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Abstract

Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase that has been shown to be 

involved in the pathogenesis of several blinding diseases such as uveitis, diabetic retinopathy (DR) 

and cataract. However, possible mechanisms linking the action of AR to these diseases are not 

well understood. As DR and cataract are among the leading causes of blindness in the world, there 

is an urgent need to explore therapeutic strategies to prevent or delay their onset. Studies with AR 

inhibitors and gene-targeted mice have demonstrated that the action of AR is also linked to cancer 

onset and progression. In this review we examine possible mechanisms that relate AR to molecular 

signaling cascades and thus explain why AR inhibition is an effective strategy against colon cancer 

as well as diseases of the eye such as uveitis, cataract, and retinopathy.
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1 Introduction

Aldo-keto reductases (AKRs) are a superfamily of enzymes involved in phase 1 

metabolism of carbonyl substrates such as sugars, lipid aldehydes, keto-steroids and keto

prostaglandins [1–4]. The AKR superfamily contains 16 families (AKR1–16) [5] based 

on their high sequence similarity and common protein fold structure [AKR website: 

http://www.med.upenn.edu/akr/]. Enzymes within this family share many catalytic and 

structural properties. As a group, AKRs are nicotinamide adenine dinucleotide (phosphate) 

(NAD(P)H)-dependent oxidoreductases and are expressed as 34–37 kDa polypeptides [6].

The AKR family 1 includes: AKR1A (aldehyde reductases) [7], AKR1B (aldose reductases) 

[8], AKR1C (hydroxysteroid dehydrogenases) [9], AKR1D (steroid 5β-reductases) [9], and 
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AKR1E (1,5-anhydro-D-fructose reductase) [10]. Among enzymes in the AKR family 1, 

AKR1B is the most well-studied with well over 6,000 reports published in PubMed (as 

of September 2016). Three AKR1B subfamily enzymes include AKR1B1 (human aldose 

reductase, HAR), AKR1B10 (human small intestine-like aldose reductase, HSIR) and 

AKR1B15 that are all encoded by genes localized to chromosome 7 [11] see Table 1. Since 

it is so well-studied among aldo-keto reductases, this review will focus primarily on recent 

studies on the role of aldose reductase (AR, AKR1B1) in human health, cancer, and ocular 

disease.

2 Function of AR in cellular responses

2.1 Inflammation

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a transcription 

factor that controls gene expression affecting cellular processes such as cell cycle regulation, 

apoptosis [12], and activation of genes involved with inflammation [13]. In unstimulated 

cells, NF-κB is localized mainly in the cytoplasm [14]. Following cellular activation, 

NF-κB translocates into the nucleus and becomes acetylated by histone acetyltransferase 

(HATs) including CREB-binding protein (CBP) or its homolog p300 [15, 16]. Studies have 

shown that acetylation enhances both DNA-binding ability and transcriptional activity of 

NF-κB [17]. Removal of acetyl groups, catalyzed by a family of deacetylating proteins, can 

also influence the activity of transcription factors. SIRT1 (silent mating type information 

regulation 2 homolog) 1, the sirtuin 1 protein in mammals, is an NAD+-dependent 

deacetylase that has been known to inhibit NF-κB transcription signaling by removing 

acetylation from its subunit RelA/p65 at lysine 310 [18]. Therefore, activity of SIRT1 plays 

a crucial role in regulating inflammatory responses by influencing the acetylation, and 

thus the activation state of NF-κB, the key transcription factor controlling expression of 

proinflammatory genes.

Pioneering studies by Ramana and Srivastava and their colleagues demonstrated a possible 

connection between AR and NF-κB activation when they showed that ARIs suppress the 

endotoxin-induced activation of NF-κB in macrophages [19]. Ramana and Srivastava have 

studied the intersection of AR and NF-κB by focusing on the role of AR in the NADPH

dependent detoxification of reactive aldehydes [20, 21]. AR has been shown to play a 

role in the reduction of toxic aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) and its 

glutathione adducts (GS-HNE). Under oxidative stress conditions characterized by increased 

levels of lipid peroxidation, AR converts HNE and GS-NHE to 1,4-dihydroxynonene (DHN) 

and GS-DHN, respectively [22]. GS-DHN is the predominant metabolite derived from 

HNE due to the high reactivity of the aldehyde with glutathione. GS-DHN is a potent 

activator of the phospholipase C (PLC)/protein kinase C (PKC)/NF-κB pathway [23, 24]. 

Therefore, several studies indicated that AR can play an important role in the activation of 

the PLC/PKC/NF-κB cascade: AR inhibition suppresses these signaling events [23, 25–27]. 

In ocular models of endotoxin-induced uveitis, injection of LPS induces NF-κB activation 

in the anterior or posterior chambers of the eye [28, 29]. Clinically, topical corticosteroids, 

which act by suppressing NF-κB signaling [30], represent the primary treatment strategy for 

patients with noninfectious anterior uveitis [31, 32].
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2.2 Intersection of glucose metabolism and inflammatory signaling

Hyperacetylation of NF-κB is well known to drive expression of inflammatory signaling 

genes [33]. Among many factors, high glucose has been shown to cause increased 

acetylation of NF-κB [34]. We hypothesize that the polyol pathway may provide a 

functional link between glucose metabolism, protein acetylation, and NF-κB activation. 

