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Starting from Wuhan in China at the end of 2019, coronavirus disease (COVID-19) has propagated fast all
over the world, affecting the lives of billions of people and increasing the mortality rate worldwide in few
months. The golden treatment against the invasive spread of COVID-19 is done by identifying and isolating the
infected patients, and as a result, fast diagnosis of COVID-19 is a critical issue. The common laboratory test for
confirming the infection of COVID-19 is Reverse Transcription Polymerase Chain Reaction (RT-PCR). However,
these tests suffer from some problems in time, accuracy, and availability. Chest images have proven to be a
powerful tool in the early detection of COVID-19. In the current study, a hybrid learning and optimization
approach named CovH2SD is proposed for the COVID-19 detection from the Chest Computed Tomography
(CT) images. CovH2SD uses deep learning and pre-trained models to extract the features from the CT images
and learn from them. It uses Harris Hawks Optimization (HHO) algorithm to optimize the hyperparameters.
Transfer learning is applied using nine pre-trained convolutional neural networks (i.e. ResNet50, ResNet101,
VGG16, VGG19, Xception, MobileNetV1, MobileNetV2, DenseNet121, and DenseNet169). Fast Classification
Stage (FCS) and Compact Stacking Stage (CSS) are suggested to stack the best models into a single one. Nine
experiments are applied and results are reported based on the Loss, Accuracy, Precision, Recall, F1-Score,
and Area Under Curve (AUC) performance metrics. The comparison between combinations is applied using
the Weighted Sum Method (WSM). Six experiments report a WSM value above 96.5%. The top WSM and
accuracy reported values are 99.31% and 99.33% respectively which are higher than the eleven compared
state-of-the-art studies

1. Introduction

The novel Coronavirus (COVID-19) has led to a global crisis due to
its rapid spread from one person to another (Zaim, Chong, Sankara-
narayanan, & Harky, 2020). This crisis began in Wuhan in China in
December 2019. The World Health Organization (WHO) declared the
novel coronavirus caused by SARS-CoV-2 as a pandemic in January
2020 (Xu & Li, 2020). The common symptoms of COVID-19 include,
but are not limited to, fever, dry cough, sleepiness, and loss of smell
and taste (Wang, Kang, Liu, & Tong, 2020). Severe cases may suffer
from the difficulty of breathing and multi-organ damage (Zaim et al.,
2020).

During the first days of the infection, it was very difficult to ex-
amine and diagnose the COVID-19 using the Reverse Transcription
Polymerase Chain Reaction (RT-PCR) test, which is the standard test for
confirming the COVID-19 positive patients (Li, Yao, et al., 2020). RT-
PCR also consumes time and money (Gupta, Anjum, Gupta, & Katarya,

* Corresponding author.

2021). In this case, patients with a late diagnosis can develop severe
symptoms due to the delay in treatment. These patients are also a main
source of infection. So, it is necessary to diagnose patients and isolate
them as early as possible to stop the disease spread (Bahgat, Balaha,
AbdulAzeem, & Badawy, 2021).

In recent studies, medical imaging including Chest Computed To-
mography (CT) and chest X-ray have proven to be a valuable method
for COVID-19 detection (Ozturk et al., 2020; Rubin et al., 2020). In
the investigation of the COVID-19 patients, CT images are powerful
for detecting COVID-19 since they are more sensitive than X-ray im-
ages (Wong et al., 2020). While this technique has some advantages
over the current RT-PCR test regarding the early detection of the
COVID-19 and accuracy, this approach requires experts to understand
the chest images (Gupta et al., 2021; Nour, Comert, & Polat, 2020).

The current evolution in Artificial Intelligence (AI) leads to the
appearance of Deep Learning (DL) approaches (Abdulazeem, Balaha,
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Bahgat, & Badawy, 2021). DL can deal with huge datasets containing
millions of data easily and efficiently (Najafabadi, Villanustre, Khosh-
goftaar, Seliya, Wald, & Muharemagic, 2015). The commonly used
deep learning approach in the field of medical imaging is the Con-
volutional Neural Network (CNN) (Huynh, Li, & Giger, 2016). Due to
their remarkable ability to extract features from images, CNN has been
successfully used in image-related problems (Xu, Ren, Liu, & Jia, 2014).
CNN has also proven to have a superior performance in classification
problems (Zhang et al., 2018). Applications of CNNs in medical imaging
include, but are not limited to, skin cancer classification (Dorj, Lee,
Choi, & Lee, 2018), lung tumor detection (Kasinathan et al., 2019),
pancreatic ductal adenocarcinoma (Zhang, Lobo-Mueller, et al., 2020),
and breast cancer diagnosis (Gao et al., 2018). Thus, CNN can be used
for the detection of COVID-19 patients from either Chest X-ray or CT
images accurately and almost at no time (Marques, Agarwal, & de la
Torre Diez, 2020).

Nowadays, metaheuristic algorithms are powerful for solving dif-
ferent optimization problems. The main reason behind this is their
flexibility (Yousri et al., 2021). Examples of these algorithms are
Genetic Algorithms (GA) (Holland, 1992), Particle Swarm Optimiza-
tion (PSO) (Kennedy & Eberhart, 1995), Cuckoo Search (CS) algo-
rithm (Yang & Deb, 2010), Grasshopper Optimization Algorithm (GOA)
(Balaha & Saafan, 2021; Saremi, Mirjalili, & Lewis, 2017), and Gray
Wolf Optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 2014). Also, many
learning techniques have been used to improve the performance of the
metaheuristic algorithms (El-Gendy, Saafan, Elksas, Saraya, & Areed,
2020; Feng, Wang, Dong, & Wang, 2018; Li, Li, Tian, & Xia, 2019; Li,
Li, Tian, & Zou, 2019; Li & Wang, 2021; Li, Wang, & Alavi, 2020; Li,
Wang, Dong, et al., 2021; Li, Wang, & Gandomi, 2021; Li, Wang, &
Wang, 2021; Li, Xiao, et al., 2020; Nan et al., 2017; Saafan & El-Gendy,
2021; Wang, Deb, et al., 2016).

An interesting algorithm is the Harris Hawks Optimization (HHO)
introduced by Heidari et al. (2019). HHO is a population-based, nature-
inspired optimization algorithm that mimics the chasing behavior of
Harris’ hawks. This behavior is called the surprise pounce, in which
several hawks cooperatively attack a prey, usually a rabbit, from dif-
ferent directions in a bid to shock it. HHO algorithm works similarly.
There is an interest in the use of HHO in several applications (Bao, Jia,
& Lang, 2019; Chen, Jiao, Wang, Heidari, & Zhao, 2020; Golilarz, Gao,
& Demirel, 2019; Jia, Lang, Oliva, Song, & Peng, 2019).

In the current study, a hybrid Harris hawks optimization deep
learning approach for the COVID-19 detection (CovH2SD) is proposed
to diagnose positive COVID-19 patients using the chest CT images.
The proposed approach consists of two major stages (1) Fast Clas-
sification Stage (FCS) and (2) Compact Stacking Stage (CSS). FCS
makes use of nine fine-tuned pre-trained CNNs, namely ResNet50 and
ResNet101 (He, Zhang, Ren, & Sun, 2016), VGG16, VGG19 (Simonyan
& Zisserman, 2014), Xception (Chollet, 2017), MobileNet (Howard
et al.,, 2017), MobileNet-v2 (Sandler, Howard, Zhu, Zhmoginov, &
Chen, 2018), DenseNet121, and DenseNet169 (Balaha, Ali, Youssef,
et al., 2021; Huang, Liu, Van Der Maaten, & Weinberger, 2017).

The usage of the pre-trained methods via transfer learning (TL)
can reduce the computational cost and offer more accurate results
especially in the case of the COVID-19, in which there is not enough
data to build CNNs from scratch. Here, we used the HHO algorithm to
optimize these pre-trained models to increase the accuracy of detection.
In CSS, alternative stacking configurations of the different models are
made in order to choose the most suitable model. CovH2SD maps the
different stacking configurations into a proposed Quality Space (QS),
calculates the rank of each model, and the models with the most
significant ranks are used to classify COVID-19. CovH2SD is first trained
and tested to classify chest CT images into patient and normal classes.
The prime contributions of the current research can be summarized
into:
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1. Proposing a hybrid Harris hawks optimization deep learning
approach for the COVID-19 detection (CovH2SD) using the chest
CT images.

2. Applying transfer learning using nine pre-trained convolutional
neural network models.

3. Injecting Harris haws optimization in the learning process to
select the optimal configurations for each model.

4. Presenting a stacking mechanism from the optimized models.

5. The proposed approach is benchmarked against other state-of-
the-art models.

The rest of the paper is organized as follows. Section 2 gives a
quick survey about the related models for the detection of COVID-19.
Section 3 illustrates the basic knowledge needed to understand the pro-
posed model. The techniques used to build the proposed CovH2SD and
its structure are explained in Section 4. The experimental results and
their discussion, and the comparative study of our proposed approach
are discussed in Section 5. Section 6 presents the conclusion and future
works.

2. Related work

In this section, we introduce a quick overview of the latest research
regarding the use of artificial intelligence in the detection of COVID-19
from chest images, either X-ray or CT.

Ozturk et al. (2020) proposed “DarkCovidNet”, a deep learning
model to classify COVID-19 and pneumonia from X-ray scan images.
They classified images into “COVID-19” and “Normal” for binary clas-
sification, and into “COVID-19”, “Pneumonia Bacterial”, “Pneumonia
Viral”, and “Normal” for multi-class classification. They achieved an
accuracy of 89.6%, 95%, and 98.08% for four, three, and binary class
classifications, respectively.

Apostolopoulos and Mpesiana (2020) used the TL-based CNN mod-
els on a database of X-ray images including COVID-19 disease, bacterial
pneumonia diseases, and normal images; obtaining an accuracy of
98.75% for VGG19 and 97.40% for MobileNetV2.

Hemdan, Shouman, and Karar (2020) proposed “COVIDX-Net”, a
deep learning model including seven different architectures to detect
the COVID-19 from chest X-ray images. The best-achieved accuracy was
90% from both VGG19 and DenseNet201. Khan, Shah, and Bhat (2020)
proposed a novel CNN model called “CoroNet” built using Xception
architecture. They could achieve an average accuracy of 89.6%.

