Skip to main content
. 2021 Jun 29;34(20):e6434. doi: 10.1002/cpe.6434

TABLE 2.

Proposed classification results with 5‐fold validation strategy on dataset 1 using different machine learning algorithms, FNR is representing false negative rate

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) Time (s)
LD 99.0 1.0 99.05 98.97 08.63
ESD 97.1 2.9 97.13 97.05 69.58
QSVM 96.9 3.1 96.92 96.02 28.98
LSVM 96.0 4.0 96.03 95.93 27.56
ESKNN 92.8 7.2 92.84 92.00 263.5
CSVM 95.8 4.2 95.90 95.04 33.29
MGSVM 93.9 6.1 94.00 93.02 33.91
CKNN 92.0 8.0 92.09 91.95 19.60
CGSVM 88.4 11.6 88.50 82.95 34.35
EBT 86.5 13.5 86.64 86.30 238.2