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To help confirm that our physical activity intervention increased physical activity participation in children in the intervention group, 
accelerometry data was collected in a sub-sample of children from the FITKids2 trial.
Specifically, a sub-sample of child participants wore a triaxial wGT3X+ accelerometer (ActiGraph LLC., Pensacola, FL, USA) on the 
waist at the right anterior axillary line on an elastic belt. The accelerometer had a dynamic range of ±6 g and was initialized to record 
acceleration at 100 Hz. Children wore the accelerometer during waking hours except during water-based activities.
We collected accelerometry data for 18 children in the physical activity intervention group, who wore an accelerometer at baseline 
(pre-intervention) and during the last week of the physical activity intervention. We also collected accelerometry data in 16 children in 
the wait list control group, who wore an accelerometer at baseline (pre-intervention) and at post-test.
ActiLife software version 6.13.4. (ActiGraph LLC) was used to calculate time spent in physical activity (min/day). To adjust for 
accelerometer wear time, we also calculated a percentage of wear time spent in moderate to vigorous physical activity MVPA by 
dividing MVPA min/day by wear time (min/day) and multiplying by 100. All statistics were consistent when examining MVPA 
(min/day) or %MVPA. Here we present the statistics for %MVPA.
There were no statistically significant differences in daily MVPA at baseline between the intervention (M=59.0 min/day, SD=22.26; 
M=7.3% %MVPA/wear time, SD=2.6%) and the wait list control (M=57.0 min/day, SD=16.1; M=7.2% %MVPA/wear time, 
SD=1.9%) groups (t (44) = 0.308, p=0.76).
As hypothesized, in the sub-sample of children wearing the accelerometer, children involved in the after-school physical activity 
intervention showed significant within-group increases in MVPA from pre-intervention to the last week of the intervention (M=78.81 
min/day, SD=31.10; M=7.7% MVPA, SD=2.8%) (paired t-test: t (17) = 2.332, p=0.032).
In contrast, no change in daily MVPA from baseline to post-intervention (M=52.52 min/day, SD=10.71; M=6.35% MVPA, SD=1.3%) 
was observed in the wait-list control group (t (15) = 1.999, p=0.064). Note the trend for a decrease in daily MVPA over time in the 
wait-list control group, which fits the literature showing an age-related decline in children’s physical activity.
At post-test, children in the intervention group recorded higher daily MVPA compared to the wait list control group. That is, there 
was a statistically significant difference in daily MVPA measured at post-test between children in the physical activity intervention 
(M=71.2 min/day, SD=14.65; M=9.0% MVPA, SD=1.4%) and children in the wait list control group (M=52.42 min/day, SD=10.71; 
M= 6.0% MVPA, SD=1.5%) (t (21) = 4.210, p<0.0001).
Together, the accelerometry data suggest that our intervention increased physical activity in children randomly assigned to the physical 
activity intervention group. Note that the 2 (Group: Intervention, Control) x 2 (Time: baseline MVPA, post-test MVPA) interaction 
was not statistically significant in our small sample, and future research should collect accelerometry data on all participants.
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Abstract

Individual differences in brain network modularity at baseline can predict improvements in 

cognitive performance after cognitive and physical interventions. The present study is the first 

to explore whether brain network modularity predicts changes in cortical brain structure in 8- to 

9-year-old children involved in an after-school physical activity intervention (N=62), relative to 

children randomized to a wait-list control group (N=53). For children involved in the physical 

activity intervention, brain network modularity at baseline predicted greater decreases in cortical 

thickness in the anterior frontal cortex and parahippocampus. Further, for children involved in 

the physical activity intervention, greater decrease in cortical thickness was associated with 

improvements in cognitive efficiency. The relationships among baseline modularity, changes in 

cortical thickness, and changes in cognitive performance were not present in the wait-list control 

group. Our exploratory study has promising implications for the understanding of brain network 

modularity as a biomarker of intervention-related improvements with physical activity.

Introduction

Preadolescence is a period of the lifespan characterized by significant developmental 

changes in brain structure, brain function, and cognition (Casey et al., 2008; Dahl, 2004; 

Giedd et al., 1996, 1999). As the brain is developing during childhood, this period of 

neurodevelopment may be particularly sensitive to environmental exposures and lifestyle 

factors (Andersen, 2003; Marco, Macri, & Laviola, 2011; Masten, 2004). There is increased 

scientific interest in developing interventions during childhood development, with the goal 

of improving the brain and cognition across the lifespan. Participation in physical activity 

and higher levels of aerobic fitness have been found to benefit cognitive and brain health 

in children (Chaddock et al., 2011, Erickson et al., 2019; Hillman et al., 2014, but see 

Donnelly et al., 2016 and Fedewa & Ahn, 2011 for mixed results). Higher levels of aerobic 

fitness and participation in physical activity during childhood are associated with superior 

scholastic performance (Castelli et al., 2007; Chomitz et al., 2009; Donnelly et al., 2016) as 

well as superior performance on tasks of executive function and memory (Buck et al., 2008; 

Chaddock et al., 2010a, 2010b; Hillman et al., 2014; Pontifex et al., 2011; Tomporowski et 

al., 2008; Voss et al., 2011).

