard-besiege. The
hawks use the same technique used in soft besiege with progressive
rapid dives situation. However, they minimize the gap between their
average location and the location of the prey. The used equation for
updating the position is shown in Eq. (21).

𝛶 (𝑖𝑡 + 1) =

{

𝑄′, if 𝐹 (𝑄′) < 𝐹 (𝛶 (𝑖𝑡)).
𝑉 ′, if 𝐹 (𝑉 ′) < 𝐹 (𝛶 (𝑖𝑡)).

(21)

where 𝑄′ and 𝑉 ′ are calculated from Eqs. (22) and (23) respectively.

𝑄′ = 𝛶𝑝(𝑖𝑡) − 𝐸𝑒 ×
(

𝐽 × 𝛶𝑝(𝑖𝑡) − 𝛶𝑚(𝑖𝑡)
)

(22)

𝑉 ′ = 𝑄′ + 𝑆 × 𝐿𝐹 (𝐷) (23)

The overall flow of the HHO is summarized in Fig. 7.

4. CovH2SD: A hybrid harris hawks optimization deep learning
approach

The main motivation towards the evolution of our proposed
CovH2SD approach is to diagnose the patients that have COVID-19 or
not. Time is a critical issue during the investigation of the COVID-19, as
one patient can cause infection to his surroundings. So, early detection
and isolation of patients can help to stop the spread of the virus.

CovH2SD is a hybrid approach based on the idea of stacking dif-
ferent CNN models as shown in Fig. 8. The transfer learning approach

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Fig. 6. The Different HHO Possibilities in the Exploitation Phase.
Fig. 7. The HHO Overall Flow Summarization.

is used as there are only limited accuracy datasets in this topic com-
pared to others. The suggested approach uses nine different models.
They are ResNet50 and ResNet101 (He et al., 2016), VGG16 and
VGG19 (Simonyan & Zisserman, 2014), Xception (Chollet, 2017), Mo-
bileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018),
8

DenseNet121, and DenseNet169 (Huang et al., 2017). We trained and
fine-tuned these models with the COVID-19 CT dataset. The HHO al-
gorithm is injected into the learning process. After the learning process
is completed, we used a stacking mechanism to conduct a new model
that is more accurate and robust than the individual ones. Algorithm
1 shows the optimization and learning internal steps of the CovH2SD
approach.

Algorithm 1 outlines the major phases of the suggested approach. It
accepts the dataset 𝑋 and the corresponding categories (i.e. labels) 𝑌 ,
the dataset split ratio 𝑆𝑝𝑙𝑖𝑡, the population size 𝑁𝑝, and the number
of iterations 𝑖𝑡𝑒𝑟𝑠. It uses the Harris Hawks Optimization (HHO) to
optimize the hyperparameters during the 𝑖𝑡𝑒𝑟𝑠 iterations. The hyper-
parameters that are required to be optimized are (1) the parameters
optimizers 𝑂𝑠, (2) the deep learning pre-trained models learning ratio
𝐿𝑠, (3) the dropout ratio 𝐷𝑠, and (4) the learning batch size 𝐵𝑠. Simply,
the HHO is used to answer the following question ‘‘For each model,
what is the best hyperparameters combination that leads to the best
performance after completing the iterations?’’.

Adam, NAdam, AdaDelta, AdaGrad, AdaMax, SGD, RMSProp, and
Ftrl are the used parameters (i.e. weights) optimizers, [32, 64] are the
used batch sizes, [0 ∶ 60]% is the range of the dropouts, and [0 ∶
5 ∶ 100]% is the range of the learning ratios. VGG, VGG19, Xcep-
tion, ResNet50, ResNet101, MobileNet, MobileNetV2, DenseNet121,
and DenseNet169 are the pre-trained CNN models that are used in the
current study.

The dataset is split into training, testing, and validation using the
𝑆𝑝𝑙𝑖𝑡 ratio. The training portion is used in the learning process, the
validation is used to judge the model performance during the learning
process, and the testing portion is used to evaluate the model perfor-
mance after finishing its learning process. A loop is applied on each
model from the used pre-trained CNN models. For each model, the
following steps are followed:

(1) Initiate the Population: The initial population is created. The
number of solutions is defined by 𝑁𝑝 and the size of a single solution is
4 as we have four hyperparameters that are required to be optimized.
Hence, the population is a matrix with a size of (𝑁𝑝, 4). Each value is
random from 0 to 1. These values will be mapped in the next step into
the corresponding hyperparameters.

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Fig. 8. CovH2SD: A Hybrid Harris Hawks Optimization Deep Learning Approach.
Algorithm 1: The Suggested Hybrid Harris Hawks Optimization Deep Learning Approach (CovH2SD) Pseudocode.
1: function CovH2SD(𝑋, 𝑌 , 𝑆𝑝𝑙𝑖𝑡, 𝑁𝑝, 𝑖𝑡𝑒𝑟𝑠) ∖∖ The function accepts the dataset and labels, the dataset split ratio, the population size, and the

number of iterations.
2: 𝑂𝑠← [Adam, NAdam, AdaDelta, AdaGrad, AdaMax, SGD, RMSProp, Ftrl] ∖∖ The deep learning parameters optimizers.
3: 𝐵𝑠← [32, 64] ∖∖ The deep learning batch sizes.
4: 𝐷𝑠← [0 ∶ 60]% ∖∖ The deep learning dropout ratios.
5: 𝐿𝑠← [0 ∶ 5 ∶ 100]% ∖∖ The deep learning pre-trained models learning ratios.
6: 𝑀𝑠← [Loss, Accuracy, Precision, Recall, F1-Score, AUC] ∖∖ The deep learning judgment performance metrics.
7: 𝑀𝑜𝑑𝑒𝑙𝑠← [VGG, VGG19, Xception, ResNet50, ResNet101, MobileNet, MobileNetV2, DenseNet121, DenseNet169] ∖∖ The deep learning

pre-trained models.
8: 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑌𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡 ← SplitDataset(𝑋, 𝑌 , 𝑆𝑝𝑙𝑖𝑡) ∖∖ Split the dataset using the split ratio into training, validation,

and testing.
9: 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠← [] ∖∖ Initiate the best solutions list to carry the models best solutions.

10: while (𝑚𝑜𝑑𝑒𝑙 ∈𝑀𝑜𝑑𝑒𝑙𝑠) do
11: 𝑖𝑡 ← 1 ∖∖ Initiate an iterator.
12: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← InitiatePopulation(𝑁𝑝) ∖∖ Create the initial population using the population size.
13: while (𝑖𝑡 ≤ 𝑖𝑡𝑒𝑟𝑠) do
14: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑠← CalculateFitnessScores(𝑚𝑜𝑑𝑒𝑙, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑂𝑠, 𝐵𝑠, 𝐷𝑠, 𝐿𝑠, 𝑀𝑠, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑌𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡) ∖∖

Get the population with the corresponding fitness scores.
15: 𝑛𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛← UpdatePopulation(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑠, 𝑖𝑡, 𝑖𝑡𝑒𝑟𝑠) ∖∖ Update the population.
16: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛← 𝑛𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∖∖ Set the 𝑛𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.
17: 𝑖𝑡← 𝑖𝑡 + 1 ∖∖ Update the iterator.
18: 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← ExtractTop(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) ∖∖ Extract the top (i.e. best) solution from the population after sorting them in a descending

order.
19: 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← Append(𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) ∖∖ Append the best solution in the best solutions list.
20: 𝑠𝑡𝑎𝑐𝑘𝑒𝑑𝑀𝑜𝑑𝑒𝑙 ← StackBestSolutions(𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) ∖∖ Stack the best solutions into a single stacked model.
21: return 𝑠𝑡𝑎𝑐𝑘𝑒𝑑𝑀𝑜𝑑𝑒𝑙 ∖∖ Return the stacked model.
(2) Calculate Fitness Scores: For each of the solutions, the fitness
scores are calculated. The implementation of this step is shown in
9

Algorithm 2. The population, current model, hyperparameters, and data
are sent as inputs to that function.

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.

r
C
A
u
P
t
n

𝐴

w
a
d
t
t
d
c
m

p
m
n
p
i
s

𝑃

f
T
i
c
H
w
r
o

Algorithm 2: Calculating the Fitness Scores Pseudocode.
1: function CalculateFitnessScores(𝑚𝑜𝑑𝑒𝑙, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑂𝑠, 𝐵𝑠, 𝐷𝑠, 𝐿𝑠, 𝑀𝑠, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑌𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡)
2: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑠← [] ∖∖ Initiate the population scores as an empty list.
3: while (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) do
4: 𝑚𝑜𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛← MapSolutionToHyperparameters(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑂𝑠, 𝐵𝑠, 𝐷𝑠, 𝐿𝑠) ∖∖ Map the solution into hyperparameters.
5: 𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑀𝑜𝑑𝑒𝑙 ← TrainModel(𝑚𝑜𝑑𝑒𝑙, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑌𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑀𝑠) ∖∖ Train and validate the model.
6: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒← TestModel(𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑀𝑜𝑑𝑒𝑙, 𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡, 𝑀𝑠) ∖∖ Test the model and compute the performance.
7: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑠 ← Append(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑠, (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒)) ∖∖ Append the solution with the corresponding fitness score in

the list.
8: return 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑠 ∖∖ Return the population scores.
e
n
p

a
E
f
a
l
t
c
m
t
s
o
r
a
t
m

5

i
t
s
s

5

‘
H
l
1
S
c
f
a
C
h
4

n
p
c
D
u

5

For each of the solutions, the solution is first mapped to hyperpa-
ameters. They are injected into the learning process. The pre-trained
NN model is trained for a set of epochs on these hyperparameters.
fter learning, the performance is calculated and appended in the pop-
lation scores list. The used performance metrics are Loss, Accuracy,
recision, Recall, F1-Score, and Area Under Curve (AUC). Accuracy is
he ratio between the total number of right predictions and the total
umber of predictions made by the model as shown in Eq. (24).

