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Summary

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is causing an

ongoing pandemic of coronavirus disease 2019 (Covid‐19). Effective therapies are

required for the treatment of patients with severe stages of the disease. Mesen-

chymal stem cells (MSCs) have been evaluated in numerous clinical trials, but

present challenges, such as carcinogenic risk and special storage conditions, coupled

with insufficient data about their mechanism of action. The majority of unique

properties of MSCs are related to their paracrine activity and especially to their

exosomes. The impact of MSCs‐derived exosomes (MSC‐Es) on complications of

Covid‐19 has been investigated in several studies. MSC‐Es may improve some

complications of Covid‐19 such as cytokine storm, acute respiratory distress syn-

drome (ARDS) and acute lung injury (ALI). Additionally, these exosomes can be

evaluated as an applicable nano‐size carrier for antiviral therapeutic agents. Herein,

we consider several potential applications of MSCs and their derived exosomes in

the treatment of Covid‐19.
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1 | INTRODUCTION

Covid‐19, which is caused by severe acute respiratory syndrome

coronavirus 2 (SARS‐CoV‐2), was first reported in Wuhan, China in

December 2019 and quickly spread worldwide.1 Due to the high and

rapid spread of this viral disease, the World Health Organization

(WHO) declared the current outbreak a pandemic on March 11, 2020.

Until 20 July 2021,more than190million confirmedcases and4million

deaths have been reported.2 The virus gene encodes 16 non‐structural

proteins (NSP1‐16), four structural proteins (spike (S), envelope (E),
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nucleocapsid (N), and membrane (M)), and about nine accessory pro-

teins.3,4 Population‐basedvaccination strategies represent our current

principal defense against this coronavirus. With the onset of mutations

and their potential ability to significantly inhibit vaccine efficacy, the

development of complementary anti‐ Covid‐19 strategies remains a

global priority.5–7 Stem cells and their derived exosomes have been

shown as effective agents to repair, regenerate, and protect human

organs against various body injuries with minimal side effects.8,9

The stem cell secretome (SCS) has been demonstrated to have

significant anti‐fibrotic, anti‐inflammatory, immunomodulatory, and

angiogenic biological activities10–12 Exosomes are nano‐sized extra-

cellular vesicles with a diameter of 40‐150 nm that are produced by

cells in their interior, more precisely in the endosomal compartments

of most eukaryotic cells.13 It was found that MSCs produce exosomes

with significant immunomodulatory capacity for tissue restoration.

These properties of MSC‐ES have been considered the basis for

current on‐going clinical trials.14 Many of these MSC‐Es contains

microRNAs (miRNAs) that regulate crucial cellular functions

including cell growth, apoptosis, and host immune responses.15,16 It

has been proposed that MSC‐Es represent an ideal vector for the

delivery of targeted anti‐viral drugs for the treatment of Covid‐19.17

2 | PATHOGENICITY OF SARS‐CoV‐2

The cell entry mechanism of SARS‐CoV‐2 is a subject of interest of

recent studies. Angiotensin‐converting enzyme 2 (ACE‐2) and C‐type

209 lecithin (CD209L) act as the main host receptors for binding the S

protein of the virus, becoming the first stage of the pathogenesis of

Covid‐19. The virus enters the host cell either via infusion with the

host plasma membrane or via clathrin‐dependent and independent

endocytosis.18,19 It has also been reported that transmembrane pro-

tease serine 2 (TMPRSS2) facilitates virus entry into the host cell.20

The RNA virus itself, after entering into the cell, promotes disruption

in host cell immunity.21 It has been shown that all three types of viral

proteins (structural, non‐structural, and accessory) have various

regulatory impacts on the host cell,22 Structural and functional pro-

teins of SARS‐CoV‐2 independently reduce the synthesis of host cell

proteins and subsequently decrease the production of interferons

(IFN) which significantly impairs the host cell adaptive immune

response. Current evidence suggests this is via three mechanisms;