Growing evidence suggests that the aerobic fitness and physical activity-related differences 

in scholastic and cognitive performance have a biological basis in brain structure and 

function (Chaddock-Heyman, Hillman, et al., 2014). As the brain is a complex system that 

is sensitive to individual differences as well as to maturational and experience-dependent 

changes over time, an important goal is to identify brain-based markers that relate changes 
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in cognitive and brain health to physical activity intervention across the lifespan. Given 

individual differences in physical activity-induced changes in cognitive and brain health, 

scientists have begun to search for biomarkers of intervention-related plasticity. Such a 

predictive biomarker of cognitive and brain change may be especially useful during a 

sensitive period of childhood development when the developing brain is more susceptible to 

intervention.

Recent advances in network science have characterized the brain as a complex system, 

with nodes and edges that are differentially sensitive to change depending on their 

network properties (Bassett & Bullmore, 2006). These nodes are organized in structural 

and functional networks, that can be characterized as interconnected modules (Rubinov 

& Sporns, 2010). In particular, brain network modularity is a principle that quantifies the 

degree to which functional brain networks are divided into subnetworks. Higher modularity 

reflects a greater number of within-module connections and fewer connections between 

modules, and a highly modular brain is often interpreted as a brain that contains highly 

specialized brain networks with less integration between networks (Rubinov & Sporns, 

2010). During childhood, functional modules are known to become more distinct and 

specialized, such that connectivity within modules increases and connectivity between 

modules decreases (Dosenbach et al., 2010; Fair et al., 2009; Gu et al., 2015; Satterthwaite 

et al., 2013). These changes likely boost cognitive performance by reducing interference 

between systems (Hampson et al., 2010).

Recent research has turned to how brain network modularity may lend insight into 

interventions such as physical and cognitive training interventions in children, young adults, 

older adults, and patients (e.g., traumatic brain injury) (Arnemann et al., 2015; Baniqued 

et al., 2018, 2019; Chaddock-Heyman et al., 2020; Gallen et al., 2016). In that regard, our 

research team recently demonstrated that greater pre-intervention brain network modularity 

predicted improvements in performance on tasks of executive function, cognitive efficiency 

and mathematics in 8-to 9-year-old children involved in an after-school physical activity 

intervention for 9 months (Chaddock-Heyman et al., 2020). In contrast, there were no 

associations between baseline brain network modularity and performance changes in the 

wait-list control group (Chaddock-Heyman et al., 2020). These findings converge with 

other research studies across the lifespan (see Gallen and D’Esposito, 2019 for review) to 

show that baseline brain network modularity predicts individual differences in sensitivity 

to interventions, specifically improvements in cognitive performance after an intervention 

(Arnemann et al., 2015; Baniqued et al., 2018, 2019; Gallen et al., 2016).

While the previous findings relate brain modularity to cognitive changes, less is known 

about how brain modularity relates to intervention-related changes in brain structure. It 

is likely that brain network modularity may predict not only intervention-related changes 

in cognitive performance, but also intervention-related changes in the brain. The present 

study is the first to explore whether brain network modularity may predict changes in 

cortical brain structure in children involved in a physical activity intervention, relative 

to children randomized to a wait-list control group. One measure of cortical structure is 

cortical thickness, calculated by generating models of gray/white matter boundaries and pial 
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surfaces, and calculating the distance between these two surfaces (Fischl & Dale, 2000; 

Jones et al., 2000; Kabani et al., 2001; MacDonald et al., 2000).

Normative maturation of cortical thickness and aerobic fitness differences in cortical 

thickness provide a context to formulate predictions about the effects of physical activity 

participation on cortical thickness in 8- to 9-year-old children, as well as brain network 

modularity as a potential predictor of changes in cortical thickness with physical activity. 

One developmental study explored changes in brain structure between the age of 7 and 29 

years using four separate longitudinal datasets (388 participants, 854 scans) and consistently 

showed decreasing cortical thickness with increasing age during late childhood and across 

adolescence (Tamnes et al., 2017). Another longitudinal study tracked children from age 5 

to 11 and showed cortical thinning in frontal cortex, occipital-parietal areas, and temporal 

regions with development (Sowell et al., 2004). Further, cortical thinning in the frontal and 

parietal regions was correlated with improved performance on a task of vocabulary and 

verbal intelligence (Sowell et al., 2004). Indeed, gray matter loss may occur as the brain 

develops into a more mature system (Sowell et al., 2004, 2006; Tamnes et al., 2017).

In addition, our research team has demonstrated that 9- to 10-year-old higher fit children 

have decreased gray matter thickness in superior frontal cortex, superior temporal areas, 

and lateral occipital cortex, coupled with better mathematics achievement, compared to 

lower fit children (Chaddock-Heyman et al., 2016). Further, cortical gray matter thinning 

in anterior and superior frontal areas was associated with superior arithmetic performance. 

Given differences in cortical thickness in higher fit and lower fit children, it is likely that a 

daily physical activity program aimed to improve aerobic fitness may lead to greater changes 

in cortical thickness in active children, relative to typically developing children.

Together, given the literature on normative development of cortical thickness and aerobic 

fitness differences in cortical thickness (with decreased thickness associated with both 

maturation [Sowell et al., 2004, 2006] and higher levels of aerobic fitness [Chaddock­

Heyman et al., 2016]), we predicted that 8- to 9-year-old children who participated in 

an after-school physical activity intervention over a 9 month school year would show 

greater decreases in cortical thickness relative to children in a wait-list control group. 