In the first step of the polyol pathway, AR catalyzes the NADPH-dependent conversion of 

glucose to sorbitol, which is then converted to fructose by the NAD+-dependent sorbitol 

dehydrogenase (SDH) [35]. Thus, accelerated glucose flux through the polyol pathway 

results in a reduction in the NAD+/NADH. Consequently, lower levels of NAD+ could be 

expected to attenuate the NAD+-dependent deacetylase activity of sirtuin-1 (Sirt-1), resulting 

in higher levels of NF-κB acetylation and therefore higher activity of Sirt-1 as an activator 

of inflammatory gene transcription. Thus, the imbalance between NAD+/NADH provides 

a plausible linkage between polyol pathway activation and accumulation of acetyl-NF-κB, 

leading to an inflammatory phenotype (Fig. 1). We hypothesize that blockade of the poylol 

pathway by inhibition of either AR or SDH would prevent the high glucose-induced redox 

imbalance and thereby support the higher deacetylase activity of sirtulin 1. This would result 

in reduced levels of activated NF-κB and thereby lower expression of inflammatory genes.

Our studies are in concordance with those mentioned previously by Ramana and Srivastava 

[36–38], demonstrating that AR inhibition prevents endotoxin-induced inflammation in 

the eye [39, 40]. However, further studies will be needed to elucidate whether AR 

inhibition protects against the inflammatory response through its control of lipid derived 

aldehydes or alternatively through its influence on NAD+/NADH ratios and acetylation 

status of transcription factors such as NF-κB. It is also possible that AR is involved in the 

inflammatory response via both pathways.

2.3 Oxidative stress

Hyperglycemia is a leading cause of oxidative stress in diabetic organs such as heart, kidney 

and eye. Pathways of hyperglycemia-induced oxidative stress include polyol pathway, 

mitochondrial electron transport system, protein kinase C (PKC) and advanced glycation 

end products (AGEs) (Fig. 2) [23]. During hyperglycemia, increased flux of AR-mediated 

reduction of glucose into sorbitol in a NADPH-dependent reaction was observed [41, 42]. 

NADPH plays reductive roles in metabolic steps, such as detoxification of reactive oxygen 

species (ROS) by the glutathione reductase/glutathione peroxidase system [43]. Therefore, 

excessive utilization of NADPH by the polyol pathway could compromise the ability of cells 

to protect themselves from oxidative stress.

In the secondary part of the polyol pathway, sorbitol is converted to fructose by SDH 

resulting in decreased ratio of NAD+/NADH. Elevation of cytosolic NADH/ NAD+ ratio 

leads to induction of ROS via mitochondrial NADH dependent pathway [44]. Increased 

NADH could also enhance the synthesis of diacylglycerol (DAG), which activates PKC and 

subsequently induces oxidative stress via PKC-dependent activation of NAD(P)H oxidase 

[45].
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In addition to pyridine cofactor imbalances, AGEs resulting from hyperglycemia also 

contribute to oxidative stress [46]. AGEs are formed by nonenzymatic glycation reactions 

involving addition of a carbohydrate to a protein under high glucose conditions typical of 

diabetic individuals [46]. A study using glucose and fructose in comparison of the ability of 

forming AGEs showed that fructose forms AGE-BSA much faster than glucose [47]. This 

observation indicates that elevation of fructose from increased flux of the polyol pathway 

is another contributor for oxidative stress. Collectively, reduction of the ratio of NADPH/

NADP+ and NAD+/NADH, and induction of AGEs are the major causes of oxidative stress 

in hyperglycemic environment (Fig. 3).

3 AR and Complications of Diabetes and Chronic Hyperglycemia

Many studies indicate that AR is implicated in inflammatory responses in immune cells [36–

40], in heart [48], in kidney [49, 50] and in the eye [39, 51–53]. Additionally, AR is a major 

factor that causes a variety of diabetic complications such as autonomic neuropathy [54–58], 

ischemic myocardial injury [59–68] cardiomyopathy [48, 69, 70], nephropathy [71–73], 

cataract [74–79] and retinopathy [80–84] see Table 2. Pharmacological inhibition of AR or 

genetic deficiency in animal models with targeted disruption of the AR gene (AR knock 

out) brings about protection against these complications of diabetes and therefore provide a 

valuable tool for investigating pathogenesis caused by endotoxin or diabetic hyperglycemia. 

In this review, we will focus on AR inhibitors’ effects on the major complications of 

diabetes mellitus.

3.1 Heart

3.1.1 Myocardial ischemic injury—Myocardial ischemia is a heart disease caused by 

lack of oxygen to cardiac muscle, usually due to blockage of blood vessels. Diabetic patients 

have high incidence of cardiovascular disease and myocardial infarction [85, 86]. In diabetic 

patients, more sorbitol accumulation and a decrease of NADPH, from a flux of AR, have 

been considered a causal factor in cardiac dysfunction [56, 87]. Many AR inhibitors such 

as Zopolrestat [59–61, 64], Tolrestat [63, 67] and Sorbinil [63, 67] have been reported 

effectively against myocardial ischemic injury in mice [64], rat [59, 60, 67] and rabbit [61, 

63] models in both diabetic and non-diabetic conditions. To further understand the influence 

of AR in the heart, Ramasamy [62] and Bhatnagar [66] groups conducted experiments to 

measure AR activity and kinetic properties between normal and ischemic heart. They both 

found that ischemia increases myocardial AR activity, with higher Kcat and Vmax due to 

oxidative stress, without affecting Km [62]. In addition, the expression and activity of AR 

was significantly higher in aged hearts than young ones in a rat model [68]. Treating aged 

rats with AR inhibitor reduced ischemic injury and improved cardiac function in aged hearts 

[68]. Therefore, there is still a need for developing AR inhibitors on myocardial ischemia 

therapy.