Toraman, Alakus, and Turkoglu (2020) proposed a Convolutional
“CapsNet” model for the COVID-19 detection from X-ray images and
applied it to both binary classification and multi-class classification,
achieving an accuracy of 97.24% and 84.22%, respectively.

Gupta et al. (2021) proposed “InstaCovNet-19”, an integrated
stacked deep convolution network. The architecture of the model is
based on the pre-trained models such as ResNet101, Xception, and
InceptionV3. They classified Chest X-ray images into “COVID-19”,
“Pneumonia”, and “Normal” (multi-class classification), and “COVID-
19” and “Normal” (binary classification), achieving an accuracy of
99.08% and 99.53%, respectively.

Furthermore, Gour and Jain (2020) proposed a stacked model con-
sisting of the VGG19 model and developed a model called “CovNet30”
consisting of a 30-layered CNN model. They applied the model on chest
X-ray images and achieved an accuracy of 92.74%. Mangal et al. (2020)
proposed “CovidAID”, a deep neural network-based model for detecting
COVID-19 in chest X-ray, achieving an accuracy of 90.5%.

Aslan, Unlersen, Sabanci, and Durdu (2020) used a hybrid approach
by applying TL to AlexNet architecture and adding a Bidirectional
Long Short-Term Memories layer to detect COVID-19 in X-ray images.
They could achieve an accuracy of 98.70%. Zhang, Liu, et al. (2020)
proposed a CNN model based on ResNet18 architecture for multi-class
classification of COVID-19 using CT images. They achieved an accuracy
of 92.49%.
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Ardakani, Kanafi, Acharya, Khadem, and Mohammadi (2020) ap-
plied 10 CNN structures to detect COVID-19 in CT images. The best
performance was achieved by ResNet101 with an accuracy of 99.51%
and Xception with an accuracy of 99.20%.

Zhang, Zhang, and Zhu (2021) proposed an attention network for
the diagnosis of COVID-19 using a convolutional block attention mod-
ule. They also used Grad-CAM to give an explicable diagnosis. They
achieved an accuracy of 96.32% + 1.06%, and 96.00% + 1.03% using two
different datasets.

In the work proposed by Zhang, Zhang, Zhang, and Wang (2021),
they proposed a multiple-input deep convolutional attention network
using a convolutional block attention module. There are two inputs
to the model, one for 3D chest CT image, and the other for 2D X-ray
image. They could achieve an accuracy of 98.02% + 1.35%.

The previous studies are just examples of the existing research in
the application of artificial intelligence to the diagnosis of COVID-19
patients. As seen from the studies, the most important factors affecting
the accuracy are the structure of the model and the dataset used in the
learning process. What distinguishes this study from all of the presented
works is that HHO is used to select the optimal hyperparameters for
the different CNN pre-trained models. We believe that we can achieve
better results by stacking the optimized pre-trained models. In the
next section, we discuss the basic knowledge, concepts, and algorithms
required to implement the suggested approach.

3. Background

In the current section, all the basic knowledge used in the suggested
approach about Convolutional Neural Networks, Transfer Learning,
and Stacking are explained. Moreover, we demonstrate the important
aspects of the Harris Hawks Optimization algorithm.

3.1. Convolutional Neural Networks (CNN)

The main inspiration behind the artificial neural network (ANN) is
the human nervous system and the structure of the cerebral cortex. A
simple ANN consists of at least one neuron. It mimics the natural neu-
ron, thus it has two main functions: summing the different inputs, and
the result passes through an activation function. The activation function
is used to output a predefined value based on a threshold (Wang, 2003).

The structure of ANN is usually in the form of layers. Each layer
contains a different number of neurons. This type of ANN is called a
feedforward neural network. These networks consist basically of an
input layer, an output layer, and one or more hidden layers. The
network can learn to classify, recognize, and identify different objects
by adjusting the weights of the hidden layers (Livingstone, 2008). The
algorithm used for learning in feedforward neural networks is called the
back-propagation algorithm. The adaptation of the weights is done in a
way that a certain loss (cost) function is to be minimized. In summary,
the ANN objectives can be described in two steps: (1) finding the ideal
values of the different weights, while (2) minimizing a certain loss
function (Abiodun et al., 2018).

It is worth mentioning that, other algorithms have been proposed to
overcome the disadvantages of traditional learning algorithms such as
the time taken by the network to learn, the dependency of the learning
process on the learning rate parameter, and the risk of falling in local
minimum (Cui et al., 2018; Wang, Guo, & Duan, 2013; Wang, Lu, et al.,
2016; Yi, Wang, & Wang, 2016).

However, when dealing with images and computer vision problems,
there is an incredible number of features to extract and learn. Feed-
forward neural networks are not powerful to deal with this massive
data. CNNs are designed to deal with images (Albawi, Mohammed, &
Al-Zawi, 2017). They depend on the convolutional operation that can
be processed in parallel. CNNs can learn only the important features
from images with much fewer connections and parameters (Krizhevsky,
Sutskever, & Hinton, 2012). To improve the performance of CNN, many
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Fig. 1. Graphical Illustration of the Convolution Process.

factors should be considered; including the initialization of weights,
the optimization algorithm used, the learning rate, the type of chosen
activation function, the proper choice of the loss function, and the
number of epochs (Qin, Yu, Liu, & Chen, 2018). The information
(extracted features) passes through the different layers of the CNN
(e.g. convolution, pooling, and fully-connected (FC) layers) (Yamashita,
Nishio, Do, & Togashi, 2018).

Convolution Layer: Convolution means to convolve a matrix (i.e.
kernel) that slides through the entire input image and is multiplied to
that image to extract some features of this image. Thus, the convolution
layer performs feature extraction. Neurons at this layer are called
filters, and they take the inputs and convert them into output feature
maps. Mathematically, the filter shifts from left to right until reaching
the maximum width of the image. Then, the filter begins at the left-
most pixel of the next row. The process continues till the entire image
is completed (Balaha, Ali, & Badawy, 2021).

The convolution of a (5 x 5) image by a (3 x 3) kernel is illustrated
in Fig. 1.

The original image in Fig. 1(a) is padded by zeros as shown in
Fig. 1(b). Padding helps to work with the boundary pixels. A stride of
(2x2) is applied as shown in Fig. 1(d). The stride is the size of the sliding
window in both directions. The result of this process is a matrix called
the feature map. The size of a feature map is calculated based on the
convolutional size, stride, padding, and filter size as shown in Eq. (1).

_fc?;“’zx.acw’hin_fch"'szch’fm) (1)

o Wip
ConvOutSize = (
cw Sch

where w;, is the input width, A;, is the input height, f,, is the
convolutional filter width, f,, is the convolutional filter height, p,,,
is the convolutional padding width, p,, is the convolutional padding
height, s, is the convolutional stride width, s , is the convolutional
stride height, and f,, is the number of convolutional filters.
Activation Functions: The output of the convolution layer passes
through an activation function. The reason behind that is to calculate
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Table 1
The different activation functions.
Function Equation
Linear f(2)=z
0, if z<O.
Step f(z)=
1, otherwise.
Exponential f(2) = exp(z)
ELU F)= ax(exp(z)— 1), if z<0.
z, otherwise.
SELU £ = scale X a X (exp(z) — 1), if z<O0.
scale X z, otherwise.
Sigmoid f(z)= m
_ 2
Tanh f@= T+exp(—2xz)
0, if z<0.
ReLU f@)= .
z, otherwise.
axz, if z<O0.
Leaky ReLU f(@=
z, otherwise.
Linear Step Exponential
ELU SELU Sigmoid
Tanh RelLU Leaky ReLU

Fig. 2. Graphical Illustration of the Activation Functions.

the output of the neural network. Depending on the type of the used
activation function, the output of the network changes. So, the choice
of a suitable activation function is required to get the correct response.
This choice depends mainly on the type of the problem, this means
that every problem can have the right activation function. There are
different types of activation functions. Two main categories exist, which
are: linear and nonlinear activation functions. The output of each type
is different, and hence we have different options for the outputs of the
neurons. Table 1 shows some different well-known activation functions
and they are summarized in Fig. 2.

Pooling Layer: Pooling layers are used to reduce the dimensions
of the feature maps. It is preferred to add a pooling layer after every
convolution layer to reduce the computational complexity and help
overcome the overfitting problem. There are different types including
max-, average- (i.e. mean-), and sum-pooling. In max-pooling, the max-
imum value is used. In average-pooling, the average value is calculated
while in sum-pooling, the summation is applied. Fig. 3 presents a
graphical illustration of the different pooling types.

The output size of a pooling layer is calculated based on the input
size, stride, and pooling size as shown in Eq. (2).

win_fpw hin_fph )
- T Jin

Spw Sph

PoolOutSize = < 2
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Fig. 3. Graphical Illustration of the Pooling Layer Types.

where f,, is the pooling width, f,, is the pooling height, s, is the
pooling stride width, s,, is the pooling stride height, and f;, is the
number of input filters.

Fully-Connected (FC) Layer: The output of the pooling layer is
then flattened. Flattening is the process of converting a matrix into a
vector. This vector is fed to the fully connected layer. FC Layers are the
last layers in the CNN. They are simply feed-forward neural networks.

Dropout: It is simply to drop out some neurons in a neural network.
The CNN is supposed to be fully connected. However, sometimes it is
useful to randomly set the output of some hidden layer neurons to 0 at
the training phase. The introduction of dropout can cause the weights
of the network to be larger than normal. As a solution to this problem,
it is recommended to scale the weights by a chosen suitable dropout
rate. The use of dropout is useful because it helps avoid overfitting in
networks.

Parameters Optimizers: The selection of the proper parameters’
optimizer plays an important role in evaluating the performance of
the CNN. It is necessary to choose a suitable optimizer to converge
faster and avoid the local minima. There are different types of op-
timizers for the CNN such as Adaptive Momentum (Adam) (Kingma
& Ba, 2014), Adaptive Gradient (AdaGrad) (Luo, Xiong, Liu, & Sun,
2019), Nesterov Adaptive Momentum (NAdam) (Dozat, 2016), Adap-
tive Delta (AdaDelta) (Dogo, Afolabi, Nwulu, Twala, & Aigbavboa,
2018), Root Mean Square Propagation (RMSProp) (Wu, Shen, & Hengel,
2016), Stochastic Gradient Descent (SGD) (Bottou, 2012), and Adaptive
Max-Pooling (AdaMax) (Vani & Rao, 2019).