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(24)

here TP, TN, FP, FN are true positive, true negative, false positive,
nd false negative respectively. TP is the case when the forecasts of the
ata are positive, and the results of the model are also positive. TN is
he case when the forecasts of the data are negative, and the results of
he model are also negative. FP is the case when the forecasts of the
ata are negative, and the results of the model are positive. FN is the
ase when the forecasts of the data are positive, and the results of the
odel are negative.

Precision is the ratio between the total number of true positive
redictions and the total number of positive predictions made by the
odel as shown in Eq. (25). The recall is the ratio between the total
umber of true positive predictions and the total number of true
ositive and false negative predictions made by the model as shown
n Eq. (26). F1-score is the harmonic mean of precision and recall as
hown in Eq. (27) (Balaha, Ali, Saraya, & Badawy, 2021).

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(25)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(26)

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(27)

As we are dealing with six metrics, it is required to map them into
a single fitness score. The Weighted Sum Method (WSM) is used. It
is a method that takes a percentage from each value and sums them
together into a single value. The percentages of them are equalized for
all unless the loss as shown in Eq. (28). It is worth mentioning that,
the reciprocal of the loss is used as it is required to minimize it while
maximizing the rest.

𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 = (0.05 × 1
𝐿𝑜𝑠𝑠

+ 0.195 × 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

+ 0.195 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 0.195 × 𝑅𝑒𝑐𝑎𝑙𝑙

+ 0.195 × 𝐴𝑈𝐶 + 0.195 × 𝐹1) × 100%

(28)

(3) Update the Population: After calculating the fitness scores
or the population, they should be updated for the next iteration.
he HHO is used in this step. The working mechanism of the HHO

s discussed in the previous section. It is worth mentioning that the
urrent study works with a maximization problem while the original
HO paper worked with a minimization problem. The only change
ill be in Eq. (20) and Eq. (21). For maximization problems, the < is

eplaced with >. Steps (2) and (3) will be repeated until the completion
10

f the HHO optimization iterations.
(4) Stack Best Solutions: After extracting the best combination for
ach model of the nine tuned models, they beside their best combi-
ations are stacked into a single model. They will be used in future
redictions and production phases.

In the production phase, every input image is duplicated nine times
nd presented as an input to each of the chosen nine CNN architectures.
very network extracts the features from the input image and these
eatures are used in the recognition process. The input image prop-
gates through the different layers (i.e. convolution, pooling, and FC
ayers) of the different networks. The output of each model represents
he probability of each class of our binary classification model and
ontributes as an input to the stacked model. CovH2SD uses a novel
echanism for ranking different stacking configurations by mapping

hem into a proposed Quality Space (QS). QS is a Q-dimensional
pace, where 𝑄 represents the number of all possible configurations
f stacking. The rank of each configuration is calculated. This rank is
epresented by a point in the quality space. The algorithm switches
utomatically between the different stacked models. The models with
he most significant ranks are used to create the final classification
odel that will identify new individuals as patients or normal.

. Experiments, results, and discussion

The current section begins by presenting the used dataset, the exper-
mental configurations used in the learning and optimization, discusses
he applied experiments, and reports the corresponding results. The
ection ends by constructing a comparative study between the current
tudy and other state-of-the-art studies.

.1. Dataset

The dataset is collected from three sources. The first source is
‘COVID-CT-Dataset: A CT Scan Dataset about COVID-19’’ (Zhao, Zhang,
e, & Xie, 2020) and can be accessed from https://www.kaggle.com/

uisblanche/covidct. It consisted of 349 and 397 images for the COVID-
9 and non-COVID-19 cases respectively. The second source is ‘‘CT
cans for COVID-19 Classification’’ (Ning et al., 2020) and can be ac-
essed from https://www.kaggle.com/azaemon/preprocessed-ct-scans-
or-covid19. It consisted of 4,001 and 9,979 images for the COVID-19
nd non-COVID-19 cases respectively. The third source is ‘‘COVID-
Tset’’ (Rahimzadeh, Attar, & Sakhaei, 2020) and can be accessed from
ttps://github.com/mr7495/COVID-CTset. It consisted of 15,589 and
8,260 images for the COVID-19 and non-COVID-19 cases respectively.

The images are combines and filtered manually. The resultant total
umber of images is 15,535 CT images with 5,159 images of confirmed
ositive COVID-19 cases and 10,376 images of normal (non-COVID-19)
ases. Samples of the CT images with COVID-19 are shown in Fig. 9.
ata augmentation is applied to increase the diversity of the dataset
sing the configurations in Table 2.

.2. Experiments and discussion
Table 3 presents the configurations used in the experiments.

https://www.kaggle.com/luisblanche/covidct
https://www.kaggle.com/luisblanche/covidct
https://www.kaggle.com/luisblanche/covidct
https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-covid19
https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-covid19
https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-covid19
https://github.com/mr7495/COVID-CTset

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Fig. 9. Samples of the CT Images with COVID-19.

Table 2
Data augmentation configurations.

Method Range

Rotation ±15 deg
Width Shift Range ±15%
Height Shift Range ±15%
Shear Range ±15%
Zoom Range ±15%
Horizontal Flipping True
Vertical Flipping True

Table 3
The used experiments configurations.

Method Range

Dataset Collected from 3 sources.
Categories ‘‘COVID-19’’ and ‘‘non-COVID-19’’.
Split Ratio 𝑆𝑝𝑙𝑖𝑡 90% to 10%
Dataset Size 15,535
Data Augmentation Yes (Table 2)
Pre-trained Models VGG16, VGG19, ResNet50, ResNet101,

DenseNet121, DenseNet169, MobileNet,
MobileNetV2, and Xception

Pre-trained Parameters
Initializers

ImageNet

Output Activation Function SoftMax
Number of Epochs 64
Parameters optimizers 𝑂𝑠 Adam, NAdam, AdaGrad, AdaDelta, AdaMax,

RMSProp, Ftrl, and SGD
TL learn ratios 𝐿𝑠 [0 ∶ 5 ∶ 100]%
Batch sizes 𝐵𝑠 32 and 64
Dropout ratios 𝐷𝑠 [0 ∶ 60]%
Performance Metrics 𝑀𝑠 Loss, Accuracy, Precision, F1-score, AUC, and

Recall
Number of HHO Iterations
𝑖𝑡𝑒𝑟𝑠

15

Population Size 𝑁𝑝 10
Learning and Optimization
Environment

Google Colab (Intel(R) Xeon(R) CPU @
2.00 GHz, Tesla T4 16 GB GPU with CUDA
v.11.2, and 12 GB RAM)

Programming Language Python
Python Packages Tensorflow, Keras, NumPy, OpenCV, Pandas,

and Matplotlib

VGG16: Table 4 reports the top-1 combination in each hyperpa-
rameters optimization iteration in the 15 optimization iterations for
the VGG16 pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 4, the SGD was the best parameters optimizer in 13
iterations. The batch size with a value of 32 was the best in 15 iterations.
The dropout ratio with a value of 58% was the best in 11 iterations. The
learning ratio with a value of 80% was the best in 13 iterations. The
11
Fig. 10. The WSM Curve for the VGG16.

Fig. 11. The WSM Curve for the VGG19.

best achieved distinctive metrics for the loss, accuracy, F1, precision,
recall, AUC, and WSM were 0.0221, 99.28%, 99.28%, 99.28%, 99.28%,
0.9995, and 99.02% respectively. The best achieved combination was
in iteration number 9 where its metrics were 0.0221, 99.23%, 99.23%,
99.23%, 99.23%, 0.9993, and 99.02% respectively. All of the WSM
scores were above 89%. Fig. 10 shows the WSM curve for the 15
iterations.

VGG19: Table 5 reports the top-1 combination in each hyperpa-
rameters optimization iteration in the 15 optimization iterations for
the VGG19 pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 5, the SGD was the best parameters optimizer in 11
iterations. The batch size with a value of 32 was the best in 14 iterations.
The dropout ratio with a value of 56% was the best in 8 iterations. The
learning ratio with a value of 80% was the best in 10 iterations. The
best achieved distinctive metrics for the loss, accuracy, F1, precision,
recall, AUC, and WSM were 0.0202, 99.33%, 99.33%, 99.33%, 99.33%,
0.9998, and 99.31% respectively. The best achieved combination was
in iteration number 14 where its metrics were 0.0202, 99.33%, 99.33%,
99.33%, 99.33%, 0.9998, and 99.31% respectively. All of the WSM
scores were above 85%. Fig. 11 shows the WSM curve for the 15
iterations.

