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Background: Patients on dialysis have a high burden of bone-related comorbidities, including fractures.

We report a post hoc analysis of the prospective cohort study HDF, Hearts and Heights (3H) to determine

the prevalence and risk factors for chronic kidney disease-related bone disease in children on hemodia-

filtration (HDF) and conventional hemodialysis (HD).

Methods: The baseline cross-sectional analysis included 144 children, of which 103 (61 HD, 42 HDF)

completed 12-month follow-up. Circulating biomarkers of bone formation and resorption, inflammatory

markers, fibroblast growth factor-23, and klotho were measured.

Results: Inflammatory markers interleukin-6, tumor necrosis factor-a, and high-sensitivity C-reactive

protein were lower in HDF than in HD cohorts at baseline and at 12 months (P < .001). Concentrations of

bone formation (bone-specific alkaline phosphatase) and resorption (tartrate-resistant acid phosphatase

5b) markers were comparable between cohorts at baseline, but after 12-months the bone-specific alkaline

phosphatase/tartrate-resistant acid phosphatase 5b ratio increased in HDF (P ¼ .004) and was unchanged

in HD (P ¼ .44). On adjusted analysis, the bone-specific alkaline phosphatase/tartrate-resistant acid

phosphatase 5b ratio was 2.66-fold lower (95% confidence interval, �3.91 to �1.41; P < .0001) in HD

compared with HDF. Fibroblast growth factor-23 was comparable between groups at baseline (P ¼ .52) but

increased in HD (P < .0001) and remained unchanged in HDF (P ¼ .34) at 12 months. Klotho levels were

similar between groups and unchanged during follow-up. The fibroblast growth factor-23/klotho ratio was

3.86-fold higher (95% confidence interval, 2.15–6.93; P < .0001) after 12 months of HD compared with HDF.
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Kidney
Conclusion: Children on HDF have an attenuated inflammatory profile, increased bone formation, and

lower fibroblast growth factor-23/klotho ratios compared with those on HD. Long-term studies are required

to determine the effects of an improved bone biomarker profile on fracture risk and cardiovascular health.

Kidney Int Rep (2021) 6, 2358–2370; https://doi.org/10.1016/j.ekir.2021.06.025
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C
hronic kidney disease (CKD) is associated with
nearly universal disturbances in mineral bone dis-

ease (MBD),1,2 manifesting as bone pain,3 deformities,3

growth retardation in children,4 fractures,3,5 and
vascular calcification.6 Although assessment of bone
health is integral to the care of patients with CKD, it re-
mains a major challenge for physicians.7 Histomorpho-
metric analysis of bone biopsy specimens is the gold
standard for diagnosis of renal bone disease8 but is
invasive and not suited for screening and longitudinal
monitoring. On the other hand, radiologic bone assess-
ment, such as conventional X-ray imaging or dual-energy
X-ray absorptiometry, although noninvasive and widely
available, has limited sensitivity and specificity in pre-
dicting changes in bone turnover and mineralization.9,10

Circulating biomarkers, reflecting global skeletal ac-
tivity, are recognized as important tools11,12 to detect
changes in bone homeostasis, enabling the assessment of
both bone formation and resorption.13,14 Classical forma-
tion markers include bone alkaline phosphatase (BAP), a
protein found on the surface of osteoblasts reflecting their
activity. Bone resorption markers include tartrate-
resistant acid phosphatase 5b (TRAP5b), an enzyme
produced by osteoclasts reflecting their number,15–18 and
C-terminal telopeptide of type I collagen. Also studied
was sclerostin, a canonical Wnt signaling pathway in-
hibitor.19 More recently, the effects of chronic inflam-
mation, which is common in patients with advanced CKD,
has come into focus. Several conditions characterized by
chronic inflammation are associated with excessive bone
resorption,20,21 but the effects, if any, of different dialysis
modalities on the inflammatory phenotype and CKD-
related bone disease have not been studied.