Adaptive Momentum (Adam): Adam is an efficient and simple
optimization technique that can be used in stochastic optimization. It
uses the first-order gradients and updates the parameters (i.e. weights)
using Eq. (3).

_oxm
N

where o represents the learning rate, m, is the exponentially decaying
average of the past gradient (i.e. first mean of gradients), 6, is the
exponentially decaying average of the square of the past gradient
(i.e. second uncentered variance of gradients), and ¢ is a small value
to avoid the division by zero.

Adaptive Gradient (AdaGrad): AdaGrad is an adaptive optimiza-
tion technique. It adjusts the learning rate to update the parameters.

UpdateAdum = (3)
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Thus, it performs massive updates when parameters are inconsistent
and vice versa. AdaGrad updates the weights using Eq. (4).

[

V¥ +e

where y, is the gradient of the loss function and ¥, is a diagonal matrix
in which each diagonal element is the sum of squared gradients.

Stochastic Gradient Descent (SGD): SGD is an optimization al-
gorithm that represents a variation of the gradient descent to solve
problems with huge datasets (Ruder, 2016). SGD updates the weights
using Eq. (5).

UpdaleAdaGrad == Oy, C))

Updateggp = —6 Xy, (5)

Root Mean Square Propagation (RMSprop): RMSprop is an up-
dated version of AdaGrad to overcome the problem of monotonicity in
reducing the learning rate. RMSprop applies a moving average of the
squared gradient (Ruder, 2016). RMSprop updates the weights using
Eq. (6).

o Xy,

VR, +e

where R[y?], represents an exponentially decaying average of squared
gradients.

Adaptive Delta (AdaDelta): AdaDelta is an updated version of
the AdaGrad to overcome the problem of monotonicity in reducing
the learning rate. It applies a fixed size window in collecting past
gradients (Zeiler, 2012). AdaDelta updates the weights using Eq. (7).

(6)

Updategprsprop = =

RM S[AY]y

RMS[y], Xy, @)

Update 44,peina = —

where RM S represents the root mean square error of the gradient.

Adaptive Max-Pooling (AdaMax): AdaMax represents an updated
version of Adam. The square root in the denominator is replaced by
an exponentially weighted infinity norm (Ruder, 2016). It updates the
weights using Eq. (8).

oXm,

®

Update T Thax(h X0, v
p AdaM ax max(4; X 6,_;,y,)

where 4, represents a hyperparameter.

Nesterov Adaptive Momentum (NAdam): NAdam is a variant of
the weight update rule. In this optimization algorithm, the gradient is
computed after applying the velocity (Ruder, 2016). NAdam updates
the weights using Eq. (9).

1-4
c _x Ay Xm; — fxw, 9
0, +e 1=

where 4, represents a hyperparameter.

Updatey ggam = =

3.2. Transfer Learning (TL)

In real-world problems, training data is not always sufficiently
available to be used to make a CNN from scratch (Weiss, Khoshgoftaar,
& Wang, 2016). The main idea behind the TL is to reuse the pre-trained
CNN models that have been already trained on large datasets such as
ImageNet in other applications, especially when the available datasets
are limited (Deepak & Ameer, 2019). ImageNet is a huge dataset of
labeled and categorized images (about 22,000 categories) used for
training CNN models to correctly classify different images (Krizhevsky
et al., 2012). In other words, when it becomes difficult to build CNN
models from scratch, we can transfer all the knowledge learned by the
network to a new application. So, TL is needed in scenarios where the
data for training is not enough for constructing CNN from scratch. The
unavailability of data may happen because of many reasons including,
but not limited, to paucity of data, costly in the collection, or a new
topic with a limited amount of data (Pan & Yang, 2009).
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Several pre-trained models exist that can be applied using the TL
such as ResNet50, ResNet101, VGG16, VGG19, Xception, MobileNet,
MobileNetV2, DenseNet121, and DenseNet169. The usage of these pre-
trained models can result in an accuracy that is much better than the
accuracy of a CNN built from scratch. The implementation of the TL can
be done in one of two approaches, namely (1) Feature Extraction (Oren-
stein & Beijbom, 2017) and (2) Fine-Tuning (Guo et al., 2019). In the
first approach, the feature extractor that is part of the network is pre-
trained on the standard dataset (usually ImageNet) while the classifier
is replaced and trained on the new data. On the other hand, the second
approach updates the weights of the entire pre-trained model, including
the feature extractor part (Zhuang et al., 2020).

ResNet50: ResNet stands for Residual Network; it means a deep
network that is built upon the idea of residual learning. Residual
learning is an interesting paradigm that is used to express a network
that extracts residuals instead of features. This can help in solving the
vanishing gradient problem. ResNet50 is a version of ResNet that has
50 layers and 16 residual blocks (He et al., 2016).

ResNet101: ResNet101 is another version of ResNet that applies the
paradigm of residual learning. So, the vanishing gradient problem is
solved in this type of network. This network contains 101 layers with
33 residual blocks (He et al., 2016).

VGG16: VGG16 has 16 layers consisting of five convolutional blocks
with 13 convolutional layers, and 3 FC layers. This network is an
enhanced version of AlexNet with an improved kernel structure. It
was initially trained on the ImageNet dataset (Simonyan & Zisserman,
2014).

VGG19: VGG19 has an architecture with more deep layers than
VGG16. It has 19 layers consisting of 5 convolutional blocks with 16
convolutional layers, and 3 FC layers. It was initially trained on the
ImageNet dataset (Simonyan & Zisserman, 2014).

Xception: Xception stands for “extreme inception”. It is a deep CNN
that is built on the idea of depth-wise separable convolution layers. It
has 36 layers consisting of 2 convolution layers, depth-wise separable
convolution layers, and 4 convolution layers. All the previous layers are
followed by an FC layer at the end (Chollet, 2017).

MobileNet: MobileNet is also based on the idea of depth-wise
separable convolution layers. This is an efficient way to reduce the
complexity and size of the model. It has 28 layers consisting of con-
volution layers, followed by depth-wise separable convolution layers.
All the previous layers are followed by an FC layer at the end (Howard
et al., 2017).

MobileNetV2: MobileNetV2 is a modified version of the MobileNet
to include inverted residual blocks and linear bottlenecks. Therefore,
this network is faster than the traditional MobileNet. It has 52 deep
layers consisting of 3 convolution layers, 16 inverted residual and linear
bottleneck blocks, and ends with a single convolution layer. All the
previous layers are followed by an FC layer at the end (Sandler et al.,
2018).

DenseNet121: DenseNet stands for “Densely Connected Convolu-
tional Networks”. It requires much fewer parameters than other CNN
types. However, its architecture takes a long time for training because
every layer is connected to all its following layers and as a result, every
layer has to wait for the previous layers to take its input (Celik, Talo,
Yildirim, Karabatak, & Acharya, 2020). This problem was solved by
introducing both the input image and the gradient values to all layers.
DenseNet121 is a dense network with 121 layers. This type of networks
contains 4 dense blocks. Transition layers consisting of convolution and
pooling layers are also included between every two adjacent blocks to
change the feature-map sizes (Huang et al., 2017).

DenseNet169: DenseNet169 is another dense network with 169
layers. This type of networks contains 4 dense blocks. Transition layers
consisting of convolution and pooling layers are also included between
every two adjacent blocks to change the feature-map sizes (Huang et al.,
2017).
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Fig. 4. Data Augmentation Graphical Illustration using a CT Image.

3.3. Stacking

Stacking was proposed by Wolpert (1992), who suggested building
a model consisting of sub-models of different neural networks as clas-
sifiers and use the outputs of these models in another neural network.
In this way, only one model is used for both feature extraction and
classification (Ju, Bibaut, & van der Laan, 2018). The idea behind
stacking is that several models are trained on the same dataset to solve
the same problem and then these models are integrated into a single big
model. This can extremely enhance the performance and robustness of
the resulting system.

3.4. Data augmentation (DA)

Another solution to the unavailability and diversity of data is to
apply data augmentation (DA) techniques. DA helps to increase the size
of the training set by producing more images from the original set by
applying some image processing techniques (Salamon & Bello, 2017).
On the other hand, DA can help to avoid the overfitting problem by
providing more training examples so that the network can learn and
extract important features only (Shorten & Khoshgoftaar, 2019). DA can
be achieved by manipulating the original image to get a new image that
is quite different from its source by using several methods (Basaran,
Comert, & Celik, 2020) such as cropping, zooming, shearing, rotating,
flipping, and changing the brightness.

To crop an image means to take only a selected part of the image
and neglect the remaining parts. Zooming in (or out) means to either
make the image closer (or farther away). Shearing an image is to
transfer one part of an image in a direction and the other part in the
opposite direction. Rotating an image means changing the angle of the
image around its center either in a clockwise or a counterclockwise
direction. Flipping has a mirror-like effect, which means that the image
is changed either vertically, horizontally, or both as if in a mirror.
Brightness affects the light amount in an image so that the image
can be darker or lighter. Fig. 4 shows the result of applying different
augmentation methods on a sample CT chest image.

Fig. 5. Graphical Summary on the Harris Hawks Optimization (HHO) Phases (Heidari
et al., 2019).

3.5. Harris Hawks Optimization (HHO)

Harris Hawks Optimization (HHO) was introduced by Heidari et al.
(2019) as a population-based swarm algorithm for solving different op-
timization problems. This algorithm mathematically mimics the feeding
behavior of the Harris hawks in that they collaborate to explore, hunt,
surprise, and chase preys (e.g. rabbits). Similar to most of the optimiza-
tion algorithms, HHO has both the exploration and exploitation phases.
The phases are summarized in Fig. 5.

Exploration Phase: During the exploration phase, the hawks pa-
tiently search and explore for the desired prey after perching on some
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random locations. There are two different followed strategies by the
hawks where each of them has a probability p of the half for selection.

For the first strategy p < 0.5, the hawks can observe the prey based
on the positions of other members in the hunting swarm. On the other
hand, the second strategy p > 0.5 means that hawks can perch randomly
on the trees to explore the entire search area. These two states can be
expressed by Eq. (10).

Y(lt+l)_— Y( ) IXY’() X ZXY(”)lv 1fp>05
(Y],() Y()) 3X(l‘ 4X(EU Bl)), 1fp<0$.

