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Abstract

Purpose—Develop a deep-learning-based segmentation algorithm for prostate and its peripheral 

zone (PZ) that is reliable across multiple MRI vendors.

Methods—This is a retrospective study. The dataset consisted of 550 MRIs (Siemens-330, 

General Electric[GE]-220). A multistream 3D convolutional neural network is used for automatic 

segmentation of the prostate and its PZ using T2-weighted (T2-w) MRI. Prostate and PZ were 

manually contoured on axial T2-w. The network uses axial, coronal, and sagittal T2-w series 

as input. The preprocessing of the input data includes bias correction, resampling, and image 

normalization. A dataset from two MRI vendors (Siemens and GE) is used to test the proposed 

network. Six different models were trained, three for the prostate and three for the PZ. Of the 

three, two were trained on data from each vendor separately, and a third (Combined) on the 

aggregate of the datasets. The Dice coefficient (DSC) is used to compare the manual and predicted 

segmentation.

Results—For prostate segmentation, the Combined model obtained DSCs of 0.893 ± 0.036 and 

0.825 ± 0.112 (mean ± standard deviation) on Siemens and GE, respectively. For PZ, the best 

DSCs were from the Combined model: 0.811 ± 0.079 and 0.788 ± 0.093. While the Siemens 

model underperformed on the GE dataset and vice versa, the Combined model achieved robust 

performance on both datasets.

Conclusion—The proposed network has a performance comparable to the interexpert variability 

for segmenting the prostate and its PZ. Combining images from different MRI vendors on the 

training of the network is of paramount importance for building a universal model for prostate and 

PZ segmentation.
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Introduction

Accurate prostate segmentation on MRI datasets is required for many clinical and research 

applications. In addition, due to the different imaging properties of the peripheral (PZ) and 

transition zones (TZ) of the prostate, accurate zonal segmentation is also necessary. The 

prostate and zonal contours are required for computer-aided diagnosis (CAD) applications 

for staging, diagnosis, and treatment planning for prostate cancer. In a series of applications, 

prostate contours are fused with ultrasound images to guide prostate biopsies. Automatic 

segmentation of the prostate, PZ and TZ on MR images provides an opportunity to broaden 

the current scope of research by facilitating studies that include large populations of subjects 

or studies that incorporate serial imaging of the prostate to attain a longitudinal picture 

of disease progression and response. Prostate MRI image segmentation has been an area 

of intense research [1]. Earlier, the applied approaches varied from model-based [2, 3] 

to atlas-based segmentation [4–9]. Our group also evaluated the performance of an atlas­

based approach for prostate and prostate zones segmentation using data from different MRI 

scanners and acquisition parameters [10]. The advent of deep learning techniques, such as 

convolutional neural networks (CNN) has led to outstanding results in image classification 

[11, 12]. The top ranked method of the PROMISE12 MIC-CAI Grand Challenge for the 

automatic segmentation of the prostate [1], used a volumetric CNN and achieved a Dice 

coefficient (DSC) of 89.43% [13]. Recently, the U-Net architecture has been proposed 

[14] for medical imaging segmentation and has been successfully applied to the prostate 

[15]. In this work, we implement a multistream 3D U-Net and analyze its performance 

for the automatic segmentation of the prostate and PZ in a multivendor MRI setting. As 

with our atlas-based approach [10], the goal of the described developments was to segue 

towards a universal approach that can segment the prostate and prostate zones, regardless 

of acquisition protocols, magnetic field strength or type of scanners. A core contribution is 

made by the preprocessing of the images in order to harmonize the data and optimize the 

network performance when training and testing is carried out in an image dataset from two 

different MRI vendors.

Methods

Datasets

An institutional review board (IRB) approved a protocol for retrospective review of 

MRI exams from patients with biopsy-proven prostate cancer. The IRB waived the need 

for informed consent. Patients with intermediate/high-risk prostate cancer, presenting for 

evaluation for definitive radiation treatment (RT) were considered. Patients with prior 

treatment for prostate cancer (RT, radical prostatectomy, focal therapies) were excluded. 

A total of 220 eligible patients with MRI exams carried out on Discovery MR750 3T 

MRI (GE, Waukesha, WI, USA) between 2012 and 2018 were identified. In addition, 330 

MRI exams, publicly available from the SPIE-AAPM-NCI ProstateX Challenge, acquired 

on two different types of Siemens 3T MR scanners, the MAGNETOM Trio and Skyra 

(Siemens, Erlangen, Germany) were considered [16]. All MRI exams included acquisition of 

T2-weighted (T2-w) MRI in the axial, coronal and sagittal orientations using fast spin-echo 
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(FSE) sequence with acquisition parameters (for the axial orientation) given in Table 1. 