Further, given that modularity may act as a biomarker of intervention-related changes, brain 

network modularity may predict the physical activity-induced changes in cortical thickness, 

particularly in frontal and temporal areas important for cognition during brain development 

in childhood (Chaddock-Heyman et al., 2016; Sowell et al., 2004).

The primary goal of the present study was to understand whether brain network modularity 

can be useful as a biomarker of physical activity intervention-related changes in cortical 

thickness. That is, does baseline (pre-intervention) brain network modularity predict the 

amount of change (post-intervention minus pre-intervention) in cortical thickness in children 

who participated in the physical activity intervention? We hypothesized that children in the 

physical activity intervention with higher baseline modularity would show greater decrease 

in cortical thickness compared to those with lower modularity. Further, we predicted that 

intervention-related decreases in cortical thickness would be associated with improvements 

in cognitive performance in children involved in the physical activity intervention. We did 
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not predict associations between baseline brain network modularity, changes in cortical 

thickness, and changes in cognitive performance in the wait-list control group.

Method

Seven- to 9-year-old prepubescent (Tanner pubertal timing score < 2; Tanner et al., 2001) 

and right handed (Oldfield, 1971) children were recruited from schools in East-Central 

Illinois. Eligible child participants were required to have an absence of neurological 

disorders, adverse health conditions, physical incapacities, or school-related learning 

disabilities (i.e., individual education plan related to learning), report no use of medications 

that influence central nervous system function, and successfully complete a mock MRI 

session to screen for claustrophobia in an MRI machine. Children also completed the 

Woodcock Johnson III paper-and-pencil test to assess intelligence quotient (IQ) (Woodcock, 

1997).

Children signed an informed assent approved by the Institutional Review Board of the 

University of Illinois at Urbana-Champaign. A legal guardian also provided written 

informed consent in accordance with the Institutional Review Board of the University of 

Illinois at Urbana-Champaign. Socioeconomic status (SES) was determined by a guardian 

completing information about participation in free or reduced-price meal program at school, 

the highest level of education obtained by the mother and father, and the number of parents 

who worked full-time (Birnbaum et al., 2002).

Two hundred seventy-two children were randomized to the FITKids2 physical activity 

intervention. The goal of the present study was to understand whether pre-intervention brain 

network modularity predicted intervention-related changes in cortical thickness, and whether 

changes in cortical thickness were associated with changes in cognitive performance. Thus, 

we included children with high quality pre-intervention resting state data (for baseline 

modularity), pre- and post-intervention brain structure data (for cortical thickness changes 

across time), and pre- and post-intervention cognitive data. One hundred eighty-two children 

completed both the structural and resting state MRI scan at baseline (pre-intervention). One 

hundred thirty-four children completed the structural MRI scan post-intervention. Functional 

scans were excluded if more than 20% of volumes exhibited framewise displacement (FD) 

above 0.2 mm or if mean relative motion was greater than 0.5 mm (leading to the exclusion 

of 11 children pre-intervention). In addition, children were excluded due to inaccurate gray­

white tissue segmentation and motion noise in the reconstructed structural image (N=11 

pre-intervention, N=12 post-intervention). Cognitive and brain measures +/− 3 standard 

deviations from the mean were excluded (N=2 outlier exclusions for baseline brain network 

modularity; N=4 outlier exclusions for cortical thickness).

The present study included a total of 115 children: 62 children in the physical activity 

intervention (36 girls and 26 boys, mean age = 8.7 years, age range 7.8–9.9 years, grades 

2–4) and 53 children in the wait-list control group (25 girls and 28 boys, mean age = 8.6 

years, age range 7.9–9.9 years, grades 2–4). See Table 1 for participant information.
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Aerobic Fitness

Children completed a VO2max test to assess aerobic fitness. Each child’s aerobic fitness level 

was measured as maximal oxygen consumption (VO2max) during a graded exercise test.

The graded exercise test was administered on a LifeFitness 92T motor-driven treadmill 

(LifeFitness, Schiller Park, IL). A modified Balke Protocol was used, and expired gases 

were analyzed using a TrueOne2400 Metabolic Measurement System (ParvoMedics, Sandy, 

Utah). Children ran and/or walked on a treadmill at a constant speed with increasing grade 

increments of 2.5% every 2 minutes until volitional exhaustion occurred.

Oxygen consumption was measured using a computerized indirect calorimetry system 

(ParvoMedics True Max 2400) with averages for VO2 and respiratory exchange ratio 

assessed every 20 seconds. A polar heart rate monitor (Polar WearLink+ 31; Polar Electro, 

Finland) was used to measure heart rate throughout the test. Ratings of perceived exertion 

were also assessed every 2 minutes using the children’s OMNI scale (Utter et al., 2002).

Maximal oxygen consumption was expressed in mL/kg/min. VO2max was based upon 

maximal effort as evidenced by (1) a plateau in oxygen consumption corresponding to an 

increase of less than 2 mL/kg/min despite an increase in workload; (2) a peak HR ≥ 185 

beats per minute (American College of Sports Medicine, 2006) and a HR plateau (Freedson 

& Goodman, 1993); (3) RER ≥ 1.0 (Bar-Or, 1983); and/or (4) a score on the children’s 

OMNI ratings of perceived exertion (RPE) scale ≥ 8 (Utter et al., 2002).