(1) Non‐structural protein 16 (NSP16) suppresses mRNA splicing

and diminishes recognition of viral RNA by intracellular helicase

receptors,

(2) NSP1 acts as a ribosome gatekeeper to impair cellular translation

and specifically promotes viral translation,

(3) NSP8, and NSP9 interfere with protein trafficking to the cell

membrane.23,24

ACE‐2, the SARS‐CoV‐2 receptor, is widely expressed in human

organs such as the heart, kidney, gut, liver, and brain which can become

involved in systemic infection.25–27 The lungs are one of the most

commonly affected organ in Covid‐19 infection and this is partly

explained by the high level of expression of ACE‐2, in alveolar type II

and capillary endothelial cells. Proposed mechanisms for viral‐induced

lung injury include ‐ direct injury to the vascular bed and in particular,

the capillary endothelial cells that also involves disruption to the renin‐
angiotensin system (RAS) and a fulminant inflammatory response that

results in the breakdown of capillary integrity in targeted organs and

the progression to the acute respiratory distress syndrome (ARDS),

acute lung injury (ALI), fibrosis, and multiple organ failure.20,28–30 In

addition to the lung, other organs involved include the heart and

presentations with Kawasaki syndrome, acute coronary syndrome,

coagulopathies, myocarditis, the brain and cerebrovascular accidents

(CVA’s) and focused areas of neuro‐inflammation and acute kidney

and renal failure, the gut and gastrointestinal alterations, the liver and

acute liver injury and hepatic dysfunction.31–35 During infection,

neutrophils, monocytes, and T cells are recruited to the site of infec-

tion by following the chemoattractant gradient of inflammatory che-

mokines and chemokines produced by infected cells.36 Under severe

conditions, lymphocyte and leukocyte counts decrease, whereas

inflammation marker (C‐reactive protein), lactic dehydrogenase,

proinflammatory cytokines and chemokines (interleukin (IL) 1β, IL‐6,

IL‐7, IL‐2, tumor necrosis factor (TNF)α, granulocyte‐colony stimu-

lating factor (GCSF), interferon gamma‐induced protein‐10 (CXCL10),

and monocyte chemoattractant protein‐1) are elevated dramati-

cally.37–39 The production of large amounts of proinflammatory cy-

tokines by inflammatory cells leads to cytokine storm resulting in

hyperinflammation and subsequently serious lung damage.37,40

3 | COMBATING COVID‐19

Currently, a small number of therapeutics such as remdesivir, dexa-

methasone and bamlanivimab plus etesevimab have already been

authorized based on the results of randomised controlled trials

(RTCs). Further RCTs of therapeutic candidates, including inhaled

interferon‐beta, baricitinib, tocilizumab, sarilumab, casirivimab plus

imdevimab, and tofacitinib all report clinical benefit.41,42 It is now well

recognised that patients recovering from acute Covid‐19 infection are

susceptible to develop what is termed long‐Covid syndrome. It is

estimated that 1:10 individuals are at‐risk of persistent disabling

symptoms, particularly related to the brain and the lungs, long after

the acute infective episode has subsided.43 It has been postulated that

in response to this overwhelming viral systemic infection that there is

a dysregulation in our normal reparative pathways.44 Mesenchymal

stem cells (MSC’s) with their immunomodulatory and regenerative

capacity, make them promising candidates in the treating of both

acute infection but also restoring normal organ repair pathways.45,46

3.1 | Stem cell therapy

In recent years, MSCs and their therapeutic potential have received

much attention. MSCs are non‐specialised, multipotent cells,
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self‐renewable cells, and capable of differentiating into specific cell