(10)

where Y (it+1) represents the position vector update of the hawks in the
next iteration it + 1, Y(ir) represents the position vector of the hawks in
the current iteration it, Y,(it) represents the position of a random hawk,
Y, (it) represents the position of the prey, r|, r,, 3, r4, and p represent
random numbers in the range [0, 1], Uz and L represent the lower and
upper bounds of the variables, and Y,,(i7) is the average of the positions
of the hawks calculated using Eq. (11).

NP
Y,,(in) = NL x D (¥;(in) an
P =1

where Y/ (ir) is the current position of hawk j, and N, is the population
size (i.e. total number of hawks in the swarm).

Transition from Exploration to Exploitation Phase: HHO has an
additional phase, namely “transition from exploration to exploitation”,
in which the hawks calculate the energy of the prey. This phase is the
intermediate state between exploration and exploitation in which the
prey tries to escape from the hawks’ attacks. As the prey is running
away, its escaping energy E, is reduced based on Eq. (12).

it

E,=2XE,;Xx(1-
¢ w0 X ( iters

) 12)

where E, is the initial escaping energy of the prey, and iters is the total
number of iterations of the algorithm. The value of the escaping energy
lies in the interval [—1, 1]. The values of E, outside this interval indicate
that the exploration phase has not terminated yet. The exploration
occurs when |E,| > 1 while the exploitation occurs when |E,| < 1.

Exploitation Phase: In the exploitation phase, the hawks move
based on the calculated energy to surround the rabbit from different
directions. The positions of the hawks in nature are mapped to the
desired possible solutions and the best position belongs to the hawk
with the closest position to the prey. This phase contains two basic
behaviors, namely attacking hawks and running away from the prey.
The hawks attack their victims in a behavior called “surprise pounce”.
The attacking of the hawks has four different techniques, depending
on specific conditions, which are (1) soft besiege, (2) soft besiege with
progressive rapid dives, (3) hard besiege, and (4) hard besiege with
progressive rapid dives.

The choice between the different techniques depends on two param-
eters, namely the probability of escape of the prey r and the escaping
energy of the prey E,. r is a probability that lies in the range from 0 to
1. However, we have already mentioned that E, lies between —1 and
1. The possibilities of r and E, divided as shown in Fig. 6.

If r < 0.5, this means that the prey has more chance of escape;
otherwise, the prey will not be able to escape. |E,| < 0.5 means the
prey has insufficient energy to escape; otherwise, the prey has enough
energy. E, is used to specify whether the surrounding is hard or soft,
while r is used to choose between rapid and normal steps.

First Technique: Soft Besiege: This technique is applied when
r > 0.5 and |E,| > 0.5. In this case, the prey is not able to escape and
the hawks apply soft surroundings as shown in Eq. (13).

Y (it + 1) = AY (it) — E, X (J X Y, (it) = Y (it)) (13)

where AY (if) is the distance between the prey and the current hawk in
iteration it (i.e. Y,(if) — Y (ir), and J is the amount of escape made by
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the prey and is calculated using Eq. (14) where r5 is a random value
between 0 to 1.

J=2x(1-rs) a4

Second Technique: Hard Besiege: This technique is applied when
r > 0.5 and |E,| < 0.5. In this case, the prey is drained that the hawks
need no power to catch them as shown in Eq. (15).

Y(@r+1) =Y,(ir) — E, X |4Y (ir)] (15)

Third Technique: Soft Besiege with Progressive Rapid Dives:
This technique is applied when r < 0.5 and |E,| > 0.5. In this case, the
prey still has some energy to run away and the hawks use soft besiege.
In this situation, the hawks react in a way such that they choose the
most suitable steps towards the prey. They calculate the consequence of
their possible next step towards the prey. If this step is useful, then they
use Eq. (16) to update their current position. Otherwise, they apply the
levy flight (LF) technique to approach the prey in rapid dives based on
Eq. (17).

Q =Y, (it) — E, x (J XY, (ir) — Y (it)) 16)
V=0+SXLF(D) 17
where D is the search space dimensions, S is a random vector of size

1 x D, and LF is levy flight function expressed by Eq. (18).

VXo

LF =0.01x (18)

1
|1
where v and 1 are random values from 0 to 1, and f is a constant value
of 1.5. § is calculated using Eq. (19).
(7)
r(+p)xsin05xzxp) |
simn(V.. V3 (19)

()
IFrOSxA+p)xpx2\ 2
The final equation for the position update in case of soft besiege
with progressive rapid dives is Eq. (20).
, if F(Q) < F(Y (i)
Y+ 1) = 0] 1 ()] Y @n) (20)
Vv, if F(V) < F(Y(it)).
where F is a fitness function.

Fourth Technique: Hard Besiege with Progressive Rapid Dives:
This technique is applied when r < 0.5 and |E,| < 0.5. In this case, the
prey has no energy to run away and the hawks use hard-besiege. The
hawks use the same technique used in soft besiege with progressive
rapid dives situation. However, they minimize the gap between their
average location and the location of the prey. The used equation for
updating the position is shown in Eq. (21).

if F(Q') < F(Y(it)).

/
yar+n=4<" 1)
V', if F(V') < F(Y(it)).

where Q' and V' are calculated from Eqgs. (22) and (23) respectively.
Q' =Y, (in) — E, x (T x Y, (it) = Y,,(it)) (22)
V=0 +Sx LF(D) (23)

The overall flow of the HHO is summarized in Fig. 7.

4. CovH2SD: A hybrid harris hawks optimization deep learning
approach

The main motivation towards the evolution of our proposed
CovH2SD approach is to diagnose the patients that have COVID-19 or
not. Time is a critical issue during the investigation of the COVID-19, as
one patient can cause infection to his surroundings. So, early detection
and isolation of patients can help to stop the spread of the virus.

CovH2SD is a hybrid approach based on the idea of stacking dif-
ferent CNN models as shown in Fig. 8. The transfer learning approach
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Fig. 6. The Different HHO Possibilities in the Exploitation Phase.

Initialize the Population
Randomly

[ Report the Best Solution ]
Calculate the Fitness of each
Solution in the Population

End ¢

Find the Best Fitness Score

suonnjos e pajarduro)

For each Solution
in the Population

Update the Initial Escape
Energy, Escape Probability,
and Jump Strength

¥

[ Update the Escape Energy ]

Yes

Perform Soft Besiege
with Progressive

Rapid Dives No Perform Exploration

Perform Hard

Besiege with
Progressive Rapid No
Dives
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is used as there are only limited accuracy datasets in this topic com-
pared to others. The suggested approach uses nine different models.
They are ResNet50 and ResNetl01 (He et al., 2016), VGG16 and
VGG19 (Simonyan & Zisserman, 2014), Xception (Chollet, 2017), Mo-
bileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018),

DenseNet121, and DenseNet169 (Huang et al., 2017). We trained and
fine-tuned these models with the COVID-19 CT dataset. The HHO al-
gorithm is injected into the learning process. After the learning process
is completed, we used a stacking mechanism to conduct a new model
that is more accurate and robust than the individual ones. Algorithm
1 shows the optimization and learning internal steps of the CovH2SD
approach.

Algorithm 1 outlines the major phases of the suggested approach. It
accepts the dataset X and the corresponding categories (i.e. labels) Y,
the dataset split ratio Split, the population size N,, and the number
of iterations iters. It uses the Harris Hawks Optimization (HHO) to
optimize the hyperparameters during the iters iterations. The hyper-
parameters that are required to be optimized are (1) the parameters
optimizers Os, (2) the deep learning pre-trained models learning ratio
Ls, (3) the dropout ratio Ds, and (4) the learning batch size Bs. Simply,
the HHO is used to answer the following question “For each model,
what is the best hyperparameters combination that leads to the best
performance after completing the iterations?”.

Adam, NAdam, AdaDelta, AdaGrad, AdaMax, SGD, RMSProp, and
Ftrl are the used parameters (i.e. weights) optimizers, [32,64] are the
used batch sizes, [0 : 60]% is the range of the dropouts, and [0 :
5 : 100]% is the range of the learning ratios. VGG, VGG19, Xcep-
tion, ResNet50, ResNet101, MobileNet, MobileNetV2, DenseNet121,
and DenseNet169 are the pre-trained CNN models that are used in the
current study.

The dataset is split into training, testing, and validation using the
Split ratio. The training portion is used in the learning process, the
validation is used to judge the model performance during the learning
process, and the testing portion is used to evaluate the model perfor-
mance after finishing its learning process. A loop is applied on each
model from the used pre-trained CNN models. For each model, the
following steps are followed:

(1) Initiate the Population: The initial population is created. The
number of solutions is defined by N, and the size of a single solution is
4 as we have four hyperparameters that are required to be optimized.
Hence, the population is a matrix with a size of (N,,4). Each value is
random from 0 to 1. These values will be mapped in the next step into
the corresponding hyperparameters.
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Fig. 8. CovH2SD: A Hybrid Harris Hawks Optimization Deep Learning Approach.

Algorithm 1: The Suggested Hybrid Harris Hawks Optimization Deep Learning Approach (CovH2SD) Pseudocode.

1: function CovH2SD(X, Y, Split, N,, iters) \\ The function accepts the dataset and labels, the dataset split ratio, the population size, and the
number of iterations.

2: Os < [Adam, NAdam, AdaDelta, AdaGrad, AdaMax, SGD, RMSProp, Ftrl] \\ The deep learning parameters optimizers.

3: Bs « [32,64] \\ The deep learning batch sizes.

4: Ds < [0 : 60]% \\ The deep learning dropout ratios.

5: Ls < [0:5:100]% \\ The deep learning pre-trained models learning ratios.

6: M s < [Loss, Accuracy, Precision, Recall, F1-Score, AUC] \\ The deep learning judgment performance metrics.

7: Models < [VGG, VGG19, Xception, ResNet50, ResNet101, MobileNet, MobileNetV2, DenseNet121, DenseNet169]  \\ The deep learning
pre-trained models.

8: ‘ Xirains Yirains Xvatidations Yvalidations Xiest» Yres: < SplitDataset(X, Y, Splir) \\ Split the dataset using the split ratio into training, validation,
and testing.

9: ‘ bestSolutions < [] \\ Initiate the best solutions list to carry the models best solutions.

10: while (model € Models) do

11: it « 1 \\ Initiate an iterator.

12: population < InitiatePopulation(N,,) \\ Create the initial population using the population size.

13: while (if < iters) do

14: ‘ populationScores « CalculateFitnessScores(model, population, Os, Bs, Ds, Ls, MS, X, 4in> Yirain> Xvatidations Yvatidations Xtest> Yeest)  \\
Get the population with the corresponding fitness scores.