T2-w sequence was acquired as a part of multiparametric (mp)MRI exam of the patients, 

including diffusion weighted imaging (DWI) and dynamic-contrast enhanced (DCE-) MRI 

and prior to contrast administration. Prostate and PZ were manually contoured on axial 

T2-w MRI in MIM (MIM Software Inc, Cleveland, OH, USA) by imaging experts (RS, AB, 

NG) with more than 25 years combined expertise in prostate imaging. The contours were 

cross checked by the imaging experts and reviewed by radiation oncologists (AP, MA) with 

extensive expertise in genitourinary malignancies.

Experimental design

In order to compare the robustness of the models with respect to changes in MRI vendor 

machines, a distinct model was trained for each dataset: GE (n = 220), Siemens (n = 

330), and Combined (n = 550). Each dataset was split into 90% for training and 10% for 

validation. A total number of six models were built, three (GE, Siemens, Combined) for 

the prostate and three for the PZ. Similarly to our previous work [10], a crisscross design 

was used to evaluate the network performance: each of the three models for prostate and PZ 

segmentation was tested on GE and Siemens dataset.

Preprocessing of images and contours

The preprocessing steps for the MRIs consist of bias correction using the N4ITK algorithm 

[17]. N4ITK corrects for low frequency intensity nonuniformity that is present in the 

imaging data by least-squares B-spline data approximation. The 1 and 99% of the image 

intensities were normalized to an interval of [0, 1]. The image was resampled to uniform 

resolution, automatic selection of a region of interest (ROI), and (contour) interpolation.

The MRI series are resampled to a resolution of 0.5 × 0.5 × 0.5mm using linear interpolation 

[18]. The ROI, containing the prostate gland, is automatically obtained from the intersection 

of the rectangular prisms of the three MRI planes [15]. The resampled ROI are linearly 

interpolated to an isotropic volume with a resolution of 1683. Fig. 1 shows an example of an 

axial T2-w MRI before and after preprocessing.

Contour preprocessing included interpolation using optical flow. The manual contours were 

carried out on the original T2-w MRI resolution and hence the necessity for interpolation. 

The proposed method estimates 2D contours in-between slices of the axial plane and 

computes them in dependently for every two consecutive slices. First, optical flow is 

obtained between the two contours of adjacent slices using the Farneback method [19]. 

Then, intermediate contours are generated by linearly interpolating the position of their 

edges following the direction of the optical flow vector field. Fig. 2 shows an example of 

the optical flow obtained between two horizontal slices and the resulting interpolated 3D 

volumes using this method.

Three-dimensional CNN architecture

The proposed CNN consist of a 3D multistream architecture that follows the encoding and 

decoding path of the 3D U-net [20]. Our implementation follows the one described by 

Meyer et al. [15]. The input of each stream is the postprocessed ROI of 1683 pixels for 
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one of three MRI series (axial, sagittal, and coronal). During the encoding phase, a group 

of two convolutional layers and one max pool layer is repeated three times. The second 

convolutional layer in each group doubles the number of filters. In the decoding phase, a 

similar set of two convolutional layers and one deconvolution layer is applied three times 

[21]. The original network was modified by implementing batch normalization [22] and 

dropout of 20% [23] after each convolution in the decoding phase only (due to memory 

constrains in the GPU used).

The number of filters were cut from 192 to 128 in the largest convolutional layer (after the 

first concatenation) reducing the number of parameters from to 995k to 663k. These changes 

cut the training time in half. Fig. 3 shows the proposed model. All convolutional layers use 

a filter size of 3 × 3 × 3 and rectified linear unit (ReLU) as the activation function except 

the last layer which uses a filter size of 1 × 1 × 1 and Sigmoid as the activation function to 

match the resolution of the input MRI series. The estimated size of the complete model is 

9.2 gigabytes and the accumulated memory for each layer is displayed in Fig. 3.

Data augmentation is performed on the fly by flipping the images in the x-axis and blurring 

them using 3D Gaussian filter randomly with 0 ≤ σ ≤ 3, the size of the filter is four times σ. 

Each data augmentation method is applied with a random chance of ½.

Training

The selected optimization algorithm is stochastic gradient descent (SGD) with a learning 

rate α = 0.001, momentum of 0.9 and decay of 10−6 after conducting a hyperparameter 

search (see Results section). The training is performed for 1000 epochs with a batch size of 

1 and with an early stop mechanism if the loss function is not improved by at least β = 0.001 

after 70 iterations. The loss function is formulated is the negative DSC [24]:

Loss = − 2∑j = 1
N piti

∑j = 1
N pi2 + ∑j = 1

N ti2 + ε
(1)

where N is the total number of voxels in the image, pi the voxel values for the prediction 

of the network, ti the true voxel values of the prostate or PZ masks, and ε = 1 for all the 

models. Note that the predicted probabilities, pi, are used directly in the DSC calculation (so 

called “soft Dice”) instead of thresholding and converting them in a binary mask.