ResNet50: Table 6 reports the top-1 combination in each hyper-
parameters optimization iteration in the 15 optimization iterations for
the ResNet50 pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 6, the SGD was the best parameters optimizer in 10
iterations. The batch size with a value of 32 was the best in 13 iterations.
The dropout ratio with a value of 60% was the best in 10 iterations. The
learning ratio with a value of 100% was the best in 10 iterations. The
best achieved distinctive metrics for the loss, accuracy, F1, precision,
recall, AUC, and WSM were 0.0394, 98.85%, 98.85%, 98.85%, 98.85%,

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.

i

p

e

i
T
l
b

Table 4
Top-1 combinations for the VGG16 in the 15 optimization iterations.

Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM

1 SGD 32 0.57 80% 0.0716 97.21% 97.21% 97.21% 97.21% 0.9966 95.48%
2 SGD 32 0.56 80% 0.0952 96.63% 96.63% 96.63% 96.63% 0.9946 94.74%
3 AdaGrad 32 0.21 30% 0.2933 91.25% 91.25% 91.25% 91.25% 0.9674 89.14%
4 SGD 32 0.58 80% 0.0584 98.08% 98.08% 98.08% 98.08% 0.9967 96.48%
5 AdaGrad 32 0.19 25% 0.1302 95.57% 95.58% 95.57% 95.57% 0.9897 93.57%
6 SGD 32 0.58 80% 0.0394 98.61% 98.61% 98.61% 98.61% 0.9980 97.41%
7 SGD 32 0.58 80% 0.0263 99.13% 99.13% 99.13% 99.13% 0.9991 98.55%
8 SGD 32 0.58 80% 0.0252 99.23% 99.23% 99.23% 99.23% 0.9988 98.73%
9 SGD 32 0.58 80% 0.0221 99.23% 99.23% 99.23% 99.23% 0.9993 99.02%
10 SGD 32 0.58 80% 0.0314 98.99% 98.99% 98.99% 98.99% 0.9995 98.11%
11 SGD 32 0.58 80% 0.0324 98.94% 98.94% 98.94% 98.94% 0.9986 98.01%
12 SGD 32 0.58 80% 0.0226 99.28% 99.28% 99.28% 99.28% 0.9993 99.01%
13 SGD 32 0.58 80% 0.0247 99.09% 99.09% 99.09% 99.09% 0.9988 98.63%
14 SGD 32 0.58 80% 0.0251 99.09% 99.09% 99.09% 99.09% 0.9988 98.60%
15 SGD 32 0.58 80% 0.0292 98.85% 98.85% 98.85% 98.85% 0.9987 98.09%
Table 5
Top-1 combinations for the VGG19 in the 15 optimization iterations.

Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM

1 SGD 32 0.57 80% 0.0707 97.55% 97.55% 97.55% 97.55% 0.9951 95.82%
2 SGD 32 0.54 75% 0.2442 93.94% 93.94% 93.94% 93.94% 0.9750 91.80%
3 SGD 32 0.55 80% 0.0696 97.02% 97.02% 97.02% 97.02% 0.9958 95.31%
4 NAdam 32 0.14 15% 0.2160 91.73% 91.72% 91.73% 91.73% 0.9755 89.66%
5 NAdam 64 0.16 20% 0.4726 87.88% 87.88% 87.88% 87.88% 0.9351 85.79%
6 AdaGrad 32 0.27 25% 0.2545 92.78% 92.78% 92.78% 92.78% 0.9718 90.66%
7 AdaGrad 32 0.27 25% 0.4300 90.00% 89.99% 90.00% 90.00% 0.9466 87.86%
8 SGD 32 0.56 80% 0.0737 97.55% 97.55% 97.55% 97.55% 0.9970 95.79%
9 SGD 32 0.56 80% 0.0364 98.46% 98.46% 98.46% 98.46% 0.9992 97.37%
10 SGD 32 0.56 80% 0.0375 98.80% 98.80% 98.80% 98.80% 0.9981 97.66%
11 SGD 32 0.56 80% 0.0359 98.70% 98.70% 98.70% 98.70% 0.9988 97.63%
12 SGD 32 0.56 80% 0.0319 98.75% 98.75% 98.75% 98.75% 0.9990 97.85%
13 SGD 32 0.56 80% 0.0310 98.89% 98.89% 98.89% 98.89% 0.9991 98.03%
14 SGD 32 0.56 80% 0.0202 99.33% 99.33% 99.33% 99.33% 0.9988 99.31%
15 SGD 32 0.56 80% 0.0212 99.09% 99.09% 99.09% 99.09% 0.9998 98.97%
Table 6
Top-1 combinations for the ResNet50 in the 15 optimization iterations.

Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM

1 RMSProp 64 0.54 70% 0.5798 77.63% 77.63% 77.63% 77.63% 0.8617 75.78%
2 RMSProp 64 0.54 70% 0.6359 70.18% 70.18% 70.18% 70.18% 0.7713 68.50%
3 Adam 32 0% 0% 1.6620 51.03% 51.03% 51.03% 51.03% 0.5533 49.79%
4 Adam 32 0.01 0% 2.0220 51.03% 51.03% 51.03% 51.03% 0.5442 49.78%
5 AdaGrad 32 0.23 30% 1.2469 51.03% 51.03% 51.03% 51.03% 0.6198 49.80%
6 SGD 32 0.6 100% 0.3560 92.11% 92.11% 92.11% 92.11% 0.9652 89.95%
7 SGD 32 0.6 100% 0.1996 94.81% 94.80% 94.81% 94.81% 0.9817 92.69%
8 SGD 32 0.6 100% 0.0531 98.36% 98.36% 98.36% 98.36% 0.9979 96.85%
9 SGD 32 0.6 100% 0.0648 97.79% 97.79% 97.79% 97.79% 0.9971 96.11%
10 SGD 32 0.6 100% 0.0448 98.41% 98.41% 98.41% 98.41% 0.9979 97.07%
11 SGD 32 0.6 100% 0.0479 98.80% 98.80% 98.80% 98.80% 0.9970 97.37%
12 SGD 32 0.6 100% 0.0394 98.85% 98.85% 98.85% 98.85% 0.9988 97.64%
13 SGD 32 0.6 100% 0.0598 98.27% 98.27% 98.27% 98.27% 0.9959 96.65%
14 SGD 32 0.6 100% 0.0666 97.74% 97.74% 97.74% 97.74% 0.9972 96.05%
15 SGD 32 0.6 100% 0.0707 98.17% 98.17% 98.17% 98.17% 0.9957 96.43%
p
f
p
e

i
T

0.9988, and 97.64% respectively. The best achieved combination was
in iteration number 12 where its metrics were 0.0394, 98.85%, 98.85%,
98.85%, 98.85%, 0.9988, and 97.64% respectively. All of the WSM
scores were above 49%. Fig. 12 shows the WSM curve for the 15
terations.
ResNet101: Table 7 reports the top-1 combination in each hy-

erparameters optimization iteration in the 15 optimization iterations
for the ResNet101 pre-trained CNN model with the corresponding
performance metrics. Each iteration has 10 as the population size where
ach solution is trained for 64 epochs.

From Table 7, the SGD was the best parameters optimizer in 11
terations. The batch size with a value of 64 was the best in 12 iterations.
he dropout ratio with a value of 60% was the best in 12 iterations. The

earning ratio with a value of 100% was the best in 12 iterations. The
est achieved distinctive metrics for the loss, accuracy, F1, precision,
12

3

recall, AUC, and WSM were 0.0577, 98.22%, 98.22%, 98.22%, 98.22%,
0.9974, and 96.63% respectively. The last best achieved combination
was in iteration number 13 where its metrics were 0.0577, 98.27%,
98.27%, 98.27%, 98.27%, 0.9974, and 96.63% respectively. All of the
WSM scores were above 89%. Fig. 13 shows the WSM curve for the 15
iterations.

DenseNet121: Table 8 reports the top-1 combination in each hy-
erparameters optimization iteration in the 15 optimization iterations
or the DenseNet121 pre-trained CNN model with the corresponding
erformance metrics. Each iteration has 10 as the population size where
ach solution is trained for 64 epochs.

From Table 8, the RMSProp was the best parameters optimizer in 12
terations. The batch size with a value of 32 was the best in 9 iterations.
he dropout ratios with values of 38%, 39%, and 41% were the best in
iterations. The learning ratio with a value of 70% was the best in 7

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Table 7
Top-1 combinations for the ResNet101 in the 15 optimization iterations.

Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM

1 NAdam 32 0.17 25% 0.7040 51.03% 51.03% 51.03% 51.03% 0.6038 49.83%
2 NAdam 32 0.14 20% 0.7079 52.91% 52.92% 52.91% 52.91% 0.5222 51.66%
3 NAdam 32 0.09 10% 0.8788 51.03% 51.03% 51.03% 51.03% 0.6062 49.81%
4 Ftrl 64 0.6 100% 0.6932 48.97% 48.97% 48.97% 48.97% 0.5000 47.82%
5 SGD 64 0.6 100% 0.1300 96.87% 96.88% 96.87% 96.87% 0.9884 94.84%
6 SGD 64 0.6 100% 0.0928 97.55% 97.55% 97.55% 97.55% 0.9921 95.65%
7 SGD 64 0.6 100% 0.0703 98.03% 98.03% 98.03% 98.03% 0.9950 96.29%
8 SGD 64 0.6 100% 0.0966 97.88% 97.88% 97.88% 97.88% 0.9915 95.95%
9 SGD 64 0.6 100% 0.0610 98.27% 98.27% 98.27% 98.27% 0.9963 96.63%
10 SGD 64 0.6 100% 0.0774 97.84% 97.84% 97.84% 97.84% 0.9957 96.04%
11 SGD 64 0.6 100% 0.1095 97.02% 97.02% 97.02% 97.02% 0.9916 95.05%
12 SGD 64 0.6 100% 0.0710 98.17% 98.17% 98.17% 98.17% 0.9957 96.42%
13 SGD 64 0.6 100% 0.0577 98.22% 98.22% 98.22% 98.22% 0.9974 96.63%
14 SGD 64 0.6 100% 0.1160 96.97% 96.97% 96.97% 96.97% 0.9908 94.98%
15 SGD 64 0.6 100% 0.0994 97.88% 97.88% 97.88% 97.88% 0.9937 95.94%
Table 8
Top-1 combinations for the DenseNet121 in the 15 optimization iterations.

Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM

1 NAdam 32 0.12 20% 23.631 51.32% 51.33% 51.32% 51.32% 0.5133 50.04%
2 NAdam 64 0.15 25% 16.683 51.13% 51.14% 51.13% 51.13% 0.5173 49.86%
3 AdaMax 32 0.35 60% 11.823 64.17% 64.17% 64.17% 64.17% 0.6532 62.57%
4 RMSProp 64 0.44 80% 13.235 57.09% 57.10% 57.09% 57.09% 0.5747 55.67%
5 RMSProp 64 0.44 80% 89.372 68.73% 68.74% 68.73% 68.73% 0.7027 67.02%
6 RMSProp 32 0.39 70% 2.0622 82.20% 82.20% 82.20% 82.20% 0.8562 80.17%
7 RMSProp 64 0.38 70% 5.9464 78.11% 78.11% 78.11% 78.11% 0.7976 76.17%
8 RMSProp 64 0.38 70% 32.481 80.13% 80.14% 80.13% 80.13% 0.8072 78.13%
9 RMSProp 32 0.4 70% 14.187 79.08% 79.07% 79.08% 79.08% 0.8099 77.10%
10 RMSProp 32 0.39 70% 3.9436 80.86% 80.86% 80.86% 80.86% 0.8297 78.85%
11 RMSProp 32 0.39 70% 3.6292 83.93% 83.94% 83.93% 83.93% 0.8629 81.85%
12 RMSProp 32 0.41 75% 0.6732 90.14% 90.14% 90.14% 90.14% 0.9487 87.96%
13 RMSProp 32 0.41 75% 2.7017 86.58% 86.58% 86.58% 86.58% 0.8917 84.44%
14 RMSProp 64 0.38 70% 13.832 81.39% 81.38% 81.39% 81.39% 0.8200 79.35%
15 RMSProp 32 0.41 75% 7.2526 76.67% 76.68% 76.67% 76.67% 0.7983 74.76%
Fig. 12. The WSM Curve for the ResNet50.

Fig. 13. The WSM Curve for the ResNet101.
13
Fig. 14. The WSM Curve for the DenseNet121.

iterations. The best achieved distinctive metrics for the loss, accuracy,
F1, precision, recall, AUC, and WSM were 0.6732, 90.14%, 90.14%,
90.14%, 90.14%, 0.9487, and 87.96% respectively. The best achieved
combination was in iteration number 12 where its metrics were 0.6732,
90.14%, 90.14%, 90.14%, 90.14%, 0.9487, and 87.96% respectively.
All of the WSM scores were above 49%. Fig. 14 shows the WSM curve
for the 15 iterations.

DenseNet169: Table 9 reports the top-1 combination in each hy-
perparameters optimization iteration in the 15 optimization iterations
for the DenseNet169 pre-trained CNN model with the corresponding
performance metrics. Each iteration has 10 as the population size where
each solution is trained for 64 epochs.

From Table 9, the AdaMax was the best parameters optimizer in
14 iterations. The batch size with a value of 32 was the best in 14
iterations. The dropout ratio with a value of 36% was the best in 13
iterations. The learning ratio with a value of 50% was the best in 14

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Table 9
Top-1 combinations for the DenseNet169 in the 15 optimization iterations.

Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM

1 AdaMax 32 0.37 50% 1.1045 78.11% 78.10% 78.11% 78.11% 0.8572 76.20%
2 RMSProp 64 0.5 70% 15.632 82.06% 82.06% 82.06% 82.06% 0.8228 80.01%
3 AdaMax 32 0.36 50% 1.7170 85.67% 85.66% 85.67% 85.67% 0.8845 83.55%
4 AdaMax 32 0.36 50% 1.9082 88.02% 88.02% 88.02% 88.02% 0.9028 85.85%
5 AdaMax 32 0.36 50% 1.6761 88.89% 88.89% 88.89% 88.89% 0.9100 86.70%
6 AdaMax 32 0.36 50% 1.7754 88.02% 88.02% 88.02% 88.02% 0.9028 85.85%
7 AdaMax 32 0.36 50% 1.1883 89.71% 89.70% 89.71% 89.71% 0.9261 87.50%
8 AdaMax 32 0.36 50% 1.2521 88.07% 88.06% 88.07% 88.07% 0.9117 85.91%
9 AdaMax 32 0.36 50% 1.7210 88.84% 88.84% 88.84% 88.84% 0.9103 86.65%
10 AdaMax 32 0.36 50% 1.1751 88.12% 88.11% 88.12% 88.12% 0.9153 85.95%
11 AdaMax 32 0.36 50% 1.0352 89.56% 89.56% 89.56% 89.56% 0.9290 87.37%
12 AdaMax 32 0.36 50% 1.6333 87.73% 87.73% 87.73% 87.73% 0.9005 85.57%
13 AdaMax 32 0.36 50% 1.3847 87.01% 87.01% 87.01% 87.01% 0.9043 84.87%
14 AdaMax 32 0.36 50% 1.1712 90.76% 90.76% 90.76% 90.76% 0.9294 88.54%
15 AdaMax 32 0.36 50% 1.0113 89.66% 89.66% 89.66% 89.66% 0.9244 87.47%
Fig. 15. The WSM Curve for the DenseNet169.

iterations. The best achieved distinctive metrics for the loss, accuracy,
F1, precision, recall, AUC, and WSM were 1.0113, 90.76%, 90.76%,
90.76%, 90.76%, 0.9294, and 88.54% respectively. The best achieved
combination was in iteration number 14 where its metrics were 1.1712,
90.76%, 90.76%, 90.76%, 90.76%, 0.9294, and 88.54% respectively.
All of the WSM scores were above 76%. Fig. 15 shows the WSM curve
for the 15 iterations.

MobileNet: Table 10 reports the top-1 combination in each hyper-
parameters optimization iteration in the 15 optimization iterations for
the MobileNet pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 10, the SGD was the best parameters optimizer in 11
iterations. The batch size with a value of 64 was the best in 13 iterations.
The dropout ratio with a value of 60% was the best in 13 iterations. The
learning ratio with a value of 100% was the best in 13 iterations. The
best achieved distinctive metrics for the loss, accuracy, F1, precision,
recall, AUC, and WSM were 0.0433, 98.75%, 98.75%, 98.75%, 98.75%,
0.9983, and 97.44% respectively. The best achieved combination was
in iteration number 9 where its metrics were 0.0433, 98.75%, 98.75%,
98.75%, 98.75%, 0.9983, and 97.44% respectively. All of the WSM
scores were above 53%. Fig. 16 shows the WSM curve for the 15
iterations.

MobileNetV2: Table 11 reports the top-1 combination in each hy-
perparameters optimization iteration in the 15 optimization iterations
for the MobileNetV2 pre-trained CNN model with the corresponding
performance metrics. Each iteration has 10 as the population size where
each solution is trained for 64 epochs.

From Table 11, the AdaDelta was the best parameters optimizer
in 15 iterations. The batch size with a value of 32 was the best in
15 iterations. The dropout ratio with a value of 28% was the best
in 15 iterations. The learning ratio with a value of 0% was the best
in 15 iterations. The best achieved distinctive metrics for the loss,
14
Fig. 16. The WSM Curve for the MobileNet.

Fig. 17. The WSM Curve for the MobileNetV2.

accuracy, F1, precision, recall, AUC, and WSM were 0.7374, 64.74%,
64.75%, 64.74%, 64.74%, 0.6687, and 63.19% respectively. The last
best achieved combination was in iteration number 13 where its metrics
were 0.7360, 64.74%, 64.75%, 64.74%, 64.74%, 0.6692, and 63.19%
respectively. All of the WSM scores were above 62%. Fig. 17 shows the
WSM curve for the 15 iterations.