3.1.2 Cardiomyopathy—Cardiomyopathy is degeneration of the myocardium, which 

causes severe cardiac failure and arrhythmia [88]. Studies showed that AR activation induces 

oxidative stress [39, 80] which could further trigger the NF-κB pathway [36, 38, 48]. The 

NF-κB pathway is involved in inflammatory condition which contributes to cardiovascular 
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dysfunction [89]. Sakamoto and Sugamoto observed the upregulation of AR-like gene 

in heart of cardiomyopathic rodent [70]. Ramana and colleagues also reported that AR 

inhibition is capable of preventing endotoxin-induced cardiomyopathy [48]. In addition, AR 

inhibition is able to prevent acute hyperglycemia-induced cardiac contractile dysfunction by 

reducing oxidative stress [69]. Taken together, observations above indicate that blockade of 

NF-κB pathway and oxidative stress through AR suppression could be a therapeutic strategy 

for preventing cardiomyopathy.

3.2 Kidney

3.2.1 Nephropathy—Diabetes has high influences in kidney complications and 

approximately 30% of diabetic patients have diabetic nephropathy, which is a leading 

cause of kidney failure in US [90, 91]. A strong immunohistochemical staining of AR 

was found in diabetic individuals, when compared to non-diabetic individuals, indicating 

that the level of AR is increased in the kidney of diabetics [92]. Supportive studies reported 

that high glucose in blood or cultured condition induces AR expression that leads to renal 

sorbitol accumulation [93–95], reactive oxygen species (ROS) production [96, 97] and 

inflammation [96] in nephropathy kidney or renal cells culture. Thus, a variety of AR 

inhibitors had been utilized for treating nephropathy by inhibiting the polyol pathway [73] 

but showed no influences on kidney weight, body weight or blood glucose [72]. In vivo 

studies utilizing AR null mice showed that genetic ablation of AR plays a strong protective 

role in preventing diabetic nephropathy [71]; however, the AR deletion in kidney came with 

abnormal functioning of the inner medulla [98]. Kidneys from diabetic patients also highly 

express TGF-β [99], which is an inducer of epithelial-mesenchymal-transition (EMT) [100]. 

Evidence from human mesangial cells showed that AR inhibition prevents transforming 

growth factor-beta 1 (TGF-β1)-induced fibronectin expression [101], which is an EMT 

marker that leads to kidney fibrosis. Another study conducted in renal proximal tubular cells 

showed that AR inhibition attenuated hyperglycemia-induced fibronectin elevation [93]. 

Collectively, AR inhibition could be a therapeutic strategy by preventing ROS production 

and EMT marker expression in patients of nephropathy.

3.2.2 Acute kidney injury—Acute kidney injury (AKI), also called acute renal failure 

(ARF), is a rapid onset loss of kidney function that may arise from an intense inflammatory 

process. In AKI mouse model, endotoxin injection increases the levels of blood urea 

nitrogen, creatinine and cytokines which cause vacuolar degeneration, apoptosis of renal 

tubular cells and immune cells infiltration [50]. Pretreatment with Fidarestat, an ARI, 

was able to ameliorate LPS-induced AKI by reducing inflammation and increase survival 

rate [49, 50]. The polyol pathway has recently been implicated in ischemia/reperfusion 

tissue injury. Hindlimb ischemia in mice revealed accumulation of sorbitol and fructose 

in ischemic muscles accompanying secretion of TNF-α and IL-6 in serum, which led 

to AKI [49]. Treatment with the AR inhibitor was effective at suppressing inflammatory 

reactions and renal failure [49]. These results suggest that AR inhibition may be a potential 

therapeutic strategy for treatment of AKI.
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3.3 Peripheral Nervous System Disorders

3.3.1 Diabetic peripheral neuropathy—Diabetic peripheral neuropathy (DPN) is 

nerve damage that affects the 50% of patients with both Type 1 and Type 2 diabetes [102] 

and causes loss of sensation in the arms, hands, legs and feet [103]. DPN is considered 

one of the most painful complications affecting diabetic patients [104]. Patients usually feel 

painful prickling, burning, electrical, sharp, or jabbing sensation [105]. Assessing sensory 

nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) allows 

clinicians to determine the degree of neuronal activity or damage [106]. Measurement 

of F-wave latency is the most common procedure to be diagnose peripheral neuropathy 

[107]. The efficacy of treatment on DPN is determined by using electrophysiological 

measurements of three key nerves—median motor, tibial motor, and median sensory nerves. 

A variety of strategies have been explored for management of DPN including the use of 

oriental medicine and natural products [108]. Conventional treatments of DPN include the 

commonly known analgesic drug such as non-steroidal anti-inflammatory drugs (NSAIDs) 

and opiates [109, 110]. Among the medicine in the management of DPN, tramadol is often 

used as a second-line analgesic. Tramadol is a semisynthetic opium-derived compound 

that binds to μ and δ opioid receptors and interferes the re-uptake of serotonin and 

norepinephrine [111, 112]. However, clinical use of tramadol is not recommended due to 

the high risk of epileptic seizures and psychiatric disorders. Other analgesic, in particular 

opium-derived, also has revealed physical and psychological side effects [113]. Therefore, 

alternative medicine is still an urgent need for management of DPN. Many natural 

compounds have been reported in the management of DPN. These compounds include 

phenolic compounds [114], cannabinoids [115, 116], vanilloids [117, 118] and essential 

fatty acid [119].