For each model the data was split at random 90:10 for training/validation. Training was 

performed on a desktop computer with an Intel Xeon(R) E5-2609 CPU and a GeForce GTX 

1080 Ti NVIDIA GPU. The system is implemented using Keras [25] and Tensor Flow [26] 

Python libraries. The average training time for each model, independently if carried out for 

the prostate or the PZ, is ~7.5h, the overall training time for the six models is about two 

days.

Postprocessing

The CNN outputs a 3D volume of the same size of the ROI, in our case 1683 and each 

voxel gets the probability of belonging to the area of interest (prostate or PZ) versus the 
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background. From this volume a binary mask is obtained with a threshold value of 0.5. 

After that, the largest connected volume is selected. Finally, the 3D DSC for the contour 

of interest in the resampled image and in the original MRI series resolution is computed. 

The prediction of the PZ contour is intersected with the prostate, restricting it to the prostate 

volume. To infer into the network layers, the activations maps of a single test input volume 

were visualized using Keras and Tensor Flow libraries [27].

Statistical analysis

The performance of each model (three for the prostate and three for the PZ) was assessed 

via DSC and 95% Hausdorff distances between manual and network contours. DSC’s 

distribution and 95% Hausdorff distances in the segmented GE and Siemens datasets were 

summarized with descriptive statistics and compared using Mann–Whitney U test. The 

DSCs/95% Hausdorff distances were computed from the validation set when the model 

is evaluated on the same MRI data, and are calculated from the whole dataset when the 

model is evaluated with data of a different MRI scanner. Significance was determined using 

probability values of p < 0.001 from two-tailed tests. The associations of the DSC and 

image acquisition parameters were evaluated with Spearman rank correlation coefficient (p). 

Significance of p was determined using probability values of p < 0.005 (to account for 

multiple comparisons) from two-tailed tests.

Results

In Table 1 the MRI acquisition parameters for axial T2w MRI are presented. The GE data 

is split almost in half between lower spatial resolution (in-plane pixel size larger than 1 × 

1mm) and higher spatial resolution. This “bimodal” distribution of the voxel size contrasts 

the more homogeneous Siemens data. In terms of voxel size, Siemens on average is of lower 

resolution: (mean [mm3] ± standard deviation): 0.95 ± 0.37 (Siemens) vs 1.71 ± 1.34 (GE). 

The GE data is more heterogeneous also in terms of acquisition parameters.

The hyperparameter selection for stochastic gradient descent (learning rate, momentum and 

decay) was performed by a semi-random search on the GE training dataset. Initially, the 

learning rate was fixed at α = 0.001, and values in the neighborhood of 0.9 for momentum 

and 10−6 for decay were tested. Using 10% from the GE dataset, the performance of the 

hyperparameters were evaluated on two primary metrics: (i) the average DSC value of the 

network tested on the validation set at the specific epoch of 100; and (ii) the overall average 

DSC value of the network at the end of training. The values were varied semi-randomly by 

adding increments in the order of ±b*10−a with the coefficient b selected randomly from 1 

to 9 and the coefficient a selected randomly from 1 to 5 for momentum and from 4 to 10 for 

decay, ten training runs per trial. The best performing combination of momentum and decay 

for this set of trials would then become the start values of the next. After this search, with 

more than 50 different momentum and decay values, we determined that momentum and 

decay did not significantly impact performance across the two metrics established above. 

Furthermore, momentum and decay were fixed and the learning rate was varied as described 

above with coefficient b in the range of 1 to 5. The end result was that while network 

performance varied across metric (i), overall DSC scores in metric (ii) were similar, the 
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biggest change is visible on the time that takes the network to converge. We kept the original 

learning rate of 0.001 because it was the fastest learning rate with similar performance than 

our best runs.

Table 2 shows the obtained DSCs and 95% Hausdorff distances for the segmentation of the 

prostate when the three trained models are used for segmenting the GE and the Siemens 

dataset.