15: new Population « UpdatePopulation(populationScores, it, iters) \\ Update the population.

16: population < new Population \\ Set the newPopulation to population.

17: it —it+1 \\ Update the iterator.

18: bestSolution — ExtractTop(population) \\ Extract the top (i.e. best) solution from the population after sorting them in a descending
order.

19: bestSolutions < Append(bestSolutions, bestSolution) \\ Append the best solution in the best solutions list.

20: stacked M odel — StackBestSolutions(bestSolutions) \\ Stack the best solutions into a single stacked model.

21: return stacked M odel \\ Return the stacked model.
(2) Calculate Fitness Scores: For each of the solutions, the fitness Algorithm 2. The population, current model, hyperparameters, and data

scores are calculated. The implementation of this step is shown in are sent as inputs to that function.



H.M. Balaha et al.

Expert Systems With Applications 186 (2021) 115805

Algorithm 2: Calculating the Fitness Scores Pseudocode.

1: function CarcuraTeFiTNESSScores(model, population, Os, Bs, Ds, Ls, M's, X

Y, X

Yualidalion’ Xlesn Ytext)

train> “train> “*validation>
2: populationScores « [] \\ Initiate the population scores as an empty list.
3: while (solution € population) do
4: mod Solution — MapSolutionToHyperparameters(solution, Os, Bs, Ds, Ls) \\ Map the solution into hyperparameters.
5: trained M odel « TrainModel(model, X,,4in> Yirain> Xvatidation> Yoatidations MS) \\ Train and validate the model.
6: fitnessScore «— TestModel(trained Model, X,,5, Y;051, M's) \\ Test the model and compute the performance.
7: populationScores «— Append(populationScores, (solution, fitnessScore)) \\ Append the solution with the corresponding fitness score in

the list.
8: return populationScores

\\ Return the population scores.

For each of the solutions, the solution is first mapped to hyperpa-
rameters. They are injected into the learning process. The pre-trained
CNN model is trained for a set of epochs on these hyperparameters.
After learning, the performance is calculated and appended in the pop-
ulation scores list. The used performance metrics are Loss, Accuracy,
Precision, Recall, F1-Score, and Area Under Curve (AUC). Accuracy is
the ratio between the total number of right predictions and the total
number of predictions made by the model as shown in Eq. (24).

TP+TN

24
TP+TN+FP+FN

Accuracy =

where TP, TN, FP, FN are true positive, true negative, false positive,
and false negative respectively. TP is the case when the forecasts of the
data are positive, and the results of the model are also positive. TN is
the case when the forecasts of the data are negative, and the results of
the model are also negative. FP is the case when the forecasts of the
data are negative, and the results of the model are positive. FN is the
case when the forecasts of the data are positive, and the results of the
model are negative.

Precision is the ratio between the total number of true positive
predictions and the total number of positive predictions made by the
model as shown in Eq. (25). The recall is the ratio between the total
number of true positive predictions and the total number of true
positive and false negative predictions made by the model as shown
in Eq. (26). Fl-score is the harmonic mean of precision and recall as
shown in Eq. (27) (Balaha, Ali, Saraya, & Badawy, 2021).

TP
Precision = ————— 2
recision = s (25)
Recall = — 1L (26)
TP+ FN
Fl= 2 X Precision X Recall @7)

Precision + Recall

As we are dealing with six metrics, it is required to map them into
a single fitness score. The Weighted Sum Method (WSM) is used. It
is a method that takes a percentage from each value and sums them
together into a single value. The percentages of them are equalized for
all unless the loss as shown in Eq. (28). It is worth mentioning that,
the reciprocal of the loss is used as it is required to minimize it while
maximizing the rest.

Fitness = (0.05 x L +0.195 X Accuracy
Loss

+ 0.195 X Precision + 0.195 X Recall (28)

+ 0.195x AUC +0.195 x F1) x 100%

(3) Update the Population: After calculating the fitness scores
for the population, they should be updated for the next iteration.
The HHO is used in this step. The working mechanism of the HHO
is discussed in the previous section. It is worth mentioning that the
current study works with a maximization problem while the original
HHO paper worked with a minimization problem. The only change
will be in Eq. (20) and Eq. (21). For maximization problems, the < is
replaced with >. Steps (2) and (3) will be repeated until the completion
of the HHO optimization iterations.

10

(4) Stack Best Solutions: After extracting the best combination for
each model of the nine tuned models, they beside their best combi-
nations are stacked into a single model. They will be used in future
predictions and production phases.

In the production phase, every input image is duplicated nine times
and presented as an input to each of the chosen nine CNN architectures.
Every network extracts the features from the input image and these
features are used in the recognition process. The input image prop-
agates through the different layers (i.e. convolution, pooling, and FC
layers) of the different networks. The output of each model represents
the probability of each class of our binary classification model and
contributes as an input to the stacked model. CovH2SD uses a novel
mechanism for ranking different stacking configurations by mapping
them into a proposed Quality Space (QS). QS is a Q-dimensional
space, where Q represents the number of all possible configurations
of stacking. The rank of each configuration is calculated. This rank is
represented by a point in the quality space. The algorithm switches
automatically between the different stacked models. The models with
the most significant ranks are used to create the final classification
model that will identify new individuals as patients or normal.

5. Experiments, results, and discussion

The current section begins by presenting the used dataset, the exper-
imental configurations used in the learning and optimization, discusses
the applied experiments, and reports the corresponding results. The
section ends by constructing a comparative study between the current
study and other state-of-the-art studies.

5.1. Dataset

The dataset is collected from three sources. The first source is
“COVID-CT-Dataset: A CT Scan Dataset about COVID-19” (Zhao, Zhang,
He, & Xie, 2020) and can be accessed from https://www.kaggle.com/
luisblanche/covidct. It consisted of 349 and 397 images for the COVID-
19 and non-COVID-19 cases respectively. The second source is “CT
Scans for COVID-19 Classification” (Ning et al., 2020) and can be ac-
cessed from https://www.kaggle.com/azaemon/preprocessed-ct-scans-
for-covid19. It consisted of 4,001 and 9,979 images for the COVID-19
and non-COVID-19 cases respectively. The third source is “COVID-
CTset” (Rahimzadeh, Attar, & Sakhaei, 2020) and can be accessed from
https://github.com/mr7495/COVID-CTset. It consisted of 15,589 and
48,260 images for the COVID-19 and non-COVID-19 cases respectively.

The images are combines and filtered manually. The resultant total
number of images is 15,535 CT images with 5,159 images of confirmed
positive COVID-19 cases and 10,376 images of normal (non-COVID-19)
cases. Samples of the CT images with COVID-19 are shown in Fig. 9.
Data augmentation is applied to increase the diversity of the dataset
using the configurations in Table 2.

5.2. Experiments and discussion

Table 3 presents the configurations used in the experiments.
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Fig. 9. Samples of the CT Images with COVID-19.

Table 2

Data augmentation configurations.
Method Range
Rotation +15deg
Width Shift Range +15%
Height Shift Range +15%
Shear Range +15%
Zoom Range +15%
Horizontal Flipping True
Vertical Flipping True

Table 3

The used experiments configurations.
Method Range
Dataset Collected from 3 sources.
Categories “COVID-19” and “non-COVID-19”.

Split Ratio Split
Dataset Size

Data Augmentation
Pre-trained Models

Pre-trained Parameters
Initializers

Output Activation Function
Number of Epochs
Parameters optimizers Os

TL learn ratios Ls
Batch sizes Bs

Dropout ratios Ds
Performance Metrics Ms

Number of HHO Iterations
iters

Population Size N,
Learning and Optimization
Environment

Programming Language
Python Packages

90% to 10%

15,535

Yes (Table 2)

VGG16, VGG19, ResNet50, ResNet101,
DenseNet121, DenseNet169, MobileNet,
MobileNetV2, and Xception

ImageNet

SoftMax

64

Adam, NAdam, AdaGrad, AdaDelta, AdaMax,
RMSProp, Ftrl, and SGD

[0:5:100]1%

32 and 64

[0 : 60]1%

Loss, Accuracy, Precision, F1-score, AUC, and
Recall

15

10

Google Colab (Intel(R) Xeon(R) CPU @

2.00 GHz, Tesla T4 16 GB GPU with CUDA
v.11.2, and 12 GB RAM)

Python

Tensorflow, Keras, NumPy, OpenCV, Pandas,
and Matplotlib

VGG16: Table 4 reports the top-1 combination in each hyperpa-
rameters optimization iteration in the 15 optimization iterations for
the VGG16 pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 4, the SGD was the best parameters optimizer in 13
iterations. The batch size with a value of 32 was the best in 15 iterations.
The dropout ratio with a value of 58% was the best in 11 iterations. The
learning ratio with a value of 80% was the best in 13 iterations. The
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Fig. 11. The WSM Curve for the VGG19.

best achieved distinctive metrics for the loss, accuracy, F1, precision,
recall, AUC, and WSM were 0.0221, 99.28%, 99.28%, 99.28%, 99.28%,
0.9995, and 99.02% respectively. The best achieved combination was
in iteration number 9 where its metrics were 0.0221, 99.23%, 99.23%,
99.23%, 99.23%, 0.9993, and 99.02% respectively. All of the WSM
scores were above 89%. Fig. 10 shows the WSM curve for the 15
iterations.

VGG19: Table 5 reports the top-1 combination in each hyperpa-
rameters optimization iteration in the 15 optimization iterations for
the VGG19 pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 5, the SGD was the best parameters optimizer in 11
iterations. The batch size with a value of 32 was the best in 14 iterations.
The dropout ratio with a value of 56% was the best in 8 iterations. The
learning ratio with a value of 80% was the best in 10 iterations. The
best achieved distinctive metrics for the loss, accuracy, F1, precision,
recall, AUC, and WSM were 0.0202, 99.33%, 99.33%, 99.33%, 99.33%,
0.9998, and 99.31% respectively. The best achieved combination was
in iteration number 14 where its metrics were 0.0202, 99.33%, 99.33%,
99.33%, 99.33%, 0.9998, and 99.31% respectively. All of the WSM
scores were above 85%. Fig. 11 shows the WSM curve for the 15
iterations.