The HDF, Hearts and Height (3H) study, a multi-
center, longitudinal study in children receiving
hemodiafiltration (HDF) compared with conventional
hemodialysis (HD),22 showed that subclinical cardio-
vascular disease is prevalent in children on dialysis,
with attenuated progression of vascular changes in
children receiving HDF compared with conventional
HD.23 In a cross-over trial when children on conven-
tional HD were switched to HDF, and all other dialysis-
related parameters were kept constant, a significant
improvement in inflammation, antioxidant capacity,
and endothelial risk profile was seen even within a
International Reports (2021) 6, 2358–2370
short time (3 months),24 but the effect of these
biochemical changes on CKD-related bone disease was
not explored. We present a post hoc analysis of the 3H
data to determine the changes in bone biomarkers in
children on dialysis and the effect of different dialysis
modalities on the evolution of MBD over a 1-year
follow-up.
MATERIAL AND METHODS

Patients

This is a post hoc analysis of the 3H data set, a registered
multicenter, parallel-arm intervention study, performed
across 28 pediatric dialysis centers in 10 countries,
monitoring children receiving kidney replacement
therapy with HD or HDF for 1 year (ClinicalTrials.gov:
NCT02063776). The 3H study protocol22 and primary
outcomes23 have been previously published.

Briefly, standardized procedures for HDF and HD
were provided to all centers, but to keep the study as
“real life” as possible, individualized changes to the
dialysis prescription were left to the treating physician.
Incident and prevalent patients aged between 5 and 20
years undergoing postdilution HDF or HD on a 4 hours
per session, 3 times per week schedule were eligible. A
minimum follow-up of 12 months was required. Chil-
dren in whom a living donor kidney transplant was
planned and those on predilution HDF were excluded.
To ensure good dialysis adequacy, prevalent patients
on HD in whom the single pool Kt/V (K, dialyzer
clearance of urea; t, dialysis time; V, volume of distri-
bution of urea) was <1.2 in the month preceding
recruitment were excluded.

Here we focus on MBD, including biomarkers of
CKD-MBD, their evolution over the 12 months of
follow-up, and the effect of inflammation, medications,
and physical activity on these biomarkers. Because
changes in height SD scores are extensively described
in the original study,23 this is not addressed here. All
patients in whom a serum sample at baseline was
available for biomarker analysis were included in the
cross-sectional analysis (n ¼ 144; 83 on HD and 61 on
HDF) and all those with serum samples at 12 months in
the longitudinal follow-up (n ¼ 103; 61 on HD and 42
on HDF). A Consolidated Standards of Reporting Trials
2359
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figure is shown in Supplementary Figure S1. Data are
reported as per Strengthening the Reporting of
Observational studies in Epidemiology guidelines.25
Ethics Approval

The study was performed according to the principles of
the declaration of Helsinki. It has been approved by the
National Research Ethics Service Committee London—
Bloomsbury, a Research Ethics Committee established
by the Health Research Authority, England. Approval
from local Institutional Review Boards was obtained for
each participating site. Full written informed consent
was obtained from all parents or caregivers, and assent
from children, where applicable.
Sampling and Storage of Blood

Nonfasting blood samples were collected before the
start of a midweek dialysis session, centrifuged, and
stored at �80 �C in the local hospitals before being
shipped to a central biorepository for aliquoting and
long-term storage.
Measurement of Biomarkers

All analyses were performed in a blinded fashion in
central laboratories. Samples were batched for analyses,
and reagents from the same enzyme-linked immuno-
sorbent assay kits were used for each batch, following
manufacturer instructions. Measures of mineral ho-
meostasis (calcium, phosphate, parathyroid hormone;
Immulite 2500 Intact Parathyroid Hormone assay;
Siemens Healthcare Diagnostics, Malvern, PA), 25-
hydroxyvitamin D (tandem mass spectrometry), b2
microglobulin (b2M; Immulite Immunoassay System,
Siemens,) and inflammation, including high-sensitivity
C-reactive protein (hs-CRP; Sigma-Aldrich, St Louis,
MO), interleukin-6 (IL-6; enzyme-linked immunosor-
bent assay, Thermo Fisher Scientific, Waltham, MA),
and tumor necrosis factor-a (TNF-a; Thermo Fischer
Scientific), were performed in the Chemical Pathology
Unit at UCL Great Ormond Street Hospital. Enzymatic
activities of BAP (MicroVue Quidel; Athens, OH),
TRAP5b (MicroVue Quidel), and serum concentrations
of intact fibroblast growth factor-23 (FGF23; Kainos
Laboratories, Tokyo, Japan), soluble klotho (Immuno
Biological Laboratories Co Ltd, Tokyo, Japan), sclero-
stin (Teco, Sissach, Switzerland), and C-terminal telo-
peptide of type I collagen (Immunodiagnostic Systems,
Boldon, UK) were measured in the Research Unit of the
Department of Pediatrics, Rostock University Medical
Center, as described previously.13,14,26 The Infinite
M200 microplate reader (Tecan, Crailsheim, Germany)
with corresponding software (Magellan version 6.6)
was used for data acquisition and transformation.
2360
For quantification of fetuin-A, serum samples were
adjusted to a protein concentration of 2 mg/ml and
analyzed with sodium dodecyl sulfate–polyacrylamide
gel electrophoresis with subsequent Western blotting
and chemiluminescence detection.27 The GEL Logic
1500 (Kodak, Rochester, NY) was used for acquisition
of images, and densitometry was performed with
Gelanalyser 2010a software (GelAnalyzer.com) in the
“quantity calibration mode.” Per gel, recombinant
fetuin-A (15 g/ml to1 ng/ml) and a serum sample with
known fetuin-A concentrations (3 ng/ml) served as
standards and controls, respectively.