In the diabetic patient, AR is overexpressed in a variety of organs/tissues, particular in 

peripheral nerve [92], suggesting a possible link between AR and DPN. Sorbitol is the 

metabolite of glucose converted by AR in polyol pathway. Oka and Kato reported that 

increased accumulation of sorbitol results in the decrease of myo-inositol in the peripheral 

nerve [120]. Downregulatoin of myo-inositol subsequcetly results in lower Na+, K+ -ATPase 

activity, which is important for nerve conduction [120]. Therefore, blocking sorbitol 

accumulation by inhibiting AR polyol pathway is a strategy being considered for DPN 

treatment. Genetic studies support this concept, as AR knockout mice appear to be protected 

from delayed motor nerve conduction velocity [71]. Pharmacological inhibition of AR also 

showed encouraging or convincing results for clinical use. Epalrestat has been approved 

for use in the treatment of diabetic neuropathy in Japan [121]. Several clinical trials with 

epalrestat showed that 150 mg/day improves MNCV and SNCV, and subjective symptoms 

in patients with DPN [122, 123]. Two additional AR inhibitors, Fidarestat [124–126] and 

Rainrestat [124, 127, 128], also provide encouraging experimental and/or clinincal results 

in treatment of DPN and diabetic sensorimotor polyneuropathy (DSP), respectively. With 

these promising results of AR inhibitors, more about their efficacy and safety will need to be 

investigated to promote them in the U.S. market. Therefore, the natural products with lower 

cytotoxicity are potential candidates in AR inhibitor development for DPN treatment.
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3.3.2 Cardiac autonomic neuropathy—Cardiac autonomic neuropathy (CAN) is 

characterized by dysfunction in the cardiac autonomic nerves causing dysregulation of 

heart rate. CAN results in higher incidence of heart failure and sudden death in diabetic 

patients [129]. In diabetic animal models, sorbitol accumulation from polyol pathway has 

been considered a major contributor to diabetic neuropathy [130]. Since it is considered 

an effective AR inhibitor, Sorbinil was used as a therapeutic agent in diabetic patients 

exhibiting improvement in CAN symptoms [54–56]. Other AR inhibitors such as Epalrestat 

[131–133], Ponalrestat [134–136] and Tolrestat [137, 138] were also reported as therapeutic 

agents against CAN. In 1981, Kline et al. developed a useful method entitled I-123 Meta

Iodobenzylguanidin (MIBG) to facilitate imaging the myocardium. This method provides 

quantitative information of heart rate [139] and is a useful tool in investigating diabetic 

autonomic disorder in patients [139]. Using MIBG, AR inhibition was observed to alleviate 

CAN progression in diabetic rats [57] and patients [58]. As a result, AR inhibitors might 

be a promising treatment for CAN. Thus, development of novel, effective, and nontoxic AR 

inhibitors is still necessary for slowing the progression of diabetic autonomic neuropathy 

[140].

3.4 Ocular Disorders

3.4.1 Uveitis—Uveitis is an ocular inflammatory disease of the uvea, the middle layer 

of the eye that consists of the iris (anterior uveitis), ciliary body (intermediate uveitis) 

and choroid (posterior uveitis), that contributes about 10 to 20% legal blindness per 

year [82]. Therefore, the aim of uveitis treatment is to prevent inflammatory responses. 

Topical eye drops or oral administration of glucocorticoid steroids is the most common 

treatment for uveitis [141]. In animal studies, lipopolysaccharide (LPS) is commonly used 

for induction of experimental uveitis, or so-called endotoxin-induced uveitis (EIU) [39, 51, 

52, 142, 143]. LPS injection results in induction of TNF-α [51, 52, 142], ROS [51, 142], 

cyclooxygenase-2 (COX-2) [51, 52, 143], inducible nitric oxide synthase (iNOS) [51, 52, 

143] and NF-κB activation [51, 143] in rodent eyes. Experimental autoimmune uveoretinitis 

(EAU) is another model for the investigation of ocular inflammatory response [52, 144]. 

Within these two uveitis models, secretion of proinflammatory cytokines is thought to play 

an important role resulting in damage to ocular tissue [52, 142]. Regarding the effects 

of AR on inflammatory responses, many studies using macrophages demonstrated that 

pharmacological inhibition or genetic ablation of AR attenuates LPS-induced cytokines 

secretion, oxidative stress and cell migration by suppressing MMP-9 and NF-κB activation 

[36–40]. In addition, studies also reported that downregulation of AR by enzymatic activity 

or gene expression is capable of preventing experimental models of EIU or EAU [39, 51, 

52]. In the eye, retinal microglia (RMG) are one of the major immune cells that participate 

in surveillance in retinal environment. While they are typically located in the inner and outer 

plexiform layers in a healthy condition [145, 146], in uveitis they become activated [147] 

leading to morphological transformation [142] and migration into the outer nuclear layer 

(photoreceptor layer) where they secrete cytokines and peroxynitrites [144, 146]. In vitro 

studies using primary cells showed that RMG can be activated by LPS exposure [40, 148] 

and such activation can be suppressed by addition of an AR inhibitor or in mice lacking the 

functional allele of the AR gene [40]. For these reasons, we propose that AR could be a 

therapeutic target for uveitis.
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3.4.2 Diabetic cataract—In 2010, it was estimated that around 285 million people 

worldwide had diabetes [149]. There is an estimation that around 552 million people, which 

is one in ten, will have diabetes by 2030 [150]. Many studies have shown that diabetes is 

associated with higher prevalence of cataracts, which remains a major cause of blindness 

in the world [151–153]. Tight glycemic control is known to reduce the risk of cataracts in 

subjects with type 2 diabetes [154]. Among the factors thought to induce lens opacification, 

oxidative damage is thought to be a major mechanism in the onset or progression of diabetic 

cataract (DC) [155]. Thus, researchers observed that the use of dietary antioxidant alleviates 

the cataract progression [156, 157]. Galactose is another substrate metabolized by AR and 

results in accumulation of galactitol, which also causes cataract formation. Studies on the 

anterior part of eyes showed that AR activation plays a key role in DC formation [158, 159]. 

AR inhibitors prevent cataract formation in streptozotocin (STZ)-diabetic animal models 

[77, 78] and galactose-fed rats [76]. Other than the effect of sorbitol, fructose metabolized 

from glucose in AR polyol pathway is another precursor that initiates production of 

AGE [79], which contributes to cataractous lenses of human subjects with diabetes [74]. 