We report relative VO2max (mL/kg/min, with kg as body weight), VO2max percentile 

(aerobic fitness percentile based on age and gender), and fat free VO2max (mL/kg lean/min).

In all children, body composition was measured using dual energy x-ray absorptiometry 

(DXA) (Hologic Discovery bone densitometer (software version 12.7.3; Hologic, Bedford, 

MA). DXA measures are known to be a valid and accurate measure of body composition 

in children (Goran et al., 1996, 2000) and allow for the distinction between lean mass and 

fat mass. Fat free VO2max (mL/kg lean/min) was calculated using absolute VO2max (liters of 

oxygen consumed per minute) and lean mass as measured from DXA. Fat free VO2max helps 

to reduce the collinearity between whole body adiposity and aerobic fitness by adjusting for 

lean mass rather than total weight.

Physical Activity Training Intervention and Wait List Control Group

The after school physical activity program (Fitness Improves Thinking for Kids - FITKids) 

was designed to increase physical activity and improve aerobic fitness and muscular fitness. 

The program, adapted from the Coordinated Approach to Child Health (CATCH) curriculum 

(McKenzie et al., 1994), was developmentally appropriate for children in grades K-5. The 

physical activity intervention occurred for 2 hours after each school day for 150 days.

A non-competitive environment was created for children to participate in integrated fitness 

activities, motor skill learning and practice, and low-organizational games (Castelli et 

al., 2011). Within a daily lesson, children participated in moderate to vigorous physical 

activity (defined as >70% of heart rate max based on maximal heart rate from an 
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incremental exercise test at pre-test; recorded by heart rate monitors and pedometers) 

for 30–35 sustained minutes and then intermittently up to 90 minutes. Thus, the child 

participants exceeded the national physical activity guideline of 60+ minutes of moderate to 

vigorous physical activity per day (USDHHS, Physical Activity Guidelines for Americans, 

2018) (Centers for Disease Control and Prevention, 2012). Additional program details are 

published in Castelli, Hillman et al. (2020).

Children were randomly assigned to either the physical activity intervention group or a 

wait-list control group (a group of typically developing children over 9 months) for one 

academic school year (150 days). Both groups completed all baseline and post-intervention 

sessions. Children in the wait-list control group were given the opportunity to participate in 

the physical activity program during the following school year without involvement in any 

testing (as incentive to stay in the study).

Please see the footnote for accelerometry data which suggests that the FITKids physical 

activity intervention increased physical activity in children randomly assigned to the 

intervention.

Brain Structure

We analyzed brain structure at baseline and post-intervention to test the effects of 

the physical activity intervention on cortical thickness, as well as to test whether pre­

intervention brain network modularity predicted intervention-related changes in cortical 

thickness.

High-resolution T1-weighted structural brain images were acquired before and after the 

intervention using a 3D MPRAGE (Magnetization Prepared Rapid Gradient Echo Imaging) 

protocol with the following parameters: GRAPPA acceleration factor 2, voxel size = 0.9 × 

0.9 × 0.9mm, TR = 1,900ms, TI = 900ms, TE = 2.32ms, flip angle = 9, FoV = 230 mm. All 

images were collected on a 3-T head-only Siemens Allegra MRI scanner.

Brain tissue segmentation and reconstruction of cortical surface models were performed on 

T1-weighted structural MRI images via the standard recon-all image processing pipeline 

available in FreeSurfer version 5.3 (http://surfer-nmr.mgh.harvard.edu/). FreeSurfer labels 

cortical surfaces via the Desikan-Killiany cortical parcellation atlas (see Desikan et al., 2006 

for the labeling protocol; S’egonne et al., 2004).

We applied the following processing stream to each participant’s structural image via 

FreeSurfer’s recon-all processing pipeline: (1) non-brain tissue removal, (2) Talairach 

transformation, (3) creation of representations of the gray/white matter boundaries (Dale 

et al., 1999, Dale and Sereno, 1993), and (4) calculation of the cortical thickness as the 

distance between the gray/white matter boundary and the pial surface in all regions of 

interest (Fischl and Dale, 2000). Talairach transforms, skull stripping, gray–white tissue 

segmentation, and surface reconstructions were visually checked for errors. Children were 

excluded due to inaccurate gray-white tissue segmentation and/or motion noise in the 

reconstructed structural image.
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Regions of interest available via FreeSurfer cortical parcellations include frontal cortex 

(anterior, middle and superior frontal cortex), parietal cortex (superior and inferior parietal 

cortex), and temporal cortex (superior temporal cortex and parahippocampus) as offered in 

FreeSurfer’s segmentation algorithms (Klein and Tourville, 2012). These areas provide an 

exploratory analysis of the whole brain and include regions associated with aerobic fitness 

during childhood (superior frontal cortex, superior temporal cortex) (Chaddock-Heyman et 

al., 2016) and regions that are most sensitive to change in the participants’ age range during 

development, which include frontal cortex and temporal cortex (Sowell et al., 2004; Tamnes 

et al., 2017). Cortical thickness was measured in mm.