Statistical Methods

Continuous data are reported as median (interquartile
range). Within-patient comparisons of biochemical
measures on HD and HDF were analyzed using the
Wilcoxon signed rank test. Comparisons between the
HD and HDF groups were analyzed using the Mann-
Whitney U test or c2 test, as appropriate. Correla-
tions between continuous variables were made using
Pearson correlation coefficients if variables were nor-
mally distributed or Spearman rank correlation co-
efficients otherwise. BAP and TRAP5b that are
significantly correlated with age and sex were con-
verted to z-scores for comparison across the cohort.13

Linear regression models were used to analyze the
evolution of bone disease over a 12-month follow-up.
Regression models were built for the BAP/TRAP5b ratio
and FGF23/klotho ratio, adjusting for their corresponding
baseline values. The FGF23/klotho ratio followed a log-
normal distribution, so log-linear regression was per-
formed, and estimates were then back transformed; effect
sizes are therefore presented as fold-change.

All potential confounders for the association between
dialysis modality and MBD were included in multivari-
able analyses if P < .2 in univariable analyses. We
decided a priori to include dialysis modality (HD vs.
HDF), regardless of its level of statistical significance,
because this was the primary independent variable of
interest. Finally, to gain insight into their potential role as
mediators of the effects of HD or HDF treatment, linear
regression models were additionally adjusted for a mea-
sure of inflammation (12-month TNF-a) and a measure of
middle-molecule clearance (12-month b2M) where P < .2
in univariable analyses (adjusted model 2 in Tables 1 and
2). To avoid multicollinearity, parathyroid hormone was
excluded from both regression models. Given the risk of
center bias, all regression models were adjusted for
country as well as baseline values.

Analyses were performed in SAS 9.4 software (SAS
Institute Inc., Cary, NC). All analyses were 2-sided, and
P < .05 was nominally considered statistically
significant.
Kidney International Reports (2021) 6, 2358–2370
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Table 1. Factors associated with the BAP/TRAP5b ratio at 1 yeara

Factor

Unadjusted Adjusted 1b Adjusted 2--including mediatorsc

b 95% CI P b 95% CI P b 95% CI P

Dialysis modality (HD vs HDF) �2.64 �3.77 to �1.51 <.0001 �2.66 �3.91 to �1.41 <.0001 �1.74 �4.25 to 0.77 .18

Dialysis vintage (per year longer) �0.14 �0.41 to 0.13 .31

Baseline weight-adjusted urine output (per 10 higher) 0.29 �0.16 to 0.73 .21

Growth hormone medication (yes vs no) 0.54 �1.07 to 2.16 .51

Physical activity (ref ¼ 3) .14 0.65 .94

1 �1.74 �3.48 to 0.01 �0.52 �2.23 to 1.20 �0.48 �2.50 to 1.53

2 �0.79 �2.42 to 0.84 0.10 �1.49 to 1.69 �0.46 �2.29 to 1.36

Impaired motor development (yes vs no) �1.17 �3.22 to 0.88 .26

Potential mediators measured at 1 year

b-2 microglobulin (per 10 higher) �0.70 �1.24 to �0.15 .01 �0.20 �0.97 to 0.56 .60

Interleukin-6 (per 100 higher) �0.07 �0.16 to 0.15 .11

Tumor necrosis factor-a (per 100 higher) �0.18 �0.32 to �0.04 .01 0.05 �0.18 to 0.28 .67

hs-CRP (per 10 higher) �0.48 �1.04 to 0.09 .10

Calcium (per 1 higher) 0.00 �2.87 to 2.87 1.00

Phosphate (per 1 higher) �1.12 �2.21 to �0.03 .05 �1.67 �2.95 to �0.39 .01

Vitamin D (per 10 higher) 0.04 �0.35 to 0.45 .82

Convective volume adjusted for BSA (per 10 higher) �0.91 �2.23 to 0.41 .17

BAP, bone alkaline phosphatase; BSA, body surface area; CI, confidence interval; HD, hemodialysis; HDF, hemodiafiltration; hs-CRP, high-sensitivity C-reactive protein; TRAP5b, tartrate-
resistant acid phosphatase 5b.
aAll independent variables were measured at baseline. Results from linear regression models were additionally adjusted for baseline BAP/TRAP ratio and country.
bAdjusted model 1: Adjusted for all potential confounders for the association between dialysis modality and bone disease with P < .2 in univariable analyses (n ¼104).
cAdjusted model 2: Adjusted for all potential confounders, plus potential mediators measured at 12 months with P < .2 in univariable analyses (n ¼ 78).