ResNet50: Table 6 reports the top-1 combination in each hyper-
parameters optimization iteration in the 15 optimization iterations for
the ResNet50 pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 6, the SGD was the best parameters optimizer in 10
iterations. The batch size with a value of 32 was the best in 13 iterations.
The dropout ratio with a value of 60% was the best in 10 iterations. The
learning ratio with a value of 100% was the best in 10 iterations. The
best achieved distinctive metrics for the loss, accuracy, F1, precision,
recall, AUC, and WSM were 0.0394, 98.85%, 98.85%, 98.85%, 98.85%,



H.M. Balaha et al.

Expert Systems With Applications 186 (2021) 115805

Table 4

Top-1 combinations for the VGG16 in the 15 optimization iterations.
# Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM
1 SGD 32 0.57 80% 0.0716 97.21% 97.21% 97.21% 97.21% 0.9966 95.48%
2 SGD 32 0.56 80% 0.0952 96.63% 96.63% 96.63% 96.63% 0.9946 94.74%
3 AdaGrad 32 0.21 30% 0.2933 91.25% 91.25% 91.25% 91.25% 0.9674 89.14%
4 SGD 32 0.58 80% 0.0584 98.08% 98.08% 98.08% 98.08% 0.9967 96.48%
5 AdaGrad 32 0.19 25% 0.1302 95.57% 95.58% 95.57% 95.57% 0.9897 93.57%
6 SGD 32 0.58 80% 0.0394 98.61% 98.61% 98.61% 98.61% 0.9980 97.41%
7 SGD 32 0.58 80% 0.0263 99.13% 99.13% 99.13% 99.13% 0.9991 98.55%
8 SGD 32 0.58 80% 0.0252 99.23% 99.23% 99.23% 99.23% 0.9988 98.73%
9 SGD 32 0.58 80% 0.0221 99.23% 99.23% 99.23% 99.23% 0.9993 99.02%
10 SGD 32 0.58 80% 0.0314 98.99% 98.99% 98.99% 98.99% 0.9995 98.11%
11 SGD 32 0.58 80% 0.0324 98.94% 98.94% 98.94% 98.94% 0.9986 98.01%
12 SGD 32 0.58 80% 0.0226 99.28% 99.28% 99.28% 99.28% 0.9993 99.01%
13 SGD 32 0.58 80% 0.0247 99.09% 99.09% 99.09% 99.09% 0.9988 98.63%
14 SGD 32 0.58 80% 0.0251 99.09% 99.09% 99.09% 99.09% 0.9988 98.60%
15 SGD 32 0.58 80% 0.0292 98.85% 98.85% 98.85% 98.85% 0.9987 98.09%

Table 5

Top-1 combinations for the VGG19 in the 15 optimization iterations.
# Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM
1 SGD 32 0.57 80% 0.0707 97.55% 97.55% 97.55% 97.55% 0.9951 95.82%
2 SGD 32 0.54 75% 0.2442 93.94% 93.94% 93.94% 93.94% 0.9750 91.80%
3 SGD 32 0.55 80% 0.0696 97.02% 97.02% 97.02% 97.02% 0.9958 95.31%
4 NAdam 32 0.14 15% 0.2160 91.73% 91.72% 91.73% 91.73% 0.9755 89.66%
5 NAdam 64 0.16 20% 0.4726 87.88% 87.88% 87.88% 87.88% 0.9351 85.79%
6 AdaGrad 32 0.27 25% 0.2545 92.78% 92.78% 92.78% 92.78% 0.9718 90.66%
7 AdaGrad 32 0.27 25% 0.4300 90.00% 89.99% 90.00% 90.00% 0.9466 87.86%
8 SGD 32 0.56 80% 0.0737 97.55% 97.55% 97.55% 97.55% 0.9970 95.79%
9 SGD 32 0.56 80% 0.0364 98.46% 98.46% 98.46% 98.46% 0.9992 97.37%
10 SGD 32 0.56 80% 0.0375 98.80% 98.80% 98.80% 98.80% 0.9981 97.66%
11 SGD 32 0.56 80% 0.0359 98.70% 98.70% 98.70% 98.70% 0.9988 97.63%
12 SGD 32 0.56 80% 0.0319 98.75% 98.75% 98.75% 98.75% 0.9990 97.85%
13 SGD 32 0.56 80% 0.0310 98.89% 98.89% 98.89% 98.89% 0.9991 98.03%
14 SGD 32 0.56 80% 0.0202 99.33% 99.33% 99.33% 99.33% 0.9988 99.31%
15 SGD 32 0.56 80% 0.0212 99.09% 99.09% 99.09% 99.09% 0.9998 98.97%

Table 6

Top-1 combinations for the ResNet50 in the 15 optimization iterations.
# Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM
1 RMSProp 64 0.54 70% 0.5798 77.63% 77.63% 77.63% 77.63% 0.8617 75.78%
2 RMSProp 64 0.54 70% 0.6359 70.18% 70.18% 70.18% 70.18% 0.7713 68.50%
3 Adam 32 0% 0% 1.6620 51.03% 51.03% 51.03% 51.03% 0.5533 49.79%
4 Adam 32 0.01 0% 2.0220 51.03% 51.03% 51.03% 51.03% 0.5442 49.78%
5 AdaGrad 32 0.23 30% 1.2469 51.03% 51.03% 51.03% 51.03% 0.6198 49.80%
6 SGD 32 0.6 100% 0.3560 92.11% 92.11% 92.11% 92.11% 0.9652 89.95%
7 SGD 32 0.6 100% 0.1996 94.81% 94.80% 94.81% 94.81% 0.9817 92.69%
8 SGD 32 0.6 100% 0.0531 98.36% 98.36% 98.36% 98.36% 0.9979 96.85%
9 SGD 32 0.6 100% 0.0648 97.79% 97.79% 97.79% 97.79% 0.9971 96.11%
10 SGD 32 0.6 100% 0.0448 98.41% 98.41% 98.41% 98.41% 0.9979 97.07%
11 SGD 32 0.6 100% 0.0479 98.80% 98.80% 98.80% 98.80% 0.9970 97.37%
12 SGD 32 0.6 100% 0.0394 98.85% 98.85% 98.85% 98.85% 0.9988 97.64%
13 SGD 32 0.6 100% 0.0598 98.27% 98.27% 98.27% 98.27% 0.9959 96.65%
14 SGD 32 0.6 100% 0.0666 97.74% 97.74% 97.74% 97.74% 0.9972 96.05%
15 SGD 32 0.6 100% 0.0707 98.17% 98.17% 98.17% 98.17% 0.9957 96.43%

0.9988, and 97.64% respectively. The best achieved combination was
in iteration number 12 where its metrics were 0.0394, 98.85%, 98.85%,
98.85%, 98.85%, 0.9988, and 97.64% respectively. All of the WSM
scores were above 49%. Fig. 12 shows the WSM curve for the 15
iterations.

ResNet101: Table 7 reports the top-1 combination in each hy-
perparameters optimization iteration in the 15 optimization iterations
for the ResNetlOl pre-trained CNN model with the corresponding
performance metrics. Each iteration has 10 as the population size where
each solution is trained for 64 epochs.

From Table 7, the SGD was the best parameters optimizer in 11
iterations. The batch size with a value of 64 was the best in 12 iterations.
The dropout ratio with a value of 60% was the best in 12 iterations. The
learning ratio with a value of 100% was the best in 12 iterations. The
best achieved distinctive metrics for the loss, accuracy, F1, precision,

recall, AUC, and WSM were 0.0577, 98.22%, 98.22%, 98.22%, 98.22%,
0.9974, and 96.63% respectively. The last best achieved combination
was in iteration number 13 where its metrics were 0.0577, 98.27%,
98.27%, 98.27%, 98.27%, 0.9974, and 96.63% respectively. All of the
WSM scores were above 89%. Fig. 13 shows the WSM curve for the 15
iterations.

DenseNet121: Table 8 reports the top-1 combination in each hy-
perparameters optimization iteration in the 15 optimization iterations
for the DenseNet121 pre-trained CNN model with the corresponding
performance metrics. Each iteration has 10 as the population size where
each solution is trained for 64 epochs.

From Table 8, the RMSProp was the best parameters optimizer in 12
iterations. The batch size with a value of 32 was the best in 9 iterations.
The dropout ratios with values of 38%, 39%, and 41% were the best in
3 iterations. The learning ratio with a value of 70% was the best in 7
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Table 7

Top-1 combinations for the ResNet101 in the 15 optimization iterations.
# Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM
1 NAdam 32 0.17 25% 0.7040 51.03% 51.03% 51.03% 51.03% 0.6038 49.83%
2 NAdam 32 0.14 20% 0.7079 52.91% 52.92% 52.91% 52.91% 0.5222 51.66%
3 NAdam 32 0.09 10% 0.8788 51.03% 51.03% 51.03% 51.03% 0.6062 49.81%
4 Ftrl 64 0.6 100% 0.6932 48.97% 48.97% 48.97% 48.97% 0.5000 47.82%
5 SGD 64 0.6 100% 0.1300 96.87% 96.88% 96.87% 96.87% 0.9884 94.84%
6 SGD 64 0.6 100% 0.0928 97.55% 97.55% 97.55% 97.55% 0.9921 95.65%
7 SGD 64 0.6 100% 0.0703 98.03% 98.03% 98.03% 98.03% 0.9950 96.29%
8 SGD 64 0.6 100% 0.0966 97.88% 97.88% 97.88% 97.88% 0.9915 95.95%
9 SGD 64 0.6 100% 0.0610 98.27% 98.27% 98.27% 98.27% 0.9963 96.63%
10 SGD 64 0.6 100% 0.0774 97.84% 97.84% 97.84% 97.84% 0.9957 96.04%
11 SGD 64 0.6 100% 0.1095 97.02% 97.02% 97.02% 97.02% 0.9916 95.05%
12 SGD 64 0.6 100% 0.0710 98.17% 98.17% 98.17% 98.17% 0.9957 96.42%
13 SGD 64 0.6 100% 0.0577 98.22% 98.22% 98.22% 98.22% 0.9974 96.63%
14 SGD 64 0.6 100% 0.1160 96.97% 96.97% 96.97% 96.97% 0.9908 94.98%
15 SGD 64 0.6 100% 0.0994 97.88% 97.88% 97.88% 97.88% 0.9937 95.94%