Brain Network Modularity Analysis

We analyzed pre-intervention brain network modularity to test whether modularity predicted 

changes in cortical thickness with the physical activity intervention.

Preprocessing.—All image processing and analyses were carried out with a script 

library containing tools from FSL 5.0.4 (Functional Magnetic Resonance Imaging of the 

Brain’s Software Library, http://www.fmrib.ox.ac.uk/fsl), AFNI (http://afni.nimh.nih.gov/

afni), FreeSurfer (http://surfer.nmr.mgh.harvard.edu), and MATLAB (The MathWorks, 

Natick, MA, USA) (Weng et al., 2017, Voss et al., 2016).

Initial preprocessing of the resting state fMRI data involved motion correction using ANFI’s 

3dvolreg (6 degree-of-freedom rigid-body), global 4D median intensity normalization, skull­

stripping (FSL BET), and spatial smoothing (6.0 mm full-width at half-maximum). Then, 

motion-related artifacts were denoised using ICA-AROMA (Pruim et al., 2015). Rather than 

censoring motion-contaminated timepoints from the data, ICA-AROMA removes motion­

related variance from the BOLD data. Therefore, the denoised volumes retain all time points 

from the preprocessed data. ICA-AROMA yielded 28.4 ± 5.9 total independent components 

from the data, and it classified 16.7 ± 5.9 components as motion-related artifacts which were 

regressed out of the data (57.5 ± 13.0% of total components).

After ICA-AROMA, the denoised data were temporally bandpassed (.008 < f < 0.08 Hz) 

to reduce high frequency physiological signals (e.g., cardiac pulse) and low frequency 

scanner drift and isolate the spontaneous, low frequency neuronal fluctuations of the 

BOLD fMRI signal (Leopold et al., 2003, Salvador et al., 2005). Nuisance signals (white 

matter, cerebrospinal fluid, global signal, and 6 motion parameters) were extracted from the 

bandpassed data and regressed out of the resting state fMRI data.

Participant-level functional scans were transformed into standard MNI space through 

a multi-step procedure. First, each anatomical image was skull-stripped and manually 

corrected for errors. Skull-stripped anatomical images were transformed to standard MNI 

space using FSL’s Nonlinear Image Registration Tool (FNIRT) with the default 10 mm 

warp resolution (Andersson et al., 2007a, Andersson et al., 2007b). Functional data 

were then transformed to corresponding anatomical images using the boundary-based 

registration (BBR) algorithm (Greve & Fischl, 2009). The two resulting transformations 

were concatenated and then applied to the original functional image to create a functional 

image in standard MNI space.
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Network modularity analysis.—Our primary aim was to characterize modularity, a 

global measure of network connectivity which compares the number of within-module 

connections to the between-modules number of connections. Modules were identified 

in a data-driven fashion using Newman’s spectral community detection that optimizes 

modularity for each subject (Newman, 2006).

Module nodes were based on a 400-area functional parcellation defined by Schaefer et 

al. (2018), and the average time series was extracted for each module. Then, for each 

participant, a 400 x 400 Pearson’s correlation matrix was generated and transformed with a 

Fisher z-transformation. Following previous reports, the resulting correlation matrices were 

thresholded and binarized over a range of connection density thresholds (2% - 10% at 2% 

increments) (Baniqued et al., 2018, 2019; Gallen et al., 2016; Power et al., 2011, 2012). 

Modularity was calculated from unweighted and undirected correlation matrices using 

the modularity_und tool from the Brain Connectivity Toolbox (https://sites.google.com/site/

bctnet/measures). The middle threshold, i.e. 6% of the overall connection density thresholds, 

was used for our primary analyses, and we verified the effects remain at the other thresholds.

Woodcock Johnson Battery of Cognitive Tasks

Child participants completed subtests from the Woodcock Johnson III Tests of Cognitive 

Abilities (WJ III) (Woodcock, 1997). Participants completed individual cognitive tests, and 

combinations of the individual tests form clusters to represent categories of broad cognitive 

abilities. For cognitive clusters, a higher score reflects higher performance. Given that 

baseline modularity predicted changes in executive function and cognitive efficiency in 

children (Chaddock-Heyman et al., 2020), we included these two cognitive constructs.

The cognitive cluster of Executive Processes includes tasks of cognitive flexibility and rule 

switching, sequential reasoning and spatial scanning, and attention and interference control. 

The cognitive cluster of Executive Processes includes three tasks:

1. Concept Formation provides a measure of cognitive flexibility, rule application, 

and rule switching. During this task, participants were asked to identify rules and 

concepts that created geometric shapes.

2. Planning provides a measure of sequential reasoning and spatial scanning. 

During this task, participants were asked to trace unique shapes without retracing 

or picking up the pencil.

3. Pair Cancellation provides a measure of attention, concentration and interference 

control. During this 3-minute task, participants were asked to circle two target 

shapes when the shapes appeared in a sequence.

The cognitive cluster of Cognitive Efficiency represents perceptual speed, short term 

memory, and the ability to store and recode information. The cognitive cluster of Cognitive 

Efficiency includes two tasks:

1. Visual Matching provides a measure of perceptual speed. During this 3-minute 

task, participants were asked to quickly find and circle two identical numbers in 

a row of six numbers.
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2. Numbers Reversed provides a measure of short term memory and the ability 

to temporarily store and recode information. During this task, participants were 

asked to repeat a span of random numbers in reverse order.