Therefore, there is still an urgent need for ARI development. Since AR expression is low 

in wildtype mice, even in diabetes, Lee and colleagues generated the human AR expressing 

mice to accelerate cataractogenesis for the sugar cataract study [159]. We recently generated 

human AR transgenic (AR-Tg) mice that can shorten the time for DC formation by STZ 

injection [160], thus providing a useful laboratory model for studying DC formation and 

prevention. The role for AR in DC formation was further substantiated when it was observed 

that a lower level of diabetic cataract formed in AR null mice compared to wild type [161].

3.4.3 Diabetic retinopathy—Diabetic retinopathy (DR) is one of the major 

complications of diabetes and has become the leading cause of blindness in people of 

working age in the past century [75, 162]. Clinical features of DR are macular edema, retinal 

ischemia, retinal hemorrhages and microaneurysms, formation of intraretinal microvascular 

abnormalities, growth of neovascular vessels onto the retina, and retinal detachment [163]. 

Patients with DR experience a decline of visual acuity that affects many activities of 

daily living. Among the factors causing DR, vascular endothelial growth factor (VEGF) 

is considered a major one that leads to neovascularization in retina [164, 165]. Animal 

studies have also shown a correlation between elevated VEGF and diabetic vasculopathy 

[166]. Clinical trials have shown that use of the VEGF neutralizing antibodies by intravitreal 

injection improves visual acuity [167, 168]. Although anti-VEGF therapy has revolutionized 

management of DR, this procedure requires repeated injections, often monthly for two years, 

and may lead to impaired survival of neuronal and vascular cells [169]. Thus, alternative 

strategies are being sought to offset VEGF-driven pathology in the diabetic retina, such 

as reduction of VEGF protein production. In animal studies, genetic ablation of VEGF 

in Muller cells reveals the important role of VEGF production in retinopathy [170, 171]. 

Genetically predisposed diabetic mice (db/db) carrying a mutation in leptin receptor are type 

2 diabetic models for investigation of DR [172–174]. Elevation of VEGF in the diabetic 

retina is decreased when the AR null mutation is introduced into db/db mice, which further 

prevents blood-retinal barrier (BRB) breakdown and apoptosis in retina [175]. Deletion 

of AR also prevents mice from streptozotocin-induced DR by inhibiting retinal capillary 

degeneration and superoxide generation [83]. Reduction of AR activity using inhibitors 
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helps to normalize VEGF levels [166], suppressing VEGF-induced tube formation in retinal 

endothelial cells [84] and alleviating hyperglycemia-induced damage in retinal pigment 

epithelial cells [80].

Considering the source of VEGF, Muller cells are believed to be the major immune cells 

that secrete VEGF in the diabetic eye [81]. However, our current unpublished studies show 

that genetic ablation of AR reduces hypoxia-induced VEGF secretion by attenuating COX-2 

expression in retinal microglia (RMG) indicating that RMG could be another source of 

VEGF in retina (Fig. 5).

Other than anti-VEGF therapy, intravitreal injection of steroids is also used for treatment of 

diabetic macular edema [176]. Steroids are well-known to reduce inflammatory responses 

by suppressing NF-κB pathway [177, 178]. In the clinic, patients treated with intravitreal 

injections of steroids such as triamcinolone and dexamethasone showed improvement in 

diabetic macular edema by reducing central macular thickness [179]. However, these 

treatments have the side effects of causing cataracts. Nevertheless, suppression of NF-κB 

pathway is an effective strategy for prevention of onset and/or progression of DR which can 

be a blinding disease if left untreated.

Systemic inflammation is considered to be an intrinsic response to diabetes [180]. 

Inflammatory cytokines like interleukin-1β (IL-1β) and TNF-α are increased in the vitreous 

of patients with DR [181]. Increased TNF-α in retina leads to retinal vascular permeability 

[182], microglia activation [183] and induction of apoptotic protein markers [183] in retina. 

Collective data suggested that anti-inflammatory treatment with glucocorticoids [184] or 

minocycline [183] attenuates severity of retinopathy and helps to restore the BRB. Muller 

cells and RMG are thought to contribute to inflammatory responses in retina [163]. Our 

previous study showed that downregulation of AR reduces inflammatory responses in RMG 

[40] suggesting AR inhibition plays an alternative role in preventing DR by suppressing 

inflammatory responses in the diabetic eye.

Advanced glycation end-products (AGEs) have been shown to induce VEFG production 

[81] and matrix metalloproteinases (MMPs) [185] in the diabetic retina. Induction of MMPs 

alters the BRB by initiating morphological changes in retinal endothelial cells [185], which 

is often observed in DR. Amadori-glycated protein is the precursor to AGEs [46]. Patients 

with diabetes have increase of Amadori-glycated albumin (AGA) in serum [186] which 

correlates with higher risk of retinopathy [187]. Animal studies also showed the increase of 

AGA in the diabetic retina [188]. Inflammation in diabetic individuals could be induced by 

AGEs in kidney via NF-κB pathway [189] or by AGA in retina through Mitogen-activated 

protein kinases (MAPK) pathway [188]. Previous studies showed that AR inhibition or 

genetic deficiency suppresses the NF-κB [36–38] and MAPK pathways [39]. Therefore, it 

would be an interesting question whether AR mediates AGE or AGA-induced inflammatory 

responses in diabetic retina. Recent studies have shown that RMG were activated in the 

presence of AGE [190, 191] and AGA [188], and follow the induction of TNF-α. Our 

current unpublished data observed that AR inhibition suppresses AGA-induced TNF-α 
secretion and cell migration in RMG suggesting that AR is involved in AGA-mediated DR 