types. MSCs are easily accessible cells that are derived from a variety

of sources, including bone marrow, adipose tissues, lung, umbilical

cord tissue, dental pulp, placenta, Wharton jelly, fetal liver, and men-

strual blood.47 They can expand to clinical volume and can be stored

for repetitive therapeutic usage.48 MSCs can also modulate the im-

mune system through direct interaction with host immune cells or

indirectly by secreting paracrine cytokines.10 Their paracrine activity

is through the secretion of molecules, termed secretome which in-

cludes transcription factors, growth factors, cytokines, chemokines,

hormones, extracellular vesicles (e.g. exosomes), angiogenic mole-

cules, nucleic acids, and lipid mediators which their biological functions

and properties such as migration, angiogenesis, homing, metabolic

regulation, anti‐inflammation, anti‐fibrotic and anti‐apoptosis help to

regenerate tissues and improve end‐organ function.26,49

3.2 | Therapeutic effects of MSCs

MSCs therapy has attracted attention due to their potential immu-

nomodulatory properties through interaction with immune cells,

including B and T cells, dendritic cells (DCs), macrophages, neutro-

phils, and natural killer (NK). For instance, inflammatory factors in

the host body modify the properties of MSCs to modulate the im-

mune system.25,36 The release of inflammatory mediators in the lung

is regulated by the differential activation of damage‐associated mo-

lecular patterns (DAMPs) presented on the MSCs surface. Toll‐like

receptors (TLRs) are activated by viral RNA (TLR3) and viral unme-

thylated CpG‐DNA (TLR9) leading to substantial cellular signaling

pathways and activation of MSCs.50 MSCs can play an important role

in Immunomodulation by downregulating expression of anti‐
inflammatory factors such as prostaglandin E2 (PGE‐2) and pro-

grammed death‐ligand 1(PD‐L1).25 Their paracrine activity can

restore the metabolic capacity of alveolar macrophages through

direct transfer of their functional mitochondria and switch of in-

flammatory phenotype (M1) to anti‐inflammatory (M2).51,52 They

also have a protective effect against oxidative stress associated with

lung inflammation by releasing antioxidant enzymes such as; catalase,

superoxide dismutase, and glutathione peroxidase.20 MSCs treat-

ment has shown a significant inhibition in virus‐induced proin-

flammatory cytokines.53 The immune system homeostasis and

immunosuppression activities of MSCs are depend on (1) regulating

metabolism; (2) expression of CD73, an ATPase with ectonucleoti-

dase property which involves in cell proliferation; (3) induction of

mature Dendritic cells (DCs) into novel Jagged‐2 dependent regula-

tory DCs; (4) regulation of immune cell function.10,25,45,54 Moreover,

MSCs have anti‐virus activity by expressing Interferon‐stimulated

genes such as interferon induced transmembrane family (IFITM),

spermine N1‐acetyltransferase 1(SAT1), and interferon alpha induc-

ible protein 6 (IFI6).50 MSCs repair and regenerate damaged lung

tissue by increasing the expression of IL‐10 and vascular endothelial

growth factor (VEGF) which benefits for ARDS patients as an in-

flammatory disease.55 MSCs also have therapeutic effects on other

organs. They reduce encephalitis and recover the blood‐brain barrier

(BBB) in the brain.56 In gut, they can regulate inflammation, remodel

tissue, and promote the eradication of infections (Figure 1).20

3.3 | Clinical trials and challenges

MSCs have for Covid‐19 treatment due to previous clinical outcomes

in the treatment of blood, heart, kidney, and lung diseases such as

ARDS and fibrosis.19,25 In addition, the successful outcome of

previous investigations in the treatment of immune‐mediated in-

flammatory diseases such as systemic lupus erythematosus (SLE),

graft‐versus‐host disease (GVHD), and viral infections (e.g. H5N1 and

F I GUR E 1 Therapeutic effects of mesenchymal stem cells (MSCs) in combating COVID‐19. MSCs can regulate the immune system by
changing cell characteristics and releasing chemical compounds. MSCs also have anti‐inflammation, anti‐microbial, and anti‐viral properties by

regulating different mechanisms and pathways. SARS‐CoV‐2 is a multi‐organ disease and using MSCs is beneficial for relieving the
complications that this virus causes in organs such as the brain, gut, and lung
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H7N9) have provided promising hope in the fight against COVID‐
19.57–61 Based on previous clinical trials, the required dose of

1‐10� 106 MSCs/kg of body weight with an average of three booster

doses has been suggested for the treatment of Covid‐19 patients, the

exact dose may vary depending on the patient's immune system and

clinical symptoms.20 In a clinical trial, an increase in the number of

peripheral lymphocytes and IL‐10 was observed, while over‐
secretion of cytokines by immune cells decreased significantly,

resulting in symptoms improvement after treatment without side

effects.57 A case study using human umbilical cord mesenchymal

stem cells (HUCMSCs) aimed to assess the safety, feasibility, and

tolerability of a high dose of prenatal MSCs. This study demonstrated

that the injection of high doses of the MSCs can be beneficial for

ARDS patients without serious adverse events. A significant reduc-

tion in inflammatory biomarkers (i.e. IL‐8, TNF‐α, and C‐reactive

protein) and a remarkable increase in the level of anti‐
inflammatory cytokines including IL‐4 and IL‐10 was observed.64

Table 1 represents clinical trials operated with stem cells for the

treatment of Covid‐19 patients.