Statistical Analysis

To explore the effect of time and physical activity intervention on aerobic fitness and 

cortical thickness, we conducted 2 (Group: intervention, wait-list) x 2 (Time: baseline, 

post-intervention) repeated measures analysis of variance (ANOVAs). Separate repeated 

measures analysis of variance (ANOVAs) were conducted for each brain region.

Our primary goal was to understand whether brain network modularity at baseline 

predicted intervention-related changes in brain structure, particularly cortical thickness. 

Linear regressions were used to test associations between brain modularity at baseline 

(pre-intervention) and change in cortical thickness. Separate regressions were performed for 

children assigned to the physical activity intervention group and children assigned to the 

wait-list control group. Change scores were computed as the difference in post-intervention 

and pre-intervention (or baseline) scores for each participant. T-scores and standardized 

betas (β) are presented.

The alpha level for all tests was set at p < .05. Given the exploratory nature of our 

investigation and our a priori hypotheses, we reported associations uncorrected for multiple 

comparisons. We also reported marginal results (p<0.1) to provide a foundation for future 

work.

Results

Brain network modularity at baseline was not significantly associated with age (r=−0.019, 

p=0.84), sex (r=0.013, p=0.89), SES (r=0.071, p=0.45), IQ (r=−0.003, p=0.98), pubertal 

timing (r=0.062, p=0.52), aerobic fitness (VO2max) (r=0.072, p=0.45), or in-scanner motion 

(mean of framewise displacement (r=−0.144, p=0.13). In addition, children randomly 

assigned to the physical activity group did not differ in terms of age, sex, SES, IQ, pubertal 

timing, aerobic fitness, or in-scanner motion (mean of framewise displacement), relative to 

children randomly assigned to the wait-list control group (all p > 0.05).

Aerobic fitness and Physical Activity

There was no main effect of Time or Group x Time interaction for aerobic fitness (VO2max 

relative, VO2max percentile, or fat-free VO2max) (all p > 0.05).

Changes in cortical thickness across time and intervention

To begin, we explored the effects of time and the physical activity intervention on cortical 

thickness. As hypothesized, there was a main effect of Time for all cortical thickness 

regions (p<0.05), with both the physical activity group and wait-list control groups showing 

decreases in cortical thickness from pre-intervention to post-intervention (Table 1).

The Group (physical activity intervention, wait-list control) x Time (baseline, post­

intervention) interaction did not reach significance for any of the cortical thickness regions 
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(p>0.05), which suggests that the physical activity group did not show significantly greater 

decreases in cortical thickness than the control group.

Because of our a priori hypotheses predicting associations between baseline brain network 

modularity and changes in cortical thickness with an intervention, we explored associations 

between baseline brain network modularity and change in cortical thickness by group.

Baseline modularity and change in cortical thickness

For children randomized to the 9-month after-school physical activity intervention, higher 

brain network modularity at baseline was positively associated with change in cortical 

thickness in the anterior frontal cortex (F=4.185, β=1.276, t=2.046, p=0.045) (Figure 1) and 

parahippocampus (F=4.941, β=0.877, t=2.223, p=0.030) (Figure 2).

For children randomized to the 9-month after-school physical activity intervention, baseline 

modularity was marginally associated with change in cortical thickness in middle frontal 

cortex (F=3.222, β=0.226, t=1.795, p=0.078), middle temporal cortex (β=0.222, t=1.765, 

p=0.083), and superior temporal cortex (F=3.598, β=0.238, t=1.897, p=0.063). There were 

no significant associations between baseline modularity and change in superior frontal 

thickness (F=2.484, β=0.199, t=1.576, p=0.120), superior parietal thickness (F=1.218, 

β=0.141, t=1.104, p=0.274), or inferior parietal thickness (F=0.741, β=0.110, t=0.861, 

p=0.393).

We confirmed that the associations between brain network modularity at baseline and 

change in cortical thickness remained significant in the physical activity group when 

controlling for age, sex, SES, IQ, pubertal timing, aerobic fitness, and in-scanner motion 

(mean of framewise displacement).

Brain network modularity at baseline did not positively predict changes in cortical thickness 

in children in the wait-list control group (anterior frontal cortex: F=0.223, β=0.067, t=0.472, 

p=0.639; middle frontal cortex: F=1.561, β=0.176, t=1.249, p=0.217; superior frontal cortex: 

F=1.259, β=0.158, t=1.122, p=0.267; superior temporal cortex: F=1.300, β=0.161, t=1.140, 

p=0.260; inferior temporal cortex: F=0.432, β=0.094, t=0.658, p=0.514; parahippocampus: 

F=1.472, β=0.171, t=1.213, p=0.231; superior parietal cortex: F=0.992, β=0.141, t=0.996, 

p=0.324; inferior parietal cortex: F=0.783, β=0.125, t=0.885, p=0.380).

Change in cortical thickness and change in cognitive performance

For children randomized to the physical activity intervention, greater changes in cortical 

thickness (in regions significantly associated with baseline modularity) were positively 

associated with change in Cognitive Efficiency (Anterior frontal cortex: r=0.178, p=0.062 

[marginal]; Parahippocampus: r=0.231, p=0.015). There were no associations between 

change in cortical thickness and change in Executive Processes.