(Fig. 4).
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3.4.4 Posterior capsule opacification—Posterior capsule opacification (PCO), which 

is the complication after cataract surgery [192], results from abnormal proliferation and 

migration of lens epithelia cells (LECs) [193] in the central posterior capsule resulting in 

degraded visual acuity. LECs undergo differentiation from an epithelial to a myofibroblast 

phenotype [100] and matrix contraction [194], which further leads to opacification. TGF-

β overexpression in Tg mice led to morphological changes in lens that resembled PCO 

in human [195]. In the process of PCO, TGF-β plays an important role in developing 

epithelial-mesenchymal-transition (EMT) [100], resulting in expression of EMT related 

markers such as α-smooth muscle actin (α-SMA) [194], and forming cells with a spindled

shaped myofibroblastic morphology [100]. TGF-β also induces MMPs such as MMP-2 

and -9, which has been demonstrated that can be induced under mechanical trauma of 

cataract surgery [194]. Therefore, suppression of EMT and MMPs activation could lead 

to prevention of PCO. Previous works showed that AR inhibition suppresses LPS or high 

glucose-induced MMP-9 activation [40, 196, 197]. Kidney studies further reported that 

TGF-β-induced MMPs and EMT activations were attenuated by AR inhibitor treatment in 

renal cells [101, 198]. Yadav and colleagues reported a study using pig capsule that AR 

inhibitor were shown to reduce LECs proliferation and expression EMT markers [199]. 

SMAD signaling pathway has been identified as playing a critical downstream role in 

TGF-β-mediated signaling [200]. TGF-β interaction with its receptor leads to SMADS 

phosphorylation and subsequent translocation to the nucleus to trigger EMT process [201]. 

Recently, an encouraging study in LECs showed that AR inhibition suppresses TGF-β2

induced SMADs phosphorylation and its downstream regulatory pathways including cell 

migration, EMT initiation and MMPs activation [202]. A novel function of AR was reported, 

involving AR interaction with SMADs. This novel model offers a possible mechanism 

to explain how AR inhibitor treatment suppresses SMADs activation [202]. This finding 

indicated the AR is required to facilitate TGF-β/SMADs pathway and AR inhibitor disrupts 

AR-SMADs interaction. Accordingly, AR could be a therapeutic target for PCO.

4 Summary and future directions

4.1 N ovel AR inhibito rs

In the view of AR inhibitor and ocular inflammation, we determined whether β-glucogallin 

(BGG), isolated from Indian gooseberry, is an efficacious AR inhibitor. We observed 

that BGG is a potential anti-inflammatory agent against endotoxin-induced uveitis in 

an experimental mouse model. BGG not only alleviated inflammatory responses in 

macrophages but also suppressed infiltration of immune cells into the eye [39]. However, 

our extensive research showed the instability of BGG in thermal acidic condition [203]. 

We observed that the ester linkage in BGG (glycosyl 1-ester) is labile in aqueous solution. 

Thus, our collaborators Dr. Daniel LaBarbera and his lab designed β-glucogallin amide 

(BGA), a derivative of BGG produced by replacing the ester with an amide linkage to join 

the gallic acid and glucose ring. BGA demonstrated similar inhibitory activity in vitro and 

ex vivo but much better stability under thermal acidic condition [203]. With compatible 

activity and greatly improved stability, BGA holds a promise to be an attractive therapeutic 

lead toward the treatment of ocular inflammation. Further structure-based drug design is 
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presently ongoing to improve the pharmacological profile of BGA, and more sophisticated 

animal models will be used to test BGA efficacy in vivo.

Our studies of BGG were motivated by strong animal study results which showed that this 

AR inhibitor can prevent complications of diabetes mellitus. Clinical trials of many AR 

inhibitors have been unsuccessful in part due to toxicity from their metabolic breakdown 

products. In our studies of the effect of AR inhibition on inflammation associated with 

endotoxin-induced uveitis, we included Sorbinil as a positive AR inhibitor control. Sorbinil 

is no longer considered a candidate for human therapy because previous clinical studies 

showed that microsomal metabolites of Sorbinil are cytotoxic [204]. Similarly, other AR 

inhibitors such as Imirestat [205], Tolrestat [206, 207] and Zoporestat [207] also failed in 

clinical trials due to liver and/or renal toxicity. So far, only Epalrestat has been shown to 

be safe and efficacious against diabetic peripheral neuropathy and is now marketed in Japan 

[121, 207]. Therefore, the encouraging results of BGG and preliminary data from BGA 

provide a new direction for development of AR inhibitors based on a novel pharmacophore 

structurally unrelated to previously failed AR inhibitors. Since BGG is abundant in many 

fruits consumed by humans (gooseberry, rhubarb), it is likely that it will not cause liver and 

renal complications.

In the study of DR, we wanted to know whether BGG is capable of preventing diabetic 

complications. We developed hyperglycemic condition using high glucose medium on 

ARPE-19 cells. We found that BGG is an efficacious AR inhibitor reducing hyperglycemia

induced cell death, ROS production, ER stress and mitochondrial dysfunction [80]. 

Hyperglycemia also elevates the level of advanced glycation end products (AGEs) in the 

serum of diabetic patients [186]. A study on AGEs has been known to induce ocular 

inflammation by triggering RMG activation [148]. Our preliminary studies showed that AR 

inhibition attenuates amadori glycated albumin (AGA)-induced inflammatory responses in 

RMG (Fig. 4). The mechanism behind this finding remains unknown and should be studied. 