Table 8

Top-1 combinations for the DenseNet121 in the 15 optimization iterations.
# Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM
1 NAdam 32 0.12 20% 23.631 51.32% 51.33% 51.32% 51.32% 0.5133 50.04%
2 NAdam 64 0.15 25% 16.683 51.13% 51.14% 51.13% 51.13% 0.5173 49.86%
3 AdaMax 32 0.35 60% 11.823 64.17% 64.17% 64.17% 64.17% 0.6532 62.57%
4 RMSProp 64 0.44 80% 13.235 57.09% 57.10% 57.09% 57.09% 0.5747 55.67%
5 RMSProp 64 0.44 80% 89.372 68.73% 68.74% 68.73% 68.73% 0.7027 67.02%
6 RMSProp 32 0.39 70% 2.0622 82.20% 82.20% 82.20% 82.20% 0.8562 80.17%
7 RMSProp 64 0.38 70% 5.9464 78.11% 78.11% 78.11% 78.11% 0.7976 76.17%
8 RMSProp 64 0.38 70% 32.481 80.13% 80.14% 80.13% 80.13% 0.8072 78.13%
9 RMSProp 32 0.4 70% 14.187 79.08% 79.07% 79.08% 79.08% 0.8099 77.10%
10 RMSProp 32 0.39 70% 3.9436 80.86% 80.86% 80.86% 80.86% 0.8297 78.85%
11 RMSProp 32 0.39 70% 3.6292 83.93% 83.94% 83.93% 83.93% 0.8629 81.85%
12 RMSProp 32 0.41 75% 0.6732 90.14% 90.14% 90.14% 90.14% 0.9487 87.96%
13 RMSProp 32 0.41 75% 2.7017 86.58% 86.58% 86.58% 86.58% 0.8917 84.44%
14 RMSProp 64 0.38 70% 13.832 81.39% 81.38% 81.39% 81.39% 0.8200 79.35%
15 RMSProp 32 0.41 75% 7.2526 76.67% 76.68% 76.67% 76.67% 0.7983 74.76%
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Fig. 12. The WSM Curve for the ResNet50.
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Fig. 13. The WSM Curve for the ResNet101.
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Fig. 14. The WSM Curve for the DenseNet121.

iterations. The best achieved distinctive metrics for the loss, accuracy,
F1, precision, recall, AUC, and WSM were 0.6732, 90.14%, 90.14%,
90.14%, 90.14%, 0.9487, and 87.96% respectively. The best achieved
combination was in iteration number 12 where its metrics were 0.6732,
90.14%, 90.14%, 90.14%, 90.14%, 0.9487, and 87.96% respectively.
All of the WSM scores were above 49%. Fig. 14 shows the WSM curve
for the 15 iterations.

DenseNet169: Table 9 reports the top-1 combination in each hy-
perparameters optimization iteration in the 15 optimization iterations
for the DenseNet169 pre-trained CNN model with the corresponding
performance metrics. Each iteration has 10 as the population size where
each solution is trained for 64 epochs.

From Table 9, the AdaMax was the best parameters optimizer in
14 iterations. The batch size with a value of 32 was the best in 14
iterations. The dropout ratio with a value of 36% was the best in 13
iterations. The learning ratio with a value of 50% was the best in 14
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Table 9

Top-1 combinations for the DenseNet169 in the 15 optimization iterations.
# Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM
1 AdaMax 32 0.37 50% 1.1045 78.11% 78.10% 78.11% 78.11% 0.8572 76.20%
2 RMSProp 64 0.5 70% 15.632 82.06% 82.06% 82.06% 82.06% 0.8228 80.01%
3 AdaMax 32 0.36 50% 1.7170 85.67% 85.66% 85.67% 85.67% 0.8845 83.55%
4 AdaMax 32 0.36 50% 1.9082 88.02% 88.02% 88.02% 88.02% 0.9028 85.85%
5 AdaMax 32 0.36 50% 1.6761 88.89% 88.89% 88.89% 88.89% 0.9100 86.70%
6 AdaMax 32 0.36 50% 1.7754 88.02% 88.02% 88.02% 88.02% 0.9028 85.85%
7 AdaMax 32 0.36 50% 1.1883 89.71% 89.70% 89.71% 89.71% 0.9261 87.50%
8 AdaMax 32 0.36 50% 1.2521 88.07% 88.06% 88.07% 88.07% 0.9117 85.91%
9 AdaMax 32 0.36 50% 1.7210 88.84% 88.84% 88.84% 88.84% 0.9103 86.65%
10 AdaMax 32 0.36 50% 1.1751 88.12% 88.11% 88.12% 88.12% 0.9153 85.95%
11 AdaMax 32 0.36 50% 1.0352 89.56% 89.56% 89.56% 89.56% 0.9290 87.37%
12 AdaMax 32 0.36 50% 1.6333 87.73% 87.73% 87.73% 87.73% 0.9005 85.57%
13 AdaMax 32 0.36 50% 1.3847 87.01% 87.01% 87.01% 87.01% 0.9043 84.87%
14 AdaMax 32 0.36 50% 1.1712 90.76% 90.76% 90.76% 90.76% 0.9294 88.54%
15 AdaMax 32 0.36 50% 1.0113 89.66% 89.66% 89.66% 89.66% 0.9244 87.47%

DenseNet169

Fig. 15. The WSM Curve for the DenseNet169.

iterations. The best achieved distinctive metrics for the loss, accuracy,
F1, precision, recall, AUC, and WSM were 1.0113, 90.76%, 90.76%,
90.76%, 90.76%, 0.9294, and 88.54% respectively. The best achieved
combination was in iteration number 14 where its metrics were 1.1712,
90.76%, 90.76%, 90.76%, 90.76%, 0.9294, and 88.54% respectively.
All of the WSM scores were above 76%. Fig. 15 shows the WSM curve
for the 15 iterations.

MobileNet: Table 10 reports the top-1 combination in each hyper-
parameters optimization iteration in the 15 optimization iterations for
the MobileNet pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 10, the SGD was the best parameters optimizer in 11
iterations. The batch size with a value of 64 was the best in 13 iterations.
The dropout ratio with a value of 60% was the best in 13 iterations. The
learning ratio with a value of 100% was the best in 13 iterations. The
best achieved distinctive metrics for the loss, accuracy, F1, precision,
recall, AUC, and WSM were 0.0433, 98.75%, 98.75%, 98.75%, 98.75%,
0.9983, and 97.44% respectively. The best achieved combination was
in iteration number 9 where its metrics were 0.0433, 98.75%, 98.75%,
98.75%, 98.75%, 0.9983, and 97.44% respectively. All of the WSM
scores were above 53%. Fig. 16 shows the WSM curve for the 15
iterations.

MobileNetV2: Table 11 reports the top-1 combination in each hy-
perparameters optimization iteration in the 15 optimization iterations
for the MobileNetV2 pre-trained CNN model with the corresponding
performance metrics. Each iteration has 10 as the population size where
each solution is trained for 64 epochs.

From Table 11, the AdaDelta was the best parameters optimizer
in 15 iterations. The batch size with a value of 32 was the best in
15 iterations. The dropout ratio with a value of 28% was the best
in 15 iterations. The learning ratio with a value of 0% was the best
in 15 iterations. The best achieved distinctive metrics for the loss,
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Fig. 17. The WSM Curve for the MobileNetV2.

accuracy, F1, precision, recall, AUC, and WSM were 0.7374, 64.74%,
64.75%, 64.74%, 64.74%, 0.6687, and 63.19% respectively. The last
best achieved combination was in iteration number 13 where its metrics
were 0.7360, 64.74%, 64.75%, 64.74%, 64.74%, 0.6692, and 63.19%
respectively. All of the WSM scores were above 62%. Fig. 17 shows the
WSM curve for the 15 iterations.

Xception: Table 12 reports the top-1 combination in each hyper-
parameters optimization iteration in the 15 optimization iterations for
the Xception pre-trained CNN model with the corresponding perfor-
mance metrics. Each iteration has 10 as the population size where each
solution is trained for 64 epochs.

From Table 12, the AdaMax was the best parameters optimizer in
13 iterations. The batch size with a value of 64 was the best in 11
iterations. The dropout ratio with a value of 60% was the best in 12
iterations. The learning ratio with a value of 100% was the best in 14
iterations. The best achieved distinctive metrics for the loss, accuracy,
F1, precision, recall, AUC, and WSM were 0.0520, 98.80%, 98.80%,
98.80%, 98.80%, 0.9972, and 97.29% respectively. The best achieved
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Table 10

Top-1 combinations for the MobileNet in the 15 optimization iterations.
# Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM
1 AdaDelta 64 0.59 90% 0.6718 79.70% 79.70% 79.70% 79.70% 0.8643 77.78%
2 AdaMax 32 0.6 100% 0.5892 90.57% 90.57% 90.57% 90.57% 0.9482 88.39%
3 AdaMax 32 0.6 100% 0.6249 90.96% 90.96% 90.96% 90.96% 0.9476 88.76%
4 AdaGrad 64 0.31 50% 4.1396 54.35% 54.36% 54.35% 54.35% 0.5796 53.01%
5 SGD 64 0.6 100% 0.1050 96.73% 96.73% 96.73% 96.73% 0.9928 94.79%
6 SGD 64 0.6 100% 0.1323 95.96% 95.96% 95.96% 95.96% 0.9901 93.94%
7 SGD 64 0.6 100% 0.0807 97.69% 97.69% 97.69% 97.69% 0.9950 95.87%
8 SGD 64 0.6 100% 0.0538 98.08% 98.08% 98.08% 98.08% 0.9965 96.55%
9 SGD 64 0.6 100% 0.0433 98.75% 98.75% 98.75% 98.75% 0.9983 97.44%
10 SGD 64 0.6 100% 0.0440 98.46% 98.46% 98.46% 98.46% 0.9964 97.13%
11 SGD 64 0.6 100% 0.1060 97.26% 97.26% 97.26% 97.26% 0.9921 95.30%
12 SGD 64 0.6 100% 0.0610 98.17% 98.17% 98.17% 98.17% 0.9970 96.54%
13 SGD 64 0.6 100% 0.0535 98.27% 98.27% 98.27% 98.27% 0.9982 96.75%
14 SGD 64 0.6 100% 0.0524 98.36% 98.37% 98.36% 98.36% 0.9967 96.86%
15 SGD 64 0.6 100% 0.0413 98.51% 98.51% 98.51% 98.51% 0.9979 97.26%