Change in cortical thickness was not significantly associated with change in cognitive 

performance in children in the wait-list control group.
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Discussion

The present study was the first to explore whether brain network modularity may predict 

intervention-related changes in brain structure. Indeed, higher brain network modularity at 

baseline predicted greater changes (i.e., decreases) in cortical thickness in children involved 

in an after-school physical activity intervention for 9 months. Specifically, for children 

involved in the physical activity intervention, brain network modularity at baseline predicted 

greater decreases in cortical thickness in the anterior frontal cortex and parahippocampus. 

Further, for children involved in the physical activity intervention, greater change (i.e. 

decrease) in cortical thickness in the parahippocampus was associated with improvements in 

cognitive efficiency, which involves perceptual speed, short term memory, and the ability to 

store and recode information. Similarly, a trend (p=0.06) was observed for the association 

between change in cortical thickness in the anterior frontal cortex and improvements in 

cognitive efficiency. The relationships between baseline modularity, changes in cortical 

thickness, and changes in cognitive performance were not present in the wait-list control 

group.

In a recent report, our research team was the first to suggest that brain network 

modularity predicted changes in cognitive and academic performance (particularly, executive 

function, cognitive efficiency and mathematics achievement; Chaddock-Heyman et al., 

2020) following a physical activity intervention during childhood. Here, we extend the 

predictive power of modularity to include intervention-related changes in brain structure. We 

also significantly extend previous work which demonstrates that brain network modularity 

at baseline predicts improvements in cognitive performance with physical and cognitive 

interventions in children, younger adults, older adults, and patients (Arnemann et al., 2015; 

Baniqued et al., 2018, 2019; Gallen et al., 2016; see Gallen and D’Esposito, 2019 for 

review). Our study has promising implications for the understanding of brain network 

modularity as a ubiquitous and unifying biomarker of intervention-related cognitive and 

brain improvements with physical activity.

Our results also support research about normative development of cortical thickness, with 

cortical thinning associated with brain maturation (Geidd et al., 1999, Gogtay et al., 2004; 

Sowell et al., 2004, 2006; Tamnes et al., 2017). Indeed, over time (9 months), children in our 

study, regardless of group assignment, showed significant decreases in cortical thickness in 

brain regions across the cortex. Children in the physical activity intervention did not show 

significantly greater decreases in cortical thickness compared to typically developing 8- to 

9-year-old children across 9 months (i.e., non-significant Group x Time interaction), perhaps 

due to developmental effects that obscured any potential benefits of the intervention. Further, 

we did not observe a significant effect of our physical activity intervention on aerobic 

fitness, which suggests that the physical activity dose provided in our intervention did not 

modulate aerobic fitness levels. The lack of aerobic fitness effects may help explain the lack 

of Group x Time interactions for cortical brain structure.

Critically, baseline modularity was only associated with decreases in cortical thickness in 

children involved in the physical activity intervention, not in the wait-list control group. The 

finding that baseline modularity predicted decreases in cortical thickness for children who 
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received the intervention but not for those not involved in an intervention adds support for 

the idea that brain network modularity may be a biomarker of intervention-related changes 

(Gallen and D’Esposito, 2019). One explanation for this is that individuals with a more 

modular network organization may be better able to reconfigure modules in their brain in 

response to new environments and experiences, including physical activity interventions 

(Kashtan & Alon, 2005), thereby capitalizing on plasticity. A more modular network may 

also help with faster processing of information, learning, and problem solving, as well as 

greater adaptability to new environments and varying task goals given increased flexibility 

(Gallen & D’Esposito, 2019). Further, change in cortical thickness and change in cognitive 

performance were only significantly associated in children involved in the intervention. 

It is possible that involvement in a multimodal and enriched after-school program, which 

included aerobic, motor, and social activities as well as a brief educational component, 

strengthens the relationship between the brain and behavior.

The present study is exploratory, as the first investigation to examine associations between 

brain network modularity and intervention-related changes in brain structure. Our study 

provides a foundation for future work, and future investigations are encouraged, especially 

given that we focused on a priori brain regions and reported results uncorrected for multiple 

comparisons. We suggest that brain network modularity is a specific predictor of change 

in brain structure following intervention during preadolescence, with network properties 

significantly predicting changes in cortical thickness in the anterior frontal cortex and 

parahippocampus. In addition, we show trends for near significant positive associations 

between baseline modularity and change in cortical thickness in middle frontal cortex, 

middle temporal cortex, and superior temporal cortex in children involved in the physical 

activity intervention. Indeed, the frontal and temporal cortex are known to develop during 

childhood, and these brain regions have implications for cognition (Sowell et al., 2004). The 

anterior frontal cortex is known to play a role in problem solving, reasoning, and planning 

(Koechlin et al., 1999), and the parahippocampus is said to play a role in memory.

Interestingly, the specific frontal and temporal brain regions predicted by modularity 

with the physical activity intervention were not the brain areas that showed significant 

differences in cortical thickness in higher fit and lower fit children (Chaddock-Heyman et 

al., 2016). When our research team compared higher fit and lower fit children in terms of 

cortical thickness (Chaddock-Heyman et al., 2016), higher fit children showed decreased 

thickness in superior frontal cortex and superior temporal cortex. In the present study, 

children in the physical activity intervention also showed decreases in thickness across 

time in these regions of the frontal and temporal cortex, but baseline modularity only 

significantly predicted changes in thickness in anterior frontal and parahippocampal cortex. 