When the model is trained with examples from one dataset and used to segment prostates 

from scans of the same MRI vendor the average DSCs are 0.882 for GE and 0.905 for 

Siemens. When the datasets are combined during training, the average DSCs are 0.825 for 

GE and 0.893 for Siemens. When the model is trained with examples from one MRI vendor 

and then used to process images from a different vendor, the resulting DSCs are lower 

(0.261 and 0.802). Fig. 4 shows the middle axial slice for the lowest, closest to mean, and 

highest DSC obtained for prostate segmentation on the Siemens and GE dataset. In general, 

the DSC increases with respect to the volume size of the prostate, and predictions for the 

Siemens dataset follow better the contours from the experts. It should be noted that Siemens 

MRIs were of higher resolution than GE and this maybe another reason why the network 

performs better for this MRI vendor.

Table 3 shows the obtained DSCs and 95% Hausdorff distances for the segmentation of the 

PZ for the three trained models. The best DSCs of 0.788 and 0.811 are obtained when the 

model is trained using the combined dataset. Fig. 5 shows the middle axial slice for the 

lowest, closest to mean, and highest DSC obtained for the segmentation of the PZ on the 

Siemens and GE dataset.

In Table 4 Spearman correlations coefficients of the DCS and four acquisition parameters: 

pixel size, echo time, echo train length and repetition time are displayed. The last three 

parameters are related in general to image contrast. Although modest, four of the Spearman 

coefficients reached statistical significance.

Examples of activation maps for different layers are shown in Fig. 6 for the Combined 

model of the prostate. The activation maps of the second layer in the axial stream (Fig. 6b) 

show that several features are identifying the obturator muscle (areas with low intensity), 

and others are recognizing different types of edges. The activation maps of the fifth model 

layer are of low resolution (Fig. 6c) which makes it harder to identify particular structures, 

but some features activate a broad location of the prostate while others activate features 

outside the prostate. Some structures, such as the prostate, pelvic bone, obturator muscle can 

be identified across multiple views as the network has combined the three initial streams. 

And finally, the prostate and the background are clearly segmented by some of the features 

at the 14th layer (Fig. 6d).

Discussion

In this manuscript, a deep learning 3D CNN architecture for the automatic segmentation 

of the prostate and the zonal anatomy on T2 MRIs, collected from two MRI-vendors, is 

investigated. This is a continuation of our previous work [10], where a multiatlas-based 
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segmentation method was also evaluated for different MRI vendors. In both publications, 

the term vendor is used with the caveat that the automatic segmentation performance is 

in fact related to the property of the MRI scanner. We used the same crisscross design in 

both projects, whereby a method trained with imaging data from one vendor was tested in 

segmenting images acquired on another. Recently, the inner-site variability was evaluated 

using similar experimental design and deep-learning-based segmentation of the prostate 

[28].

The objective of the paper was to build models for the segmentation of the prostate and 

the PZ that will perform robustly in a large variety of images and make it available to the 

community (the obtained models and the software for testing them are freely available at 

https://github.com/olmozavala/Prostate_and_PZ_DL_Segmentation_Code). Unlike Gibson 

et al. [28] the presented network also segments the PZ. The 3D U-Net architecture was 

chosen as a state of the art method for image segmentation [15]. Similarly, established 

methods for upsampling in the decoder phase were used [20, 29–31]. Our results on 

ProstateX are comparable to Meyer et al. [15], indicating that network modifications did 

not compromised the network. To the best of our knowledge, these developments utilized the 

largest collection of annotated prostate imaging datasets. The method used acquired axial, 

sagittal and coronal T2-weighted images for achieving high resolution segmentation of the 

prostate/PZ.

The combined model yielded similar DSCs for the two datasets (0.825 for GE and 0.893 for 

Siemens). The results obtained for the Siemens dataset are comparable with recent methods 

for prostate segmentation [32–34]. The average DSCs of all the PZ models are lower than 

the coefficients for segmenting the prostate, which is expected as segmenting the PZ is a 

more challenging task. The obtained DSC for segmenting the PZ with the Combined model 

(0.788 and 0.811) are better than what we found in the literature for similar databases (0.60, 

0.68, 0.62, 0.75) [9, 35–37].

This paper brings to the forefront the need for assessment of data heterogeneity when 

comparing the performance of segmentation methods. While intuitively self-evident, this 

factor is often ignored in the quest for higher DSC scores. A robust performance of a 

segmentation with DCS in the 0.85 range may be more desirable than a DSC >0.9 of a 

model trained in a homogeneous dataset. For example, as evident from Table 1, the Siemens 

data are more homogeneous. The Siemens’ trained model performed with high accuracy 

on Siemens image data (Table 2, DCS ~0.90), but ostensibly failed on GE (DSC <0.3). It 

could be hypothesized that the reasons for suboptimal performance is the inability of the 