D-C Fischer et al.: HDF Reduces Inflammation, Increases Bone Formation CLINICAL RESEARCH
RESULTS

Study Cohort

Demographics of the study cohort are presented in
Supplementary Table S1. The HD and HDF patients
were comparable for age, sex, race, underlying kidney
disease, comorbidities, proportion of incident and
prevalent patients, and the time on dialysis before the
Table 2. Factors associated with the FGF/klotho ratio at 1 yeara

Factor

Unadjusted

Fold-change 95% CI P

Dialysis modality (HD vs HDF) 3.86 2.15–6.93 <.00

Dialysis vintage (per year longer) 1.07 0.94–1.23 .31

Weight adjusted urine output (per 10 higher) 0.87 0.69–1.09 .23

Growth hormone medication (yes vs no) 0.64 0.27–1.52 .32

BAP SD score (per 1 higher) 0.99 0.84–1.16 .89

Physical activity (ref¼3)

1 2.16

2 1.84 0.88–5.32 .22

Impaired motor development (yes vs no) 1.25 0.82–4.15 .68

Potential mediators measured at 1 year 0.43–3.69

b-2 microglobulin (per 10 higher) 1.41 1.08–1.84 .01

Interleukin-6 (per 100 higher) 1.07 1.03–1.12 .00

Tumor necrosis factor-a (per 100 higher) 1.08 1.01–1.16 .03

hs-CRP (per 10 higher) 1.34 1.02–1.77 .04

Calcium 0.75 0.16–3.54 .72

Phosphate 1.07 1.03–1.12 .00

Vitamin D (per 10 higher) 1.07 0.89–1.30 .47

Convective volume adjusted for BSA (per 10 higher) 1.55 0.85–2.85 .16

BAP, bone alkaline phosphatase; BSA, body surface area; CI, confidence interval; FGF, fibrob
reactive protein.
aAll independent variables measured at baseline. Results from linear regression models, addit
bAdjusted model 1: Adjusted for all potential confounders for the association between dialysis
cAdjusted model 2: Adjusted for all potential confounders, plus potential mediators measured

Kidney International Reports (2021) 6, 2358–2370
start of the 3H study. The number of incident and
prevalent dialysis patients and dialysis vintage were
comparable between study arms, but more patients on
HDF had received a previous transplant.

As with all dialysis studies, incident patients were
allowed a period of stability on dialysis before inclu-
sion in the 3H study and had a median dialysis vintage
of 1.2 months (interquartile range, 0.22–1.4 months) in
Adjusted 1b Adjusted 2--including mediatorsc

Fold-change 95% CI P Fold-change 95% CI P

01 3.86 2.15–6.93 <.0001 3.46 1.05–11.52 .04

1.08 0.75–1.56 .68

05

0.93 0.75–1.56 .20

08 1.58 0.78–3.20 .20

last growth factor; HD, hemodialysis; HDF, hemodiafiltration; hs-CRP, high-sensitivity C-

ionally adjusted for baseline FGF/klotho ratio and country.
modality and bone disease with P < .2 in univariable analyses (n ¼ 144.)
at 12 months with P < .2 in univariable analyses (n ¼ 71).
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the HD group and 1.12 months (interquartile range,
0.18–1.6 months in the HDF group (P ¼ .76).
Although there was no significant difference in
height SD score at baseline between HD and HDF
patients in the original 3H cohort23; in this substudy,
children on HD were shorter (Supplementary
Table S1), but there was no significant difference in
the height SD score at 12 months between HD and
HDF patients.

Significantly more children in the HDF cohort
received cholecalciferol (62.3% vs. 38.6% on HD; P ¼
.005), but there was no difference in any other medica-
tions prescribed between groups. Notably, there was no
difference in the routinelymeasured biomarkers of CKD-
MBD, including albumin-corrected calcium, phos-
phorus, parathyroid hormone, alkaline phosphatase, and
25-hydroxyvitamin D, which were comparable between
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HD and HDF cohorts at baseline and at 12 months
(Supplementary Table S2). The dialysate composition
was comparable between groups. Children who could
not be included in the final follow-up due to lack of
sufficient serum samples for biomarker analyses had
comparable demographics as well as baseline concen-
trations of biomarkers compared with those included in
the follow-up analyses.