4 | Mesenchymal stem cells‐derived exosomes
(MSC‐E) in combating Covid‐19

Although cell therapy provides numerous advantages, four main

challenges still remain; (1) potential tumorigenesis of cytokines

secreted by MSCs such as VEGF; (2) Low survival of transplanted

MSCs in the body due to their high sensitivity to harsh environmental

conditions (e. g. inflammation); (3) risk of obstruction of small‐
diameter pulmonary arteries as cells pass through; (4) special re-

quirements of storage at a temperature of −80°C.37,62 To address

these challenges, exosome therapy is a promising strategy due to its

lower tumorigenicity, lack of transmission of secondary infections,

easy manipulation, simple storage requirements, and availability.20

In multicellular organisms, most of the physiological processes

occur through intracellular signaling.63 extracellular vesicles (EVs) are

lipid‐bilayer vesicles that have been identified as signaling organelles

for their role in mediating intercellular communication by serving as

carriers of different biomolecules, including RNAs, proteins, and

lipids.64 EVs are categorized into three groups, based on their

biogenesis and size. (1) exosomes; the small size EVs (40–150 nm in

diameter) secreted by the fusion of multivesicular bodies with the cell

membrane; (2) microvesicles; the medium size EVs (150–1000 nm in

diameter) released by the direct budding of the cell membrane, and (3)

the apoptotic bodies; random size EVs (50–2000 nm in diameter)

produced during the programmed cell death–apoptosis.65,66

Many types of cells, including immune cells,64 and MSCs release

exosomes. Although most of the exosomes share an evolutionarily

conserved composition of the proteins regardless of their cellular

origins, each one contains some tissue‐specific proteins dependent

on their source (Figure 2).67 MSC‐Es proteome contains about 2000

types of proteins which can be divided into two categories. First,

membrane proteins; such as GPI‐anchored proteins and tetraspanins;

second, soluble proteins encapsulated inside the vesicles; such as

heat shock proteins, chaperones, signaling proteins, cytokines, and

interleukins.68,69 In addition to the proteins, mRNAs, and micRNAs

are other bioactive molecules presenting in exosomes.70 Depending

on the origin of cells' microenvironmental stresses and conditions,

exosomes can be wildly diverse in their composition.71 It has been

established that exosomes contain a similar cargo composition to

that of the cells that secrete them, indicating that MSC‐Es are

functionally in accordance with the function of MSCs,72 while they

have more advantages, including blood barrier penetration, lower

immunogenicity, no tumor genesis risk,67 large scale manufacture,

and lower cost compared to MSCs, all of which make the MSC‐Es a

potentially promising treatment for Covid‐19 infection.73,74

4.1 | Natural MSC‐Es inherent therapeutic effects
on Covid‐19

Therapeutic properties of MSC‐Es are divided into anti‐
inflammatory, immunomodulatory and tissue regeneration effects,

altogether resulting in inhibition of the cytokine storm and reduce

tissue injury conditions including ARDS, ALI, and fibrosis (Figure 3).

MSC‐Es modulate the immune microenvironment by increasing the

secretion of anti‐inflammatory cytokines and reducing the pro‐
inflammatory factors in peripheral blood mononuclear cells