Since low cytotoxicity of BGG has been shown in cell line model [39], extensive studies of 

BGG in animal study are feasible. Diabetes shows higher risk in elevating VEGF in retina 

that causes neovascularization [164, 165]. Our preliminary showed that pharmacological 

inhibition or genetic ablation of AR prevents hypoxia-induced VEGF secretion from RMG 

(Fig. 5). Based on our previous study of ARI on RMG, We believe that BGG and BGA 

are a potential therapeutics for diabetic complication by preventing RMG activation in 

diabetic retina. However, to further apply BGA to next step, more pharmaceutical kinetics 

and toxicity experiments are necessary. Although BGA is derived from natural compound, 

the toxicity in vivo has not been studied. Animal toxicity study of BGA injection should 

be conducted before BGA’s further application. Since BGA was designed for its higher 

stability, in vivo pharmaceutical kinetics should also be studied in the future.

4.2 A role for AR in ocular inflammation

In the eye, RMG is one of the immune cells that normally reside in the inner retina. 

However, under inflammatory conditions, RMG can be found in higher numbers in the 

subretinal space between photoreceptor outer segments and the RPE. Activated RMG 

secrete chemokines and/or cytokines to damage neural and retinal cells in the eye. 
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Therefore, regulation of RMG may be critical for preventing ocular inflammation. To 

investigate a more specific area of the eye, we conducted an ex vivo study to examine 

a potential role for AR in the response of RMG to endotoxin exposure. We observed 

that inflammatory responses in RMG following exposure to endotoxin were substantially 

suppressed when cells were treated with AR inhibitors or were genetically deficient for 

AR gene expression. These results demonstrated that pharmacological inhibition or genetic 

ablation of AR prevents endotoxin-induced inflammation in the retina by suppressing RMG 

activation [40]. An MMP-9 inhibitor, designed to inhibit gelatinase activity, was shown 

to prevent LPS-induced cell migration. By a different route, AR inhibition prevents cell 

migration by reducing MMP-9 protein expression. Therefore, one would expect additive 

effects of combined treatment with AR and MMP inhibitors on preventing cell migration. 

A preliminary animal study was extensively performed using CX3CR1 transgenic mice, 

a strain in which monocytes, including RMG, constitutively express green fluorescence 

protein and therefore are easily observed in ocular tissue sections. We observed that LPS 

injection triggers RMG activation and migration into inner and outer nuclear layers (Fig. 

6). Co-injection with Sorbinil alleviated LPS-induced RMG activation and migration in the 

retina (Fig. 6) indicating that AR inhibition is valid in vivo to prevent ocular inflammation. 

In inflammation, TNF-α plays a robust role in causing apoptosis. We have previously shown 

that downregulation of AR by either pharmacological inhibition or genetic ablation reduces 

TNF-α secretion in RMG as well as apoptosis in co-cultured RPE cells [40]. Studies on the 

detection the level of TNF-α secretion and apoptosis in retina should be conducted in the 

future. Since we have AR null mice, genetic effects of AR on LPS-induced RMG activation 

would be a convincing experiment to confirm the role of AR in retinal inflammation. 

The study of RMG provides a therapeutic target in the retina for AR-associated ocular 

inflammatory diseases such as uveitis and retinopathy. In addition, Muller cells are the 

glial cells that have immune functions in the eye. AR was also reported to express in the 

Muller cells [208, 209]. Several studies showed that Muller cells are involved in uveitis, 

proliferative vitreoretinopathy (PVR) and DR [210–212]. Therefore, the effect of AR on 

Muller cells is an interesting study to be conducted in the future.

In the experimental uveitis model or hyperglycemic stress experiment, we treated the mice 

or cell line at the same time while uveitis or hyperglycemic stresses were being induced. 

However, in real practice, treatment is always applied after disease occurs. Based on this 

point, the efficacy of AR inhibitors after stressor such as LPS or hyperglycemia needs to be 

tested. Although we haven’t conducted experiments regarding this issue, administration of 

AR inhibitors after retinal inflammation or hyperglycemia would better mimic the treatment 

paradigm in uveitis or diabetes management. It is possible that the effect of post-treatment 

would be less effective than pre-treatment due to some possible irreversible changes that 

may have occurred or the disease may have gone to a more advanced stage that is less 

susceptible to ARI therapy.

We observed that AR inhibitors lowered the abundance of inflammatory cells in the 

vitreous of endotoxin-treated animals. One possibility is that inhibitors reduce expression 

of MMPs and thereby reduce the ability of cells to migrate toward their targets. Another 

possible explanation for reduced immune cell infiltration may relate to their ability to 

pass through the vascular endothelium. Adhesion molecules are cell surface receptors that 
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facilitate the binding of immune cells to endothelial cells and penetration [213]. These 

adhesion molecules include intracellular adhesion molecule 1 (ICAM-1) and vascular cell 

adhesion molecule (VCAM). TNF-α is an inflammatory cytokine that mediates pathological 

endothelial changes which cause induction of adhesion molecule expression and vascular 

leakage at the site of inflammation [214]. Ramana and colleagues reported that AR 

inhibition prevents TNF-α-induced increases of ICAM-1 and VCAM in human umbilical 

vein endothelial cells (HUVECs) as well as decreases monocytes adhesion to these cells 

[215]. This observation may provide another explanation for the effect of AR inhibitors on 

prevention of inflammatory cells infiltration into the eye.