Inflammation

The inflammatory markers IL-6, TNF-a, and hs-CRP
were significantly and consistently lower in the HDF
compared with HD patients at baseline and at 12
months (Figure 1 and Supplementary Table S3). Given
that incident patients received HD or HDF for
approximately 1 month before the start of the 3H
study, even the baseline levels of inflammation were
10

100

1000

10000

TN
F-

al
fa

(p
g/

m
l)

Lo
g

ax
is

Baseline 12-month Baseline 12-month

HD HDF

p = 0.99

p = 0.79

p < 0.0001

p < 0.0001

n = 72 57 56 37

0.0

0.2

0.4

0.6

0.8

Fe
tu

in
-A

 (g
/l)

Baseline 12-month Baseline 12-month

HD HDF

p = 0.39
p = 0.86

p = 0.004

n = 75 43 57 28

p < 0.0001

in the hemodialysis (HD) and hemodiafiltration (HDF) cohorts: (a)
ctive protein (CRP), and, (d) fetuin-A. Within-group analyses were
us HDF cohorts were compared by the Mann-Whitney U test. The
nd bottom borders of the box mark the 75th and 25th percentiles,
ta.

Kidney International Reports (2021) 6, 2358–2370



D-C Fischer et al.: HDF Reduces Inflammation, Increases Bone Formation CLINICAL RESEARCH
lower in HDF compared with HD, consistent with
previous data.23,24 Notably, IL-6 and hs-CRP increased
significantly from baseline to 12 months in HD, but no
further reduction was seen in the HDF cohort over the
12-month follow-up. Fetuin-A, which is down-
regulated in inflammation, was higher in HDF
compared with HD at baseline and at 12 months, but
with no change from baseline in either group (Figure 1
and Supplementary Table S3). Serum phosphate levels
showed a weak inverse correlation with the height SD
score at 12 months, but no correlation was seen with
the inflammatory markers (Supplementary Table S4).

Biomarkers of Bone Formation and Resorption

The BAP and TRAP5b z-score and C-terminal telopep-
tide of type I collagen were comparable between HD and
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HDF cohorts at baseline (Figure 2 and Supplementary
Table S3). The BAP z-score increased in HDF and
decreased in HD patients over the 12-month follow-up,
with significantly higher levels in HDF compared with
HD patients at 12 months (P < .0001). In contrast,
TRAP5b z-scores increased inHDover the 12months but
remained unchanged in HDF, with significantly lower
levels inHDF comparedwithHD at 12months (P¼ .002).
Sclerostin, which is known to be cleared by convective
clearance,28 was lower in HDF compared with HD pa-
tients even at baseline (P¼ .02), but no change was seen
over the 12-month follow-up in either cohort. There was
no difference in C-terminal telopeptide of type I collagen
in either group at any time point.

The ratio of the enzymatic activity of BAP/TRAP5b
increased in HDF patients (P ¼ .004) but remained
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unchanged in HD (P ¼ .44) over 12 months, resulting
in a significant increase in the HDF compared with the
HD cohort at 12 months (P ¼ .002; Figure 3). Unlike
healthy children in whom BAP and TRAP5b are
strongly correlated with each other,13 BAP and
TRAP5b were modestly correlated in both HD and HDF
patients (Figure 4), implying a relative uncoupling of
bone formation and resorption activity. However,
while HDF patients showed an improvement of the
BAP/TRAP5b ratio (R2 ¼ 0.65 to 0.74 from baseline to
12 months), there was no change in HD patients (R2 ¼
0.53 to 0.54) during the same period.

On univariable analysis, significant predictors of the
BAP/TRAP5b ratio at 12 months were the dialysis
modality (HD vs. HDF) and 12-month serum concen-
trations of b2M, TNF-a, and phosphate (Table 1). After
adjustment for potential confounders, dialysis modality
remained associated with BAP/TRAP5b: children
receiving HD had an average 2.66 lower BAP/TRAP5b
ratio (95% confidence interval, �3.91 to �1.41; P <
.0001). Additional adjustment for the inflammatory
markers attenuated the difference between the HD and
HDF groups to �1.74 but did not completely remove
the association, suggesting that a reduction in the in-
flammatory milieu may contribute to an improvement
2364
in the BAP/TRAP5b ratio in the HDF cohort. There was
no difference in the BAP/TRAP5b ratio in patients who
received or did not receive growth hormone treatment.