Xception: Table 12 reports the top-1 combination in each hyper-
parameters optimization iteration in the 15 optimization iterations for
the Xception pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 12, the AdaMax was the best parameters optimizer in
13 iterations. The batch size with a value of 64 was the best in 11
iterations. The dropout ratio with a value of 60% was the best in 12
iterations. The learning ratio with a value of 100% was the best in 14
iterations. The best achieved distinctive metrics for the loss, accuracy,
F1, precision, recall, AUC, and WSM were 0.0520, 98.80%, 98.80%,
98.80%, 98.80%, 0.9972, and 97.29% respectively. The best achieved

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.

9
A
f

i

a
m

5

w
c

Table 10
Top-1 combinations for the MobileNet in the 15 optimization iterations.

Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM

1 AdaDelta 64 0.59 90% 0.6718 79.70% 79.70% 79.70% 79.70% 0.8643 77.78%
2 AdaMax 32 0.6 100% 0.5892 90.57% 90.57% 90.57% 90.57% 0.9482 88.39%
3 AdaMax 32 0.6 100% 0.6249 90.96% 90.96% 90.96% 90.96% 0.9476 88.76%
4 AdaGrad 64 0.31 50% 4.1396 54.35% 54.36% 54.35% 54.35% 0.5796 53.01%
5 SGD 64 0.6 100% 0.1050 96.73% 96.73% 96.73% 96.73% 0.9928 94.79%
6 SGD 64 0.6 100% 0.1323 95.96% 95.96% 95.96% 95.96% 0.9901 93.94%
7 SGD 64 0.6 100% 0.0807 97.69% 97.69% 97.69% 97.69% 0.9950 95.87%
8 SGD 64 0.6 100% 0.0538 98.08% 98.08% 98.08% 98.08% 0.9965 96.55%
9 SGD 64 0.6 100% 0.0433 98.75% 98.75% 98.75% 98.75% 0.9983 97.44%
10 SGD 64 0.6 100% 0.0440 98.46% 98.46% 98.46% 98.46% 0.9964 97.13%
11 SGD 64 0.6 100% 0.1060 97.26% 97.26% 97.26% 97.26% 0.9921 95.30%
12 SGD 64 0.6 100% 0.0610 98.17% 98.17% 98.17% 98.17% 0.9970 96.54%
13 SGD 64 0.6 100% 0.0535 98.27% 98.27% 98.27% 98.27% 0.9982 96.75%
14 SGD 64 0.6 100% 0.0524 98.36% 98.37% 98.36% 98.36% 0.9967 96.86%
15 SGD 64 0.6 100% 0.0413 98.51% 98.51% 98.51% 98.51% 0.9979 97.26%
Table 11
Top-1 combinations for the MobileNetV2 in the 15 optimization iterations.

Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM

1 AdaDelta 32 0.28 0% 0.7376 64.21% 64.22% 64.21% 64.21% 0.6683 62.68%
2 AdaDelta 32 0.28 0% 0.7386 64.41% 64.41% 64.41% 64.41% 0.6675 62.87%
3 AdaDelta 32 0.28 0% 0.7368 64.55% 64.56% 64.55% 64.55% 0.6690 63.01%
4 AdaDelta 32 0.28 0% 0.7388 64.17% 64.17% 64.17% 64.17% 0.6663 62.63%
5 AdaDelta 32 0.28 0% 0.7367 64.60% 64.60% 64.60% 64.60% 0.6687 63.05%
6 AdaDelta 32 0.28 0% 0.7360 64.55% 64.56% 64.55% 64.55% 0.6692 63.01%
7 AdaDelta 32 0.28 0% 0.7384 64.69% 64.70% 64.69% 64.69% 0.6684 63.15%
8 AdaDelta 32 0.28 0% 0.7372 64.74% 64.75% 64.74% 64.74% 0.6690 63.19%
9 AdaDelta 32 0.28 0% 0.7391 64.74% 64.75% 64.74% 64.74% 0.6678 63.19%
10 AdaDelta 32 0.28 0% 0.7369 64.55% 64.56% 64.55% 64.55% 0.6685 63.01%
11 AdaDelta 32 0.28 0% 0.7384 64.55% 64.56% 64.55% 64.55% 0.6679 63.01%
12 AdaDelta 32 0.28 0% 0.7378 64.55% 64.56% 64.55% 64.55% 0.6681 63.01%
13 AdaDelta 32 0.28 0% 0.7374 64.74% 64.75% 64.74% 64.74% 0.6687 63.19%
14 AdaDelta 32 0.28 0% 0.7372 64.60% 64.60% 64.60% 64.60% 0.6688 63.05%
15 AdaDelta 32 0.28 0% 0.7395 64.50% 64.51% 64.50% 64.50% 0.6675 62.96%
Table 12
Top-1 combinations for the Xception in the 15 optimization iterations.

Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM

1 AdaDelta 32 0.56 90% 0.4595 80.81% 80.80% 80.81% 80.81% 0.8988 78.89%
2 AdaMax 32 0.56 100% 0.1057 96.68% 96.68% 96.68% 96.68% 0.9922 94.74%
3 AdaMax 32 0.56 100% 0.0972 97.11% 97.11% 97.11% 97.11% 0.9939 95.20%
4 AdaMax 64 0.6 100% 0.0955 98.08% 98.08% 98.08% 98.08% 0.9942 96.15%
5 AdaMax 64 0.6 100% 0.0602 98.46% 98.46% 98.46% 98.46% 0.9959 96.83%
6 AdaMax 64 0.6 100% 0.1952 96.20% 96.20% 96.20% 96.20% 0.9842 94.05%
7 AdaMax 64 0.6 100% 0.0969 97.40% 97.40% 97.40% 97.40% 0.9924 95.48%
8 RMSProp 32 0.6 100% 0.1202 97.35% 97.36% 97.35% 97.35% 0.9935 95.34%
9 AdaMax 64 0.6 100% 0.1352 96.25% 96.25% 96.25% 96.25% 0.9882 94.21%
10 AdaMax 64 0.6 100% 0.0897 98.03% 98.03% 98.03% 98.03% 0.9938 96.13%
11 AdaMax 64 0.6 100% 0.1002 98.03% 98.03% 98.03% 98.03% 0.9928 96.08%
12 AdaMax 64 0.6 100% 0.0743 97.74% 97.74% 97.74% 97.74% 0.9956 95.97%
13 AdaMax 64 0.6 100% 0.0701 98.46% 98.46% 98.46% 98.46% 0.9941 96.71%
14 AdaMax 64 0.6 100% 0.0550 98.75% 98.75% 98.75% 98.75% 0.9976 97.19%
15 AdaMax 64 0.6 100% 0.0520 98.80% 98.80% 98.80% 98.80% 0.9972 97.29%
s
t

6

F
i
o

g
(
a
w

combination was in iteration number 15 where its metrics were 0.0520,
8.80%, 98.80%, 98.80%, 98.80%, 0.9972, and 97.29% respectively.
ll of the WSM scores were above 78%. Fig. 18 shows the WSM curve

or the 15 iterations.
Table 13 reports the best achieved top-1 combinations in all exper-

ments.
From Table 13, it is clear that the best pre-trained model was VGG19

s it reported a WSM value of 99.31% while the worst pre-trained
odel was MobileNetV2 as it reported only 63.19%.

.3. Comparative study

As noted in Table 13, the 99.31% score was the highest WSM value
hile 99.33% was the highest achieved accuracy by VGG19. Table 14

onstructs a comparative table between the current study and other
15

N

tate-of-the-art studies. They are sorted in descending order. It shows
hat the current study reported the highest accuracy value among them.

. Conclusions and future work

Unfortunately, the danger of COVID-19 did not end till the moment.
ast diagnosis of patients is the golden key treatment to stop the incred-
ble spread of the virus so that patients can be isolated accordingly. Cost
f diagnosis plays another factor, especially for developing countries.

As seen, in this study, a hybrid approach named CovH2SD was sug-
ested to detect the COVID-19 using the Chest Computed Tomography
CT) images. CovH2SD consisted of two internal optimization mech-
nisms. The first was the parameters’ optimization mechanism which
as performed using the deep learning optimizers. They were Adam,
Adam, Ftrl, SGD, AdaMax, AdaGrad, and AdaDelta. The second was

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.
Table 13
Summary of the best achieved Top-1 combinations in all experiments.

Experiment Model Parameters optimizer Batch size Dropout ratio TL learn ratio WSM

1 VGG16 SGD 32 0.58 80% 99.02%
2 VGG19 SGD 32 0.56 80% 99.31%
3 ResNet50 SGD 32 0.6 100% 97.64%
4 ResNet101 SGD 64 0.6 100% 96.63%
5 DenseNet121 RMSProp 32 0.41 75% 87.96%
6 DenseNet169 AdaMax 32 0.36 50% 88.54%
7 MobileNet SGD 64 0.6 100% 97.44%
8 MobileNetV2 AdaDelta 32 0.28 0% 63.19%
9 Xception AdaMax 64 0.6 100% 97.29%
Table 14
Comparative study with State-of-the-art studies.