Siemens model on handling more heterogeneous data. Based on the results in Table 4, it also 

seems that the model classifies, probably erroneously, on GE image contrast properties. In 

the case of PZ, the Siemens model performs better on GE lower image resolution, which is 

expected as it is trained on images with lower resolution. Meanwhile, the GE trained model 

reached a more modest DSC for GE data (DSC ~0.88) but performed quite robustly on 

Siemens data. For these reasons, comparing the performance of our network with other CNN 

approaches is not straightforward. Mooij et al. [36] report DSC of 0.89 and 0.65 for TZ and 

PZ, respectively. The network was trained with fifty-three 3D T2-w datasets. Our results are 

superior; however, this most likely is a consequence of the larger training dataset. Meyer 
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et al. [15] used a subset of forty images from ProstateX to train a network, resulting in 

average DCS for segmenting the prostate of 92.1%. Possible explanation for these excellent 

results is again the homogeneity of this data, as exemplified in Table 1. To et al. [38] tested 

their model with two distinct datasets and obtained DSCs of 95.11 and 89.01. The large 

difference of more than 6% in the performance of the network is attributable to the variation 

in heterogeneity of each dataset.

It should be noted that even though the CNN was trained and tested on T2-w MRIs with 

sizes 1683 the final model is not restricted to that input size and could be used with different 

resolutions as long as the field of view of the input volume is similar to the training data and 

the size of the image can be divided by 8 without a remainder (1043, 1603, 1683, 1843, 2403, 

etc.). As a test, we ran images at 2003 and the network segmented the data successfully (data 

not shown).

Deep learning models are sometimes considered “black box” methods because it difficult to 

understand how the networks work and which features of the model have some biological 

meaning [39]. The visualization of the activation maps for a single test input volume (Fig. 

6) provide a glimpse of the image features that contribute on the network classification. 

Similarly, investigating the correlations of the DSC coefficients with the image acquisition 

parameters (Table 4) contributed to the understanding of how image contrast and resolution 

affect the network performance.

This study has some limitations. The Siemens and GE datasets are of different sizes and 

splitting the datasets in training, validation and testing of the same size would possibly 

provide for better comparison of the models. Even though the manual segmentation was 

performed by experienced operators, there is inherent error in the “ground truth” contours. 

The limited inter-reader study, carried out in our previously reported results [10], yielded 

DSC of 0.88 ± 0.04 and 0.66 ± 0.15 for the prostate and PZ, respectively. These results 

are similar to previously reported [4]. There is a variety of factors that affect the process 

of prostate segmentation. While the networks were trained on a very large dataset, there 

is no guarantee that this dataset encompasses all possible variations related to anatomical 

variability between subjects, as well as variability in imaging data.

The established network could be used as a basis and then fine tuned to a particular 

classifier on top of this CNN for a new dataset [40]. Future plans include incorporating other 

sequences of mpMRI in the model as well as investigating if segmented prostate and PZ 

simultaneously will improve the model. In addition, early stopping of the network will be 

evaluated on a separated dataset rather than on the training set.
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Fig. 1. 
Axial T2-weighted image a before, and b after preprocessing. Preprocessing steps include 

bias correction, intensity normalization, resampling, and cropping
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Fig. 2. 
Interpolation of prostate and PZ contours. a An example of the optical flow obtained 

between two prostate contours from adjacent horizontal planes. Interpolation of prostate and 

PZ contours. In b and c original (left) and interpolated (right) prostate and PZ contours
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Fig. 3. 
Multistream 3D convolutional networkarchitecture. The input of the network are three 1683 

volumes from the MRI planes: axial, sagittal, and coronal. The estimated accumulated 

memory requirement is displayed in gigabytes (GB) below each layer
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Fig. 4. 
Prostate segmentation for the cases with the lowest, closest to mean, and highest 3D DSC 

for the Siemens (top) and GE (bottom) datasets. These segmentations are obtained with the 

Combined network model. Ground truth (GT) contours are in yellow and predicted contours 

(NN) are in red
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Fig. 5. 
Peripheral zone segmentation for the cases with the lowest, closest to mean, and highest 

3D Dice similarity coefficients (DSC) for the Siemens (top) and GE (bottom) datasets. 

These segmentations are obtained with the Combined network model. Ground truth (GT) 

PZ contours are displayed in red, predicted contours (NN) in cyan, and prostate contours in 

yellow
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Fig. 6. 
Examples of activation maps for different layers of the network. a A single axial test input; 

b activation maps at 2nd layer (84 × 84 × 16) from the axial input stream after convolution; 

c activation maps at 5th convolution layer (42, 42,128) after joining of the multistream 

network; and d 14th (168,168, 16) layer after convolution before fully connected output
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