FGF23 and Klotho

Intact FGF23, a secreted protein with a molecular
weight of ~31 kDa, is cleared by HDF.29 Consequently,
FGF23 levels decreased by 25% (�55% to 4.6%) in
HDF but increased by 109% (20% to 394%) in HD,
resulting in a significant difference between groups at
12 months (P < .0001; Figures 5a and 6a and
Supplementary Table S3). Serum klotho levels were
comparable between HD and HDF cohorts and did not
show any change over 12 months (Figures 5b and 6b
and Supplementary Table S3).

The FGF23/klotho ratio (based on their molecular
weights) was significantly higher in HD compared with
HDF (P < 0.0001; Figure 6c). On univariable analysis,
the significant predictors of a higher FGF23/klotho ratio
were the dialysis modality and the 12-month b2M and
phosphate levels as well as inflammatory markers IL-6,
TNF-a, and hs-CRP (Table 2). As no potential con-
founders, including dialysis vintage, residual kidney
function (expressed as urine output in ml/kg per day
from a 24-hour midweek urine collection), medications,
and physical activity markers were found to be asso-
ciated with the FGF23/klotho ratio, results of multi-
variable analysis were similar: those receiving HD had
a 3.86-times higher FGF23/klotho ratio than those on
HDF (95% confidence interval, 2.15–6.93; P < .0001).
Additional adjustment for inflammatory markers at 12
months showed a significant but attenuated association
with dialysis modality (HD patients had a 3.46-fold
higher FGF23/klotho ratio [95% confidence interval,
1.05–11.52; P ¼ .04]), suggesting that although in-
flammatory markers could modulate the association
between dialysis modality and the FGF23/klotho ratio,
they did not explain the observed differences. Exclu-
sion of dialysis modality from the latter regression
model reduced the observed R2 value from 33.9% to
29.7%.

DISCUSSION

Dialysis is known to cause a proinflammatory milieu
and is associated with profound dysregulation of
mineral bone metabolism, but the impact of different
dialysis modalities on CKD-MBD in adults and children
remains largely undescribed. This prospective obser-
vational study, a post hoc analysis of bone-related
outcomes in children on maintenance dialysis, has
shown that children on HDF have an attenuated in-
flammatory profile, increased bone formation, stable
sclerostin concentrations, and lower FGF23/klotho ratios
compared with those on conventional HD. The ~25%
Kidney International Reports (2021) 6, 2358–2370
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reduction in FGF23 and a lower FGF23/klotho ratio in
patients on HDF may explain the lower left ventric-
ular mass in the 3H cohort23 and reduced
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cardiovascular mortality in adult randomized studies
comparing HDF with conventional HD.30 HDF may
achieve these effects through an improved clearance
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of the large middle-sized molecules, including proin-
flammatory cytokines and other “uremic toxins,” as
well as reduced production of these molecules in the
more biocompatible milieu in HDF. There was no
difference in residual renal function in HD and HDF
cohorts, and this did not influence markers of mineral
metabolism.

While bone turnover is best described on bone
histology from tetracycline-labeled bone biopsy speci-
mens, circulating biomarkers are useful surrogate
measures: serum BAP levels are reflective of bone for-
mation and TRAP5b of bone resorption.7 Unlike other
bone biomarkers, BAP and TRAP5b are both unaf-
fected by CKD stage.31 A large prospective observa-
tional study measuring a range of biomarkers in
children with CKD stages 3 to 5 showed a high bone
turnover, with a clear increase in the BAP z-score and a
small but significant increase of TRAP5b z-scoress.14

We showed that the BAP-to-TRAP5b activity
remained almost constant in children on HD, whereas
children on HDF had an increase in the BAP/TRAP
ratio that was comparable to that seen in healthy
children.13 Although we did not see an association with
growth hormone treatment, a previous study showed
that BAP was higher and TRAP5b was lower in chil-
dren receiving recombinant growth hormone than in
untreated controls,14 further strengthening the case for
an increased BAP/TRAP5b ratio reflecting osteoanabo-
lism in the HDF cohort.