Study Model Dataset size CT or X-ray Accuracy

Khan et al. (2020) CoroNet 1,300 X-ray 89.60%
Hemdan et al. (2020) COVIDX-Net 50 X-ray 90.00%
El Asnaoui and Chawki (2020) InceptionResNetV2 6,087 X-ray 92.18%
Shah et al. (2021) VGG19 738 CT 94.52%
Yasar and Ceylan (2021) MobilenetV2 1,396 CT 95.99%
Toraman et al. (2020) InstaCovNet-19 3,150 X-ray 97.24%
Apostolopoulos and Mpesiana (2020) MobileNetV2 1,428 X-ray 97.40%
Ozturk et al. (2020) DarkCovidNet 127 X-ray 98.08%
Nayak, Nayak, Sinha, Arora, and Pachori (2021) ResNet34 500 X-ray 98.33%
Apostolopoulos and Mpesiana (2020) VGG19 1,428 X-ray 98.75%
Zhou et al. (2021) Ensemble Model 5,000 CT 99.05%

Current Study CovH2SD (VGG19) 15,535 CT 99.33%
Fig. 18. The WSM Curve for the Xception.

the hyperparameters optimization mechanism which was performed
using the Harris Hawks Optimization (HHO) algorithm. The used hy-
perparameters were the parameters optimizer, the dropout ratio, the
learning ratio, and the batch size. The HHO algorithm answered the
question ‘‘Which parameters optimizer with which dropout ratio with
which learning ratio with which batch size can report the highest
performance measure?’’ as reported in the experiments.

Transfer learning was targeted using nine pre-trained CNNs. They
were ResNet50, ResNet101, VGG16, VGG19, Xception, MobileNetV1,
MobileNetV2, DenseNet121, and DenseNet169. Stacking the best mod-
els into a single one was applied using FCS and CSS. Nine experiments
were applied on the CT images collected from public and shared
sources. The used performance metrics were Loss, Accuracy, Precision,
Recall, F1-Score, and AUC. The WSM metric is used to solve this multi-
objective problem and to compare between the different combinations
Six experiments reported a WSM value that was above 96.5%. The top
WSM reported value was 99.31% which was higher than the compared
studies. This best value was reported by the VGG19 pre-trained CNN
model using the SGD parameters’ optimizer, 32 batch size, 56% dropout
ratio, and 80% learning ratio.

The proposed approach could reach state-of-the-art performance
according to the compared studies. It proved that it is a good candidate
16
Table A.15
Table of abbreviations.

Abbreviation Description

AdaDelta Adaptive Delta
AdaGrad Adaptive Gradient
Adam Adaptive Momentum
AdaMax Adaptive Max-Pooling
AI Artificial Intelligence
ANN Artificial Neural Network
AUC Area Under Curve
CNN Convolutional Neural Network
COVID-19 Coronavirus
CS Cuckoo Search
CSS Compact Stacking Stage
CT Computed Tomography
DenseNet Densely Connected Convolutional Networks
DL Deep Learning
FC Fully-Connected
FCS Fast Classification Stage
GA Genetic Algorithms
GOA Grasshopper Optimization Algorithm
GWO Gray Wolf Optimizer
HHO Harris Hawks Optimization
LF Levy Flight
NAdam Nesterov Adaptive Momentum
PSO Particle Swarm Optimization
QS Quality Space
ReLU Rectified Linear Unit
ResNet Residual Network
RMSProp Root Mean Square Propagation
RT-PCR Reverse Transcription Polymerase Chain Reaction
SGD Stochastic Gradient Descent
TL Transfer Learning
WHO World Health Organization
WSM Weighted Sum Method

in practice. As future work, we aim to expand the suggested approach
for multi-class classification problems. We can also upgrade it to apply
it to different medical imaging problems. Different optimizers can also
be used such as Sparrow Search Algorithm or Manta Ray Foraging
Optimization algorithm.

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.

B
J

J

K

L

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix

Table of abbreviations

Table A.15 presents the ‘‘Table of Abbreviations’’ and is ordered in
ascending order.

References

Abdulazeem, Y., Balaha, H. M., Bahgat, W. M., & Badawy, M. (2021). Human action
recognition based on transfer learning approach. IEEE Access.

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H.
(2018). State-of-the-art in artificial neural network applications: A survey. Heliyon,
4(11), Article e00938.

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional
neural network. In 2017 international conference on engineering and technology (pp.
1–6). IEEE.

Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: automatic detection from X-
ray images utilizing transfer learning with convolutional neural networks. Physical
and Engineering Sciences in Medicine, 1.

Ardakani, A. A., Kanafi, A. R., Acharya, U. R., Khadem, N., & Mohammadi, A. (2020).
Application of deep learning technique to manage COVID-19 in routine clinical
practice using CT images: Results of 10 convolutional neural networks. Computers
in Biology and Medicine, Article 103795.

Aslan, M. F., Unlersen, M. F., Sabanci, K., & Durdu, A. (2020). CNN-based transfer
learning–BiLSTM network: A novel approach for COVID-19 infection detection.
Applied Soft Computing, 98, Article 106912.

Bahgat, W. M., Balaha, H. M., AbdulAzeem, Y., & Badawy, M. M. (2021). An optimized
transfer learning-based approach for automatic diagnosis of COVID-19 from chest
X-ray images. PeerJ Computer Science, 7, Article e555.

Balaha, H. M., Ali, H. A., & Badawy, M. (2021). Automatic recognition of handwritten
Arabic characters: a comprehensive review. Neural Computing and Applications,
33(7), 3011–3034.

alaha, H. M., Ali, H. A., Saraya, M., & Badawy, M. (2021). A new Arabic handwritten
character recognition deep learning system (AHCR-DLS). Neural Computing and
Applications, 33(11), 6325–6367.

Balaha, H. M., Ali, H. A., Youssef, E. K., Elsayed, A. E., Samak, R. A., Abdelhaleem, M.
S., et al. (2021). Recognizing arabic handwritten characters using deep learning
and genetic algorithms. Multimedia Tools and Applications, 1–37.

Balaha, H. M., & Saafan, M. M. (2021). Automatic Exam Correction Framework (AECF)
for the MCQs, essays, and equations matching. IEEE Access, 9, 32368–32389.

Bao, X., Jia, H., & Lang, C. (2019). A novel hybrid Harris hawks optimization for color
image multilevel thresholding segmentation. IEEE Access, 7, 76529–76546.

Başaran, E., Cömert, Z., & Çelik, Y. (2020). Convolutional neural network approach
for automatic tympanic membrane detection and classification. Biomedical Signal
Processing and Control, 56, Article 101734.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the
trade (pp. 421–436). Springer.

Celik, Y., Talo, M., Yildirim, O., Karabatak, M., & Acharya, U. R. (2020). Automated
invasive ductal carcinoma detection based using deep transfer learning with
whole-slide images. Pattern Recognition Letters, 133, 232–239.

Chen, H., Jiao, S., Wang, M., Heidari, A. A., & Zhao, X. (2020). Parameters identifica-
tion of photovoltaic cells and modules using diversification-enriched Harris hawks
optimization with chaotic drifts. Journal of Cleaner Production, 244, Article 118778,
URL http://www.sciencedirect.com/science/article/pii/S0959652619336480.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
1251–1258).

Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G.-g., & Chen, J. (2018). Detection of malicious
code variants based on deep learning. IEEE Transactions on Industrial Informatics,
14(7), 3187–3196.

Deepak, S., & Ameer, P. (2019). Brain tumor classification using deep CNN features
via transfer learning. Computers in Biology and Medicine, 111, Article 103345.

Dogo, E., Afolabi, O., Nwulu, N., Twala, B., & Aigbavboa, C. (2018). A comparative
analysis of gradient descent-based optimization algorithms on convolutional neural
networks. In 2018 international conference on computational techniques, electronics
and mechanical systems (pp. 92–99). IEEE.

Dorj, U.-O., Lee, K.-K., Choi, J.-Y., & Lee, M. (2018). The skin cancer classification
using deep convolutional neural network. Multimedia Tools and Applications, 77(8),
9909–9924.
17
Dozat, T. (2016). Incorporating nesterov momentum into adam.
El Asnaoui, K., & Chawki, Y. (2020). Using X-ray images and deep learning for

automated detection of coronavirus disease. Journal of Biomolecular Structure and
Dynamics, 1–12.

El-Gendy, E. M., Saafan, M. M., Elksas, M. S., Saraya, S. F., & Areed, F. F. (2020).
Applying hybrid genetic–PSO technique for tuning an adaptive PID controller used
in a chemical process. Soft Computing, 24(5), 3455–3474.

Feng, Y., Wang, G.-G., Dong, J., & Wang, L. (2018). Opposition-based learning monarch
butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack
problem. Computers and Electrical Engineering, 67, 454–468.

Gao, F., Wu, T., Li, J., Zheng, B., Ruan, L., Shang, D., et al. (2018). SD-CNN: A shallow-
deep CNN for improved breast cancer diagnosis. Computerized Medical Imaging and
Graphics, 70, 53–62.

Golilarz, N. A., Gao, H., & Demirel, H. (2019). Satellite image de-noising with Harris
hawks meta heuristic optimization algorithm and improved adaptive generalized
gaussian distribution threshold function. IEEE Access, 7, 57459–57468.

Gour, M., & Jain, S. (2020). Stacked convolutional neural network for diagnosis of
covid-19 disease from X-ray images. arXiv preprint arXiv:2006.13817.

Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., & Feris, R. (2019). Spottune:
transfer learning through adaptive fine-tuning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 4805–4814).

Gupta, A., Anjum, Gupta, S., & Katarya, R. (2021). InstaCovNet-19: A deep learning
classification model for the detection of COVID-19 patients using chest X-ray.
Applied Soft Computing, 99, Article 106859, URL http://www.sciencedirect.com/
science/article/pii/S1568494620307973.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 770–778).

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019).
Harris hawks optimization: Algorithm and applications. Future Generation Computer
Systems, 97, 849–872.

Hemdan, E. E.-D., Shouman, M. A., & Karar, M. E. (2020). Covidx-net: A framework
of deep learning classifiers to diagnose covid-19 in X-ray images. arXiv preprint
arXiv:2003.11055.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et

al. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 4700–4708).

Huynh, B. Q., Li, H., & Giger, M. L. (2016). Digital mammographic tumor classification
using transfer learning from deep convolutional neural networks. Journal of Medical
Imaging, 3(3), Article 034501.

ia, H., Lang, C., Oliva, D., Song, W., & Peng, X. (2019). Dynamic Harris hawks
optimization with mutation mechanism for satellite image segmentation. Remote
Sensing, 11(12), 1421.

u, C., Bibaut, A., & van der Laan, M. (2018). The relative performance of ensemble
methods with deep convolutional neural networks for image classification. Journal
of Applied Statistics, 45(15), 2800–2818.

asinathan, G., Jayakumar, S., Gandomi, A. H., Ramachandran, M., Fong, S. J., &
Patan, R. (2019). Automated 3-D lung tumor detection and classification by an
active contour model and CNN classifier. Expert Systems with Applications, 134,
112–119.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
ICNN’95-international conference on neural networks, Vol. 4 (pp. 1942–1948). IEEE.

Khan, A. I., Shah, J. L., & Bhat, M. M. (2020). Coronet: A deep neural network for
detection and diagnosis of COVID-19 from chest X-ray images. Computer Methods
and Programs in Biomedicine, Article 105581.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems,
25, 1097–1105.

Li, J., Li, Y.-x., Tian, S.-s., & Xia, J.-l. (2019). An improved cuckoo search algorithm
with self-adaptive knowledge learning. Neural Computing and Applications, 1–31.

Li, J., Li, Y.-x., Tian, S.-s., & Zou, J. (2019). Dynamic cuckoo search algorithm based on
Taguchi opposition-based search. International Journal of Bio-Inspired Computation,
13(1), 59–69.

Li, W., & Wang, G.-G. (2021). Elephant herding optimization using dynamic topology
and biogeography-based optimization based on learning for numerical optimization.
Engineering with Computers, 1–29.

Li, W., Wang, G.-G., & Alavi, A. H. (2020). Learning-based elephant herding opti-
mization algorithm for solving numerical optimization problems. Knowledge-Based
Systems, 195, Article 105675.

i, G., Wang, G.-G., Dong, J., Yeh, W.-C., & Li, K. (2021). DLEA: A dynamic learning
evolution algorithm for many-objective optimization. Information Sciences, 574,
567–589.

Li, W., Wang, G.-G., & Gandomi, A. H. (2021). A survey of learning-based intelligent
optimization algorithms. Archives of Computational Methods in Engineering, 1–19.

http://refhub.elsevier.com/S0957-4174(21)01173-8/sb1
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb1
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb1
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb2
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb2
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb2
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb2
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb2
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb3
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb3
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb3
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb3
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb3
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb4
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb4
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb4
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb4
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb4
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb5
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb5
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb5
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb5
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb5
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb5
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb5
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb6
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb6
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb6
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb6
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb6
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb7
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb7
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb7
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb7
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb7
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb8
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb8
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb8
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb8
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb8
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb9
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb9
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb9
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb9
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb9
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb10
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb10
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb10
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb10
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb10
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb11
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb11
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb11
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb12
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb12
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb12
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb13
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb13
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb13
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb13
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb13
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb14
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb14
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb14
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb15
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb15
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb15
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb15
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb15
http://www.sciencedirect.com/science/article/pii/S0959652619336480
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb18
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb18
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb18
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb18
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb18
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb19
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb19
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb19
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb20
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb20
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb20
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb20
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb20
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb20
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb20
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb21
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb21
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb21
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb21
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb21
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb22
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb23
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb23
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb23
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb23
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb23
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb24
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb24
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb24
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb24
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb24
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb25
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb25
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb25
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb25
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb25
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb26
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb26
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb26
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb26
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb26
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb27
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb27
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb27
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb27
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb27
http://arxiv.org/abs/2006.13817
http://www.sciencedirect.com/science/article/pii/S1568494620307973
http://www.sciencedirect.com/science/article/pii/S1568494620307973
http://www.sciencedirect.com/science/article/pii/S1568494620307973
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb32
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb32
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb32
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb32
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb32
http://arxiv.org/abs/2003.11055
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb34
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb37
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb37
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb37
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb37
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb37
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb38
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb38
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb38
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb38
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb38
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb39
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb39
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb39
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb39
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb39
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb40
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb40
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb40
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb40
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb40
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb40
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb40
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb41
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb41
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb41
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb42
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb42
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb42
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb42
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb42
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb44
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb44
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb44
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb44
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb44
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb45
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb45
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb45
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb46
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb46
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb46
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb46
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb46
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb47
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb47
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb47
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb47
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb47
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb48
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb48
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb48
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb48
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb48
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb49
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb49
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb49
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb49
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb49
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb50
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb50
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb50

Expert Systems With Applications 186 (2021) 115805H.M. Balaha et al.

L

L

L
L

M

M

M

N

N

N

Q

R

R

R

S

S

S

S

S

S

S

W

W

W

W

W

W
W

W

X

X

Y

Y

Y

Y

Y

Z

Z

Z

Li, G., Wang, G.-G., & Wang, S. (2021). Two-population coevolutionary algorithm with
dynamic learning strategy for many-objective optimization. Mathematics, 9(4), 420.

i, J., Xiao, D.-d., Lei, H., Zhang, T., & Tian, T. (2020). Using cuckoo search algorithm
with q-learning and genetic operation to solve the problem of logistics distribution
center location. Mathematics, 8(2), 149.

i, Y., Yao, L., Li, J., Chen, L., Song, Y., Cai, Z., et al. (2020). Stability issues of RT-PCR
testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19.
Journal of Medical Virology.

ivingstone, D. J. (2008). Artificial neural networks: Methods and applications. Springer.
uo, L., Xiong, Y., Liu, Y., & Sun, X. (2019). Adaptive gradient methods with dynamic

bound of learning rate. arXiv preprint arXiv:1902.09843.
angal, A., Kalia, S., Rajgopal, H., Rangarajan, K., Namboodiri, V., Banerjee, S.,

et al. (2020). CovidAID: COVID-19 detection using chest X-ray. arXiv preprint
arXiv:2004.09803.

arques, G., Agarwal, D., & de la Torre Díez, I. (2020). Automated medical diagnosis
of COVID-19 through EfficientNet convolutional neural network. Applied Soft
Computing, 96, Article 106691.

irjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in
Engineering Software, 69, 46–61.

ajafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., &
Muharemagic, E. (2015). Deep learning applications and challenges in big data
analytics. Journal of Big Data, 2(1), 1.

an, X., Bao, L., Zhao, X., Zhao, X., Sangaiah, A. K., Wang, G.-G., et al. (2017). Epul:
an enhanced positive-unlabeled learning algorithm for the prediction of pupylation
sites. Molecules, 22(9), 1463.

ayak, S. R., Nayak, D. R., Sinha, U., Arora, V., & Pachori, R. B. (2021). Application of
deep learning techniques for detection of COVID-19 cases using chest X-ray images:
A comprehensive study. Biomedical Signal Processing and Control, 64, Article 102365.

Ning, W., Lei, S., Yang, J., Cao, Y., Jiang, P., Yang, Q., et al. (2020). iCTCF: an
integrative resource of chest computed tomography images and clinical features
of patients with COVID-19 pneumonia.

Nour, M., Cömert, Z., & Polat, K. (2020). A novel medical diagnosis model for COVID-19
infection detection based on deep features and Bayesian optimization. Applied Soft
Computing, 97, Article 106580.

Orenstein, E. C., & Beijbom, O. (2017). Transfer learning and deep feature extraction
for planktonic image data sets. In 2017 IEEE winter conference on applications of
computer vision (pp. 1082–1088). IEEE.

Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R.
(2020). Automated detection of COVID-19 cases using deep neural networks with
X-ray images. Computers in Biology and Medicine, Article 103792.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10), 1345–1359.

in, Z., Yu, F., Liu, C., & Chen, X. (2018). How convolutional neural network see
the world-A survey of convolutional neural network visualization methods. arXiv
preprint arXiv:1804.11191.

ahimzadeh, M., Attar, A., & Sakhaei, S. M. (2020). A fully automated deep learning-
based network for detecting covid-19 from a new and large lung CT scan dataset.
MedRxiv.

ubin, G. D., Ryerson, C. J., Haramati, L. B., Sverzellati, N., Kanne, J. P., Raoof, S., et
al. (2020). The role of chest imaging in patient management during the COVID-19
pandemic: a multinational consensus statement from the fleischner society. Chest.

uder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747.

aafan, M. M., & El-Gendy, E. M. (2021). IWOSSA: An improved whale optimization
salp swarm algorithm for solving optimization problems. Expert Systems with
Applications, 176, Article 114901.

alamon, J., & Bello, J. P. (2017). Deep convolutional neural networks and data
augmentation for environmental sound classification. IEEE Signal Processing Letters,
24(3), 279–283.

andler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4510–4520).

aremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory
and application. Advances in Engineering Software, 105, 30–47.

hah, V., Keniya, R., Shridharani, A., Punjabi, M., Shah, J., & Mehendale, N. (2021).
Diagnosis of COVID-19 using CT scan images and deep learning techniques.
Emergency Radiology, 1–9.

horten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for
deep learning. Journal of Big Data, 6(1), 60.

imonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.
18
Toraman, S., Alakus, T. B., & Turkoglu, I. (2020). Convolutional capsnet: A novel
artificial neural network approach to detect COVID-19 disease from X-ray images
using capsule networks. Chaos, Solitons & Fractals, 140, Article 110122, URL
http://www.sciencedirect.com/science/article/pii/S0960077920305191.

Vani, S., & Rao, T. M. (2019). An experimental approach towards the performance
assessment of various optimizers on convolutional neural network. In 2019 3rd
international conference on trends in electronics and informatics (pp. 331–336). IEEE.

Wang, S.-C. (2003). Artificial neural network. In Interdisciplinary computing in Java
programming (pp. 81–100). Springer.

ang, G.-G., Deb, S., Gandomi, A. H., & Alavi, A. H. (2016). Opposition-based krill
herd algorithm with Cauchy mutation and position clamping. Neurocomputing, 177,
147–157.

ang, G., Guo, L., & Duan, H. (2013). Wavelet neural network using multiple wavelet
functions in target threat assessment. The Scientific World Journal, 2013.

ang, Y., Kang, H., Liu, X., & Tong, Z. (2020). Combination of RT-qPCR testing and
clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2
outbreak. Journal of Medical Virology, 92(6), 538–539.

ang, G.-G., Lu, M., Dong, Y.-Q., & Zhao, X.-J. (2016). Self-adaptive extreme learning
machine. Neural Computing and Applications, 27(2), 291–303.

eiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal
of Big Data, 3(1), 1–40.

olpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
ong, H. Y. F., Lam, H. Y. S., Fong, A. H.-T., Leung, S. T., Chin, T. W.-Y., Lo, C.

S. Y., et al. (2020). Frequency and distribution of chest radiographic findings in
COVID-19 positive patients. Radiology, Article 201160.

u, L., Shen, C., & Hengel, A. v. d. (2016). Personnet: Person re-identification with
deep convolutional neural networks. arXiv preprint arXiv:1601.07255.

u, S., & Li, Y. (2020). Beware of the second wave of COVID-19. The Lancet,
395(10233), 1321–1322.

u, L., Ren, J. S., Liu, C., & Jia, J. (2014). Deep convolutional neural network for image
deconvolution. In Advances in neural information processing systems (pp. 1790–1798).

amashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural
networks: an overview and application in radiology. Insights Into Imaging, 9(4),
611–629.

ang, X.-S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International
Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.

asar, H., & Ceylan, M. (2021). A novel comparative study for detection of Covid-19
on CT lung images using texture analysis, machine learning, and deep learning
methods. Multimedia Tools and Applications, 80(4), 5423–5447.

i, J.-H., Wang, J., & Wang, G.-G. (2016). Improved probabilistic neural networks
with self-adaptive strategies for transformer fault diagnosis problem. Advances in
Mechanical Engineering, 8(1), Article 1687814015624832.

ousri, D., Abd Elaziz, M., Abualigah, L., Oliva, D., Al-qaness, M. A., & Ewees, A. A.
(2021). COVID-19 X-ray images classification based on enhanced fractional-order
cuckoo search optimizer using heavy-tailed distributions. Applied Soft Comput-
ing, 101, Article 107052, URL http://www.sciencedirect.com/science/article/pii/
S156849462030990X.

Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). COVID-19 and
multiorgan response. Current Problems in Cardiology, 45(8), Article 100618, URL
http://www.sciencedirect.com/science/article/pii/S0146280620300955.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

Zhang, K., Liu, X., Shen, J., Li, Z., Sang, Y., Wu, X., et al. (2020). Clinically applicable
AI system for accurate diagnosis, quantitative measurements, and prognosis of
covid-19 pneumonia using computed tomography. Cell.

Zhang, Y., Lobo-Mueller, E. M., Karanicolas, P., Gallinger, S., Haider, M. A., & Khal-
vati, F. (2020). CNN-based survival model for pancreatic ductal adenocarcinoma
in medical imaging. BMC Medical Imaging, 20(1), 1–8.

Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., et al. (2018). A hybrid
MLP-CNN classifier for very fine resolution remotely sensed image classification.
ISPRS Journal of Photogrammetry and Remote Sensing, 140, 133–144.

Zhang, Y.-D., Zhang, Z., Zhang, X., & Wang, S.-H. (2021). MIDCAN: A multiple input
deep convolutional attention network for Covid-19 diagnosis based on chest CT
and chest X-ray. Pattern Recognition Letters.

Zhang, Y., Zhang, X., & Zhu, W. (2021). ANC: attention network for COVID-19 ex-
plainable diagnosis based on convolutional block attention module. CMES-Computer
Modeling in Engineering and Sciences, 127(3).

hao, J., Zhang, Y., He, X., & Xie, P. (2020). Covid-ct-dataset: a CT scan dataset about
covid-19. arXiv preprint arXiv:2003.13865.

hou, T., Lu, H., Yang, Z., Qiu, S., Huo, B., & Dong, Y. (2021). The ensemble deep
learning model for novel COVID-19 on CT images. Applied Soft Computing, 98,
Article 106885.

huang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2020). A comprehensive
survey on transfer learning. Proceedings of the IEEE, 109(1), 43–76.

http://refhub.elsevier.com/S0957-4174(21)01173-8/sb51
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb51
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb51
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb52
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb52
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb52
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb52
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb52
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb53
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb53
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb53
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb53
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb53
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb54
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/2004.09803
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb57
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb57
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb57
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb57
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb57
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb58
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb58
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb58
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb59
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb59
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb59
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb59
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb59
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb60
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb60
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb60
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb60
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb60
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb61
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb61
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb61
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb61
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb61
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb62
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb62
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb62
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb62
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb62
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb63
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb63
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb63
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb63
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb63
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb64
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb64
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb64
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb64
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb64
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb65
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb65
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb65
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb65
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb65
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb66
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb66
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb66
http://arxiv.org/abs/1804.11191
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb68
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb68
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb68
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb68
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb68
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb69
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb69
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb69
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb69
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb69
http://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb71
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb71
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb71
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb71
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb71
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb72
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb72
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb72
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb72
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb72
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb74
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb74
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb74
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb75
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb75
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb75
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb75
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb75
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb76
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb76
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb76
http://arxiv.org/abs/1409.1556
http://www.sciencedirect.com/science/article/pii/S0960077920305191
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb79
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb79
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb79
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb79
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb79
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb80
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb80
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb80
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb81
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb81
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb81
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb81
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb81
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb82
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb82
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb82
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb83
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb83
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb83
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb83
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb83
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb84
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb84
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb84
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb85
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb85
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb85
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb86
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb87
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb87
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb87
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb87
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb87
http://arxiv.org/abs/1601.07255
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb89
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb89
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb89
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb90
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb90
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb90
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb91
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb91
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb91
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb91
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb91
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb92
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb92
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb92
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb93
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb93
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb93
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb93
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb93
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb94
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb94
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb94
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb94
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb94
http://www.sciencedirect.com/science/article/pii/S156849462030990X
http://www.sciencedirect.com/science/article/pii/S156849462030990X
http://www.sciencedirect.com/science/article/pii/S156849462030990X
http://www.sciencedirect.com/science/article/pii/S0146280620300955
http://arxiv.org/abs/1212.5701
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb98
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb98
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb98
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb98
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb98
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb99
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb99
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb99
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb99
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb99
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb100
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb100
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb100
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb100
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb100
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb101
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb101
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb101
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb101
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb101
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb102
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb102
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb102
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb102
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb102
http://arxiv.org/abs/2003.13865
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb104
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb104
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb104
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb104
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb104
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb105
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb105
http://refhub.elsevier.com/S0957-4174(21)01173-8/sb105

	CovH2SD: A COVID-19 detection approach based on Harris Hawks Optimization and stacked deep learning
	Introduction
	Related work
	Background
	Convolutional Neural Networks (CNN)
	Transfer Learning (TL)
	Stacking
	Data augmentation (DA)
	Harris Hawks Optimization (HHO)

	CovH2SD: A hybrid harris hawks optimization deep learning approach
	Experiments, results, and discussion
	Dataset
	Experiments and discussion
	Comparative study

	Conclusions and future work
	Declaration of competing interest
	Appendix
	Table of Abbreviations

	References