4.3 Studies of AR as a mediator of EMT during development of posterior capsule 
opacification

Regarding the effect of AR inhibitor on PCO development, we proposed a novel idea of AR 

with a noncatalytic function. We observed AR interacts with Smads in a NADPH-dependent 

pathway but in a manner not requiring enzymatic activity [202]. This is the first paper 

that reports a non-enzymatic function of AR. We also found that AR inhibition or genetic 

ablation prevents TGF-β2-induced Smads activation and expression of EMT markers, thus 

indicating a potential therapeutic strategy for prevention of PCO development. However, 

remaining unknown are the details of how AR interacts with Smads and whether there is 

a distinct interaction site. Sequence deletion could be used for understanding the possible 

site or domain. Since AR null mice are available, we can develop PCO in either wildtype 

or AR null mice to confirm the hypothesis in vivo. Sorbinil disruption of AR-Smads 

interaction could be resulted from an AR conformational change or actual blocking of a 

protein-protein interaction site. In this study, we only tested the noncatalytic function of AR 

using Sorbinil. However, whether other ARIs such as BGG also contribute similar effect is 

still unknown. Other ARIs may fail to disrupt AR-Smads interaction due to different results 

of conformational change or blocking site. Therefore, more studies on different ARIs on 

noncatalytic effect need to be conducted to elucidate the hypothesis.

Most of the published studies surrounding Sorbinil as an anti-inflammatory agent implicitly 

presume its efficacy derives from inhibition of AR catalytic activity. In our PCO study, we 

showed that a catalytically inactive mutant of AR was able to facilitate TGF-β2-induced 

Smad activation, demonstrating that the ability of Sorbinil to downregulate Smad activation 

was unrelated to its ability to inhibit AR catalysis. Therefore, the effect of Sorbinil can be 

segregated into its effects on catalytic and noncatalytic functions of AR. Previous studies 

reported that AR plays a catalytic role in reduction of aldehydes during lipid peroxidation 

pathway following NF-κB activation [20, 21] and AR inhibitors such as Sorbinil suppress 

this pathway [23, 25–27]. However, the noncatalytic role of AR in NF-κB activation has 

not been studied to date. Going forward, it would be possible to address this question by 

transfecting AR null cells with wildtype AR (wtAR) or an active site mutant AR (mutAR) 

and treat the cells with or without AR inhibitors (Sorbinil or BGG) under LPS exposure. If 

LPS induces the same level of NF-κB activation in mutAR group compared to wtAR group, 

one could conclude that AR facilitates NF-κB activation in a noncatalytic fashion. Similarly, 

if Sorbinil treatment prevented NF-κB activation in both groups, it would be consistent with 
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the notion that an AR interaction domain overlapping the ARI binding site is important for 

NF-κB activation in a manner similar to our findings with AR and Smad activation.

AR has been studied extensively as a catalyst that results in sorbitol accumulation and 

contributes to pathogenesis of diabetic complications. Our current pharmacological studies 

confirm the importance of AR through its role as a regulator of glucose metabolism through 

the polyol pathway (catalytic function). In addition, we have compelling results which 

point to AR as a component of the TGF-β signaling pathway (noncatalytic function). 

It will be exciting to see the results of future studies which aim to further clarify the 

mechanism linking AR to TGF-β signaling and possible therapeutic strategies to prevent 

TGF-β-associated disease.
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Fig. 1. 
Linkage between polyol pathway activation and induction of inflammatory signaling. 

Glucose metabolism through the polyol pathway results in a reduced NAD+/NADH ratio, 

which lowers the ability of Sirt1 to deacetylate NF-κB.
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Fig. 2. 
Hyperglycemia-induced oxidative stress is contributed by mitochondrial electron transport 

system, polyol pathway, PKC and AGEs.
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Fig. 3. 
Increased flux of polyol pathway initiates oxidative stress by reducing the ratio of NADPH/

NADP+ and NAD+/NADH, and inducing AGEs production.
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Fig. 4. 
Effect of ARI on AGA-induced cytokine secretion and migration in RMG. RMG were 

treated with vehicle or Sorbinil (10 μM) in the absence or presence of AGA (500 μg/ml) 

for 24 h for TNF-α secretion (A) or migration assay (B). Secreted TNF- α was measured 

by using mouse TNF-α detection ELISA kit. The migration assay was conducted by using 

transwell method. Data shown are means ± SEM (N = 3). *P < 0.05.
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Fig. 5. 
AR inhibition or knockdown prevents hypoxia-induced VEFG secretion by reducing COX-2 

expression. RMG were treated with 10 μM Sorbinil (A) or isolated from ARKO mice (B) in 

normoxia or hypoxia (1% O2) condition for 24 h. Secreted VEGF was measured by using 

mouse VEGF detection ELISA kit. Hypoxia-induced COX-2 expression in wild type (WT) 

or ARKO RMG was probed by using Western blot (C). Data shown are means ± SEM (N = 

3). *P, #P < 0.05.
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Fig. 6. 
AR inhibition prevents RMG activation and migration under LPS exposure. Cx3Cr1 

transgenic mice were injected with LPS (500 ug / mouse) for 24 h with or without Sorbinil 

co-injection. Green spots indicate RMG in retinas. White arrows indicate RMG migration 

into inner or outer nuclear layers. Figure adapted by Chang and Petrash from Biochem 
Biophys Res Commun. 2016; 473(2):565–571.
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Table 1.

The table for human aldo-keto reductase family 1B

Gene Protein Also known as Chromosomal localization

AKR1B1 Aldose reductase AR, ALR2 7q35

AKR1B10 Small intestine-like aldose reductase HSIR, ALR1 7q33

AKR1B15 Aldo-keto reductase family 1, member B15 AKR1B10L 7q33
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Table 2.

The table for the role of AKR1B1 in health and disease.

Organ Associated disease

Heart Myocardial ischemic injury

Cardiomyopathy

Kidney Diabeitc Nephropathy

Acute Kidney Injury

Nerve Diabetic peripheral neuropathy

Cardiac autonomic neuropathy

Eye Uveitis

Diabetic cataract

Diabetic retinopathy

Posterior Capsular Opacification
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