We showed that the BAP/TRAP5b ratio inversely
correlated with the inflammatory markers on uni-
variable analysis. However, on multivariable analysis,
adjustment for TNF-a attenuated but did not
completely remove the difference between HD and
HDF groups, suggesting that a reduction in the in-
flammatory milieu may contribute to but is not the sole
cause of the observed improvement in the BAP/
2366
TRAP5b ratio in the HDF cohort. A similar inverse
association of BAP and TRAP5b with CRP has been
shown in children with CKD 3 to 5, implying that the
effect of inflammation on reduced bone turnover is
independent of the underlying renal disease or the ef-
fect of dialysis per se.14

A recent cross-sectional study in 63 children with
CKD stages 2 to 5 showed that TNF-a correlated with
biomarkers of CKD-MBD and showed an inverse asso-
ciation with the height z-score, suggesting that
inflammation may contribute to growth impairment in
pediatric CKD.32 This study, however, showed an un-
expected positive correlation between TNF-a and both
bone formation markers alkaline phosphatase and BAP,
making the inhibitory effect of inflammatory cytokines
on bone turnover difficult to reconcile.32

Chronic inflammation is a multisystem disorder, and
there are several potential mechanisms by which in-
flammatory cytokines can aggravate bone disease in
CKD. TNF-a inhibits the expression of RUNX2, a major
transcription factor that blocks osteoblast differentia-
tion33 and promotes osteoclastogenesis.34 Receptor
activator of nuclear factor kB ligand (RANKL; also
known as TNF ligand superfamily, member 11) is an
essential cytokine in osteoclastogenesis but may play a
paradoxical role in bone homeostasis by also increasing
the expression of bone morphogenic protein 2 and
stimulating the Wnt pathway.35 Binding of RANKL to
the RANK receptor leads to activation of TNF receptor-
associated factors and upregulation of osteoclast target
genes.36

TNF-a inhibitors are used in chronic inflammatory
disorders of childhood, such as inflammatory bowel
disease and juvenile idiopathic arthritis, wherein chil-
dren treated with TNF-a inhibitors showed improved
trabecular bone mineral density and cortical struc-
ture,37 reduced bone loss,38 and greater statural
Kidney International Reports (2021) 6, 2358–2370
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growth.39,40 Our data suggest that high serum phos-
phate levels negatively influence bone turnover. This
effect may be mediated via the parathyroid hormone
effect on RANKL-directed osteoclastogenesis or even
via stimulating inflammation. Dietary phosphate
loading increased serum TNF-a in uremic rats.41 After
parathyroidectomy, bone expression of TNF-a signifi-
cantly decreases in patients on HD.42

Sclerostin, a potent inhibitor of the Wnt/b-catenin
pathway,43 showed an early reduction in plasma con-
centrations with convective clearance.24 Children on
HDF in this study had sclerostin levels comparable to
those with moderate to severe CKD in the series pub-
lished by Doyon et al.,14 although levels in both groups
were lower than in age-matched healthy children.44

Serum sclerostin levels in healthy children were
inversely associated with cortical volumetric bone
mineral density and cortical thickness,44 and lower
sclerostin levels were predictive of high bone turnover
even in adults with CKD.45

FGF23, a phosphaturic hormone produced by oste-
ocytes, is a 32-kDa protein that is known to be cleared
by HDF. Comparable to previous studies, we showed
~25% lower FGF23 levels in HDF children,29 whereas
levels increased by >100% in HD children. As seen
with the dialytic clearance of other large middle-sized
molecules compounds such as FGF23, IL-6, and TNF-
a, although an early reduction in plasma concentra-
tions is seen with convective clearance,24 this is not
sufficient to further reduce plasma concentrations in
the long-term, perhaps because production of these
compounds overwhelms the clearance capacity of
thrice-weekly dialysis.28 Although protective in early
CKD, FGF23 is known to have several off-target effects,
independent of changes in mineral metabolism, on
cardiac myocytes,46 with an increased prevalence of
left ventricular hypertrophy47 and premature death in
adults with all stages of CKD,48 stressing the impor-
tance of reducing FGF23 levels by HDF. Importantly,
these changes in FGF23 levels were independent of
serum phosphate, which did not change in the HD or
HDF cohorts. Nevertheless, serum phosphate levels are
a poor proxy of phosphate exposure, and other groups
have shown that phosphate control is better in patients
on HDF compared with HD.49 Similarly, FGF23 levels
are significantly lower in patients on short daily HD
compared with those on conventional thrice-weekly
HD, suggesting that FGF23 levels may be a more sen-
sitive biomarker of cumulative phosphate burden.50

