Skip to main content
. 2021 Jun 29;34(20):e6434. doi: 10.1002/cpe.6434

TABLE 3.

Proposed classification results with 10‐fold validation strategy on dataset 1 using different machine learning algorithms, FNR is representing false negative rate

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) Time (s)
LD 99.1 0.9 99.13 99.00 10.56
ESD 97.1 2.9 97.14 96.99 85.53
QSVM 97.3 2.7 97.38 97.03 44.73
LSVM 96.9 3.1 97.00 96.70 41.89
ESKNN 93.3 6.7 93.38 93.10 260.7
CSVM 96.2 3.8 96.29 95.99 50.25
MGSVM 94.8 5.2 94.95 94.20 51.41
CKNN 93.4 6.6 94.00 93.01 22.69
CGSVM 88.8 11.2 89.00 88.30 53.32
EBT 87.7 12.3 88.02 87.30 389.2