The complex interactions among aerobic fitness and physical activity on developing brain 

structure provide important questions and discussion for future work. Future research may 

examine whether baseline modularity predicts other changes in brain structure and function 

(e.g., brain network connectivity, white matter microstructure, neuroelectric indices), and 

whether the relationships between modularity and other brain outcomes have implications 

for cognition and academic performance. In addition, future research should explore 

changes in cortical brain structure over time via the FreeSurfer longitudinal whole-brain 

pipeline (to complement the ROI approach). It will also be important to explore lifestyle 
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factors associated with optimal brain network properties that help individuals benefit from 

interventions. What factors help increase brain network modularity? Finally, while we 

considered children in the wait-list control group to be typically developing children over 

9 months, future studies would benefit from an active control group. The use of a wait-list 

control group did not allow us to measure physical activity participation in the control group, 

so we were unable to adjust for habitual physical activity in all participants. However, the 

accelerometry data presented in the footnote suggest that our intervention increased physical 

activity in children randomly assigned to the physical activity intervention group.

In conclusion, our study has important implications for biomarkers of cognitive and neural 

plasticity in preadolescent children. The results support and extend the framework that 

brain network properties may capture individual differences in neuroplasticity that promote 

cognitive and brain enhancement (Gallen & D’Esposito, 2019). In particular, our study is 

the first to suggest that brain network modularity may act as a predictor of changes in 

brain structure with a physical activity intervention during childhood. The results raise the 

possibility that network-level assessments of the brain may be used as predictive biomarkers 

to guide the design and customization of interventions in order to maximize cognitive and 

brain outcomes for individual children. Our work provides initial understanding of optimal 

brain network properties that help individuals best respond to intervention and training.
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Figure 1. 
For children randomized to the 9-month after-school physical activity intervention, higher 

brain network modularity at baseline was positively associated with change in cortical 

thickness in the anterior frontal cortex. Brain network modularity at baseline did not 

positively predict changes in cortical thickness of the anterior frontal cortex in children 

in the wait-list control group. Change scores were computed as the difference in post­

intervention and pre-intervention (or baseline) scores for each participant
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Figure 2. 
For children randomized to the 9-month after-school physical activity intervention, higher 

brain network modularity at baseline was positively associated with change in cortical 

thickness in the parahippocampus. Brain network modularity at baseline did not positively 

predict changes in cortical thickness of the parahippocampus in children in the wait-list 

control group. Change scores were computed as the difference in post-intervention and 

pre-intervention (or baseline) scores for each participant
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Table 1.

Mean (SD) for physical activity and wait list control groups at baseline (pre-intervention) and post­

intervention.

Physical Activity Control

Baseline Post Baseline Post

Age (years) 8.7 (0.6) -- 8.6 (0.5) --

Gender 36 Female
26 Male

-- 25 Female
28 Male

--

IQ (General) 109.0 (13.9) -- 111.3 (12.8) --

Pubertal timing 1.4 (0.4) -- 1.3 (0.3) --

SES 2.0 (0.8) -- 1.9 (0.8) --

VO 2 max (mL/kg/min) 43.1 (7.4) 43.2 (8.0) 42.9 (7.0) 42.7 (7.0)

VO 2 max percentile 39.0 (30.3) 39.2 (30.6) 35.5 (30.0) 35.1 (30.4)

VO 2 max (fat-free) 61.7 (7.3) 60.8 (11.6) 61.7 (8.0) 60.6 (10.6)

Executive Processes (WJ) 107.9 (10.5) 112.5 (8.5) 110.2 (10.0) 112.9 (9.4)

Cognitive Efficiency (WJ) 99.0 (19.1) 101.3 (16.8) 99.3 (13.6) 105.7 (14.9)

Modularity (6%) 0.48 (0.07) -- 0.47 (0.07) --

Thickness (mm):

Anterior Frontal * 3.4 (0.35) 3.2 (0.26) 3.4 (0.37) 3.3 (0.27)

Middle Frontal 3.0 (0.27) 2.9 (0.14) 3.1 (0.27) 3.0 (0.14)

Superior Frontal 3.3 (0.28) 3.2 (0.14) 3.3 (0.28) 3.2 (0.14)

Superior Temporal 3.2 (0.22) 3.1 (0.13) 3.2 (0.20) 3.2 (0.12)

Inferior Temporal 3.1 (0.22) 3.1 (0.14) 3.2 (0.23) 3.1 (0.14)

Parahippocampus * 3.0 (0.30) 2.9 (0.21) 3.0 (0.31) 3.0 (0.23)

Superior Parietal 2.7 (0.23) 2.5 (0.12) 2.7 (0.21) 2.6 (0.10)

Inferior Parietal 3.0 (0.25) 2.9 (0.12) 3.0 (0.23) 2.9 (0.11)

Note: Woodcock Johnson III paper and pencil tasks (Woodcock, 1997); SES – Socioeconomic Status (Low: < 2; Moderate: 2-3; High, >3).

*
p<0.05: Association between baseline network modularity and change in cortical thickness.
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