FGF23 expression is markedly increased in acute
inflammation, but osteocytes are able to maintain
normal serum levels of biologically active FGF23,
despite the rise in FGF23 transcription, by commen-
surately increasing FGF23 cleavage.20 In contrast,
Kidney International Reports (2021) 6, 2358–2370
chronic inflammation also increases biologically active
intact FGF23 levels, perhaps because sustained periods
of FGF23 overproduction overwhelm the capacity of
the FGF23 cleavage apparatus in osteocytes. Measure-
ment of FGF23 fragments may have revealed a stronger
association between FGF23 concentrations and inflam-
mation. Cytokine profiling in a cohort of adults with
predialysis CKD has shown that several cytokines may
play a role in increasing the production of FGF23.51,52

Furthermore, inflammation may also indirectly stimu-
late the production of FGF23 through the activation of
hepcidin and induction of hypoferremia.20 Thus, in
patients on dialysis, FGF23 can aggravate the bone
disease of CKD and lose any protective role it may have
in countering hyperphosphatemia in the early stages of
CKD.53–55 Importantly, the relationship between
inflammation and CKD-MBD may be bidirectional and
self-perpetuating: FGF23 stimulates hepatocytes to in-
crease secretion of IL-6 and CRP, and FGF23 may itself
be affected by inflammatory cytokines.55,56

Conventional HD evokes an inflammatory response
by releasing inflammatory cytokines.6,57,58 In our
study, the inflammatory cytokines IL-6, TNF-a, and
hs-CRP were higher in HD than in HDF patients at
baseline and continued to increase significantly in HD
even after adjusting for baseline levels, but no change
was seen in the HDF cohort over the 12-month follow-
up. As with all dialysis studies, the “incident” patients
in our cohort were on dialysis for a median of 1 month
to stabilize and achieve the optimal dialysis program
before the first study measures were recorded. The
inflammatory markers showed a strong correlation
with b2M, a prototype middle molecule, indicating
that clearance on HDF largely accounted for lower
levels in HDF.

Similar results were shown in the CONvective
TRAnsport Study (CONTRAST) study: although CRP
and IL-6 concentrations increased in patients treated
with HD during the 3-year study period, they
remained stable in the HDF cohort, suggesting that
HDF maintains a sustained reduction in inflammatory
activity.57,59,60 Notably, we found lower levels of
hsCRP, a large middle-sized molecule, in HDF
compared with HD patients. The molecular weight of
hsCRP is higher than that of albumin, so its clearance is
very unlikely, but removal of smaller molecules that
trigger hsCRP generation may have led to an improved
antioxidant–oxidant balance and reduced levels in
patients on HDF.

Children on extracorporeal dialysis are a “rare dis-
ease” cohort, with only ~450 children across Europe
(according to the European Renal Registry 2018 data),
and usually have a short dialysis vintage before
transplantation, making longitudinal studies difficult.
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The 3H study recruited 40% of this pediatric dialysis
cohort,23 and to adjust for possible differences in
country-specific practices, all regression models were
adjusted for country as well as baseline values.

However, some limitations of the current study
must be acknowledged. As with all pediatric studies,
the scarcity of hard end points, such as fractures,
necessitates the use of surrogate biomarkers of bone
health. Biomarkers are easy to measure, relatively
cheap, and can be repeatedly assessed in the same
patient, but may be affected by age, pubertal stage,
circadian rhythm, renal or liver function, and recent
fractures. The impact of inflammatory markers on the
pathway from dialysis modality to bone growth was
investigated by simple adjustment in the subgroup of
participants with measurements available for all
markers. Future work considering approaches such as
causal mediation analysis to explore these pathways in
detail could provide further insight into these po-
tential mechanisms. In the 3H study, there was no
difference in residual renal function in HD and HDF
cohorts,23 and this did not influence markers of min-
eral metabolism.

Although it would be ideal to compare children on
similar high-flux dialyzers and provide ultrapure water
for HD patients too, in the 3H study 27% of HD pa-
tients were dialyzed with mid- or low-flux dialyzers,
and only 51% had ultrapure water for HD,23 reflecting
the real-life situation of pediatric dialysis across
Europe, but rendering very small numbers for sub-
group analysis. Unfortunately, it has not been possible
to analyze the impact of high-flux versus low-flux HD
or of the effect of immunosuppressant therapy, given
small patient numbers in each category.
CONCLUSION

We have shown that children on HDF have increased
bone formation and lower FGF23/klotho ratios
compared with those on HD, which may be at least
partly explained by the improved clearance of large
and middle molecular weight inflammatory cytokines
by HDF. Further long-term studies are required to
determine whether the improved bone biomarker
profile improves key patient-level outcomes such as
statural growth, bone pain, and fractures.
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