Table 11

Top-1 combinations for the MobileNetV2 in the 15 optimization iterations.
# Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM
1 AdaDelta 32 0.28 0% 0.7376 64.21% 64.22% 64.21% 64.21% 0.6683 62.68%
2 AdaDelta 32 0.28 0% 0.7386 64.41% 64.41% 64.41% 64.41% 0.6675 62.87%
3 AdaDelta 32 0.28 0% 0.7368 64.55% 64.56% 64.55% 64.55% 0.6690 63.01%
4 AdaDelta 32 0.28 0% 0.7388 64.17% 64.17% 64.17% 64.17% 0.6663 62.63%
5 AdaDelta 32 0.28 0% 0.7367 64.60% 64.60% 64.60% 64.60% 0.6687 63.05%
6 AdaDelta 32 0.28 0% 0.7360 64.55% 64.56% 64.55% 64.55% 0.6692 63.01%
7 AdaDelta 32 0.28 0% 0.7384 64.69% 64.70% 64.69% 64.69% 0.6684 63.15%
8 AdaDelta 32 0.28 0% 0.7372 64.74% 64.75% 64.74% 64.74% 0.6690 63.19%
9 AdaDelta 32 0.28 0% 0.7391 64.74% 64.75% 64.74% 64.74% 0.6678 63.19%
10 AdaDelta 32 0.28 0% 0.7369 64.55% 64.56% 64.55% 64.55% 0.6685 63.01%
11 AdaDelta 32 0.28 0% 0.7384 64.55% 64.56% 64.55% 64.55% 0.6679 63.01%
12 AdaDelta 32 0.28 0% 0.7378 64.55% 64.56% 64.55% 64.55% 0.6681 63.01%
13 AdaDelta 32 0.28 0% 0.7374 64.74% 64.75% 64.74% 64.74% 0.6687 63.19%
14 AdaDelta 32 0.28 0% 0.7372 64.60% 64.60% 64.60% 64.60% 0.6688 63.05%
15 AdaDelta 32 0.28 0% 0.7395 64.50% 64.51% 64.50% 64.50% 0.6675 62.96%

Table 12

Top-1 combinations for the Xception in the 15 optimization iterations.
# Parameters optimizer Batch size Dropout ratio TL learn ratio Loss Accuracy F1 Precision Recall AUC WSM
1 AdaDelta 32 0.56 90% 0.4595 80.81% 80.80% 80.81% 80.81% 0.8988 78.89%
2 AdaMax 32 0.56 100% 0.1057 96.68% 96.68% 96.68% 96.68% 0.9922 94.74%
3 AdaMax 32 0.56 100% 0.0972 97.11% 97.11% 97.11% 97.11% 0.9939 95.20%
4 AdaMax 64 0.6 100% 0.0955 98.08% 98.08% 98.08% 98.08% 0.9942 96.15%
5 AdaMax 64 0.6 100% 0.0602 98.46% 98.46% 98.46% 98.46% 0.9959 96.83%
6 AdaMax 64 0.6 100% 0.1952 96.20% 96.20% 96.20% 96.20% 0.9842 94.05%
7 AdaMax 64 0.6 100% 0.0969 97.40% 97.40% 97.40% 97.40% 0.9924 95.48%
8 RMSProp 32 0.6 100% 0.1202 97.35% 97.36% 97.35% 97.35% 0.9935 95.34%
9 AdaMax 64 0.6 100% 0.1352 96.25% 96.25% 96.25% 96.25% 0.9882 94.21%
10 AdaMax 64 0.6 100% 0.0897 98.03% 98.03% 98.03% 98.03% 0.9938 96.13%
11 AdaMax 64 0.6 100% 0.1002 98.03% 98.03% 98.03% 98.03% 0.9928 96.08%
12 AdaMax 64 0.6 100% 0.0743 97.74% 97.74% 97.74% 97.74% 0.9956 95.97%
13 AdaMax 64 0.6 100% 0.0701 98.46% 98.46% 98.46% 98.46% 0.9941 96.71%
14 AdaMax 64 0.6 100% 0.0550 98.75% 98.75% 98.75% 98.75% 0.9976 97.19%
15 AdaMax 64 0.6 100% 0.0520 98.80% 98.80% 98.80% 98.80% 0.9972 97.29%

combination was in iteration number 15 where its metrics were 0.0520,
98.80%, 98.80%, 98.80%, 98.80%, 0.9972, and 97.29% respectively.
All of the WSM scores were above 78%. Fig. 18 shows the WSM curve
for the 15 iterations.

Table 13 reports the best achieved top-1 combinations in all exper-
iments.

From Table 13, it is clear that the best pre-trained model was VGG19
as it reported a WSM value of 99.31% while the worst pre-trained
model was MobileNetV2 as it reported only 63.19%.

5.3. Comparative study
As noted in Table 13, the 99.31% score was the highest WSM value

while 99.33% was the highest achieved accuracy by VGG19. Table 14
constructs a comparative table between the current study and other

state-of-the-art studies. They are sorted in descending order. It shows
that the current study reported the highest accuracy value among them.

6. Conclusions and future work

Unfortunately, the danger of COVID-19 did not end till the moment.
Fast diagnosis of patients is the golden key treatment to stop the incred-
ible spread of the virus so that patients can be isolated accordingly. Cost
of diagnosis plays another factor, especially for developing countries.

As seen, in this study, a hybrid approach named CovH2SD was sug-
gested to detect the COVID-19 using the Chest Computed Tomography
(CT) images. CovH2SD consisted of two internal optimization mech-
anisms. The first was the parameters’ optimization mechanism which
was performed using the deep learning optimizers. They were Adam,
NAdam, Ftrl, SGD, AdaMax, AdaGrad, and AdaDelta. The second was
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Table 13

Summary of the best achieved Top-1 combinations in all experiments.

Expert Systems With Applications 186 (2021) 115805

Experiment Model Parameters optimizer Batch size Dropout ratio TL learn ratio WSM
1 VGG16 SGD 32 0.58 80% 99.02%
2 VGG19 SGD 32 0.56 80% 99.31%
3 ResNet50 SGD 32 0.6 100% 97.64%
4 ResNet101 SGD 64 0.6 100% 96.63%
5 DenseNet121 RMSProp 32 0.41 75% 87.96%
6 DenseNet169 AdaMax 32 0.36 50% 88.54%
7 MobileNet SGD 64 0.6 100% 97.44%
8 MobileNetV2 AdaDelta 32 0.28 0% 63.19%
9 Xception AdaMax 64 0.6 100% 97.29%
Table 14
Comparative study with State-of-the-art studies.
Study Model Dataset size CT or X-ray Accuracy
Khan et al. (2020) CoroNet 1,300 X-ray 89.60%
Hemdan et al. (2020) COVIDX-Net 50 X-ray 90.00%
El Asnaoui and Chawki (2020) InceptionResNetV2 6,087 X-ray 92.18%
Shah et al. (2021) VGG19 738 CT 94.52%
Yasar and Ceylan (2021) MobilenetV2 1,396 CT 95.99%
Toraman et al. (2020) InstaCovNet-19 3,150 X-ray 97.24%
Apostolopoulos and Mpesiana (2020) MobileNetV2 1,428 X-ray 97.40%
Ozturk et al. (2020) DarkCovidNet 127 X-ray 98.08%
Nayak, Nayak, Sinha, Arora, and Pachori (2021) ResNet34 500 X-ray 98.33%
Apostolopoulos and Mpesiana (2020) VGG19 1,428 X-ray 98.75%
Zhou et al. (2021) Ensemble Model 5,000 CT 99.05%
Current Study CovH2SD (VGG19) 15,535 CT 99.33%
- Table A.15
Xceptlon Table of abbreviations.
; ) 96,71 97.19 97.29 Abbreviation Description
05148 95,31 96.13 96.08 95.97 -
P22 9491 AdaDelta Adaptive Delta
AdaGrad Adaptive Gradient
Adam Adaptive Momentum
AdaMax Adaptive Max-Pooling

Fig. 18. The WSM Curve for the Xception.

the hyperparameters optimization mechanism which was performed
using the Harris Hawks Optimization (HHO) algorithm. The used hy-
perparameters were the parameters optimizer, the dropout ratio, the
learning ratio, and the batch size. The HHO algorithm answered the
question “Which parameters optimizer with which dropout ratio with
which learning ratio with which batch size can report the highest
performance measure?” as reported in the experiments.

Transfer learning was targeted using nine pre-trained CNNs. They
were ResNet50, ResNet101, VGG16, VGG19, Xception, MobileNetV1,
MobileNetV2, DenseNet121, and DenseNet169. Stacking the best mod-
els into a single one was applied using FCS and CSS. Nine experiments
were applied on the CT images collected from public and shared
sources. The used performance metrics were Loss, Accuracy, Precision,
Recall, F1-Score, and AUC. The WSM metric is used to solve this multi-
objective problem and to compare between the different combinations
Six experiments reported a WSM value that was above 96.5%. The top
WSM reported value was 99.31% which was higher than the compared
studies. This best value was reported by the VGG19 pre-trained CNN
model using the SGD parameters’ optimizer, 32 batch size, 56% dropout
ratio, and 80% learning ratio.

The proposed approach could reach state-of-the-art performance
according to the compared studies. It proved that it is a good candidate
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Al Artificial Intelligence

ANN Artificial Neural Network

AUC Area Under Curve

CNN Convolutional Neural Network
COVID-19 Coronavirus

Cs Cuckoo Search

CSs Compact Stacking Stage

CT Computed Tomography

DenseNet Densely Connected Convolutional Networks
DL Deep Learning

FC Fully-Connected

FCS Fast Classification Stage

GA Genetic Algorithms

GOA Grasshopper Optimization Algorithm
GWO Gray Wolf Optimizer

HHO Harris Hawks Optimization

LF Levy Flight

NAdam Nesterov Adaptive Momentum

PSO Particle Swarm Optimization

Qs Quality Space

ReLU Rectified Linear Unit

ResNet Residual Network

RMSProp Root Mean Square Propagation
RT-PCR Reverse Transcription Polymerase Chain Reaction
SGD Stochastic Gradient Descent

TL Transfer Learning

WHO World Health Organization

WSM Weighted Sum Method

in practice. As future work, we aim to expand the suggested approach
for multi-class classification problems. We can also upgrade it to apply
it to different medical imaging problems. Different optimizers can also
be used such as Sparrow Search Algorithm or Manta Ray Foraging
Optimization algorithm.
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Table of abbreviations

Table A.15 presents the “Table of Abbreviations” and is ordered in
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