(PBMCs). In the presence of MSC‐Es, a remarkable reduction in pro‐
inflammatory cytokines such as IL‐1β, TNF‐α, and IL‐17 can be

archived, whereas anti‐inflammatory cytokines (e.g. TGF‐β and IL‐10)

are increased significantely.75 MSC‐Es therapy can reduce the pro-

liferation and apoptosis of CD4+ T‐cells, but increase the ratio of

regulatory T‐cells to effector T‐cells. These activities in the immune

microenvironment of alveolar can inhibit the cytokine storm caused

by infections.76,77

Recently numerous investigations have focus on animal models of

LPS (lipopolysaccharides)‐induced ARDS and ALI to understand the

mechanism of MSC‐Es in reversing established fibrosis, ARDS, and

ALI.78–80 A previous cell model of ALI has shown that MSC‐Es can

reverse the ALI through downregulation of nuclear factor erythroid

2‐related factor 2 (NrF‐2) and antioxidant response elements (ARE)

factors. MSC‐Es also could upregulate significantly NF‐κB signaling

pathways leading to treatment of ALI.81

In another study on the LPS‐treated MLE‐12 ALI model, the

mechanism of MSC‐Es for lung injury treatment has been demon-

strated in more detail. There is a positive correlation between the

NF‐κB pathway activation and the trigger of nuclear factor kappa‐B
kinase subunit beta (IKKβ), thus Xiao and colleagues focused on the

impact of MSC‐E on IKKβ activity. This study suggested that MSC‐Es

reduce IKKβ and also increase its ubiquitination, resulting in inhibi-

tion of the NF‐κB and the Hedgehog pathways, both playing a key

role in the Epithelial‐Mesenchymal Transition (EMT) process of

alveolar epithelial cells (AECs) that is closely related to pulmonary

fibrosis.82 Investigation on a mouse ARDS model treated by MSC‐Es,

which was differentiated to produce neurotrophic and
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immunomodulatory factors (MSC‐NTF) showed a substantial reduc-

tion in IFNγ, TNFα, IL‐6, and RANTES (regulated on activation,

normal T cell expressed and secreted). The oxygen saturation level

also was improved significantly after 72 h post‐treatment. Histolog-

ical assessments indicated that this strategy efficiently improved

LPS‐induced physical damage by reducing the total severity score

and neutrophil accumulation in the lung.83

Although the mechanism of action of MSC‐E have not been fully

understood, these outcomes are thought to be related to exosome

miRNA cargo.84 miRNAs are a subclass of small RNAs that can inhibit

translation process, cause mRNA decapping and deadenylation.85 In‐
silico analysis has shown massive amount of various miRNA cargo in

MSC‐Es, which includes 258 miRNAs related to cytokines and che-

mokines and 266 miRNAs for cell death (pyroptosis, apoptosis, and

necrosis) genes.86 Xiao and colleagues have demonstrated the

downregulation of the Ikbkb gene results in a significant decrease in

the gene expression of IKKβ, leading to downregulation of ubiquitin‐
specific peptidase (Usp) 5, a deubiquitinase that blocks IKKβ ubiq-

uitination.82 There are a limited number of clinical trials ongoing to

assess the safety and efficacy of MSC‐E for the treatment of Covid‐
19, despite promising results in preclinical studies (Table 2).

A nonrandomized clinical trial study on 24 PCR positive Covid‐19

patients has conducted to evaluate the safety and efficacy of bone

marrow mesenchymal stem cell‐derived exosomes. A single dose of

MSC‐E, administered through the intravenous route, has shown a

significant reduction in cytokine storm with substantial improvement

in oxygenation patients without adverse effect, all in line with previous

experiments.87 Preclinical and clinical studies confirm the ability of

MSC‐E as a promising, safe, and efficient strategy for combating

Covid‐19.

4.2 | Administration of MSC‐Es as a combined
therapy in combating Covid‐19

Exosomes have attracted increasing attention from drug delivery

systems in the past decade owing to their intrinsic properties such as

high stability, biodegradability, biocompatibility, prolonged circula-

tion time, low immunogenicity, and the ability to pass blood barriers,

all of which represent exosomes an ideal carrier for therapeutic

agents such as anti‐viral drugs and miRNAs.88–90 Exosomes injected

intravenously accumulate in the damaged tissues and inflammation

F I GUR E 2 MSC‐Es have a cargo composition highly similar to other exosomes, consisting of proteins, mRNAs, and miRNAs. Besides, MSC‐
Es are capable of delivering other therapeutic agents to achieve a combination therapy strategy

YOUSEFI DEHBIDI ET AL. - 9 of 14



sites by preference,91 resulting in a passive targeting delivery of

exosome cargo. Similar to other lipid‐bilayer nanocarriers, exosomes

can be tissue‐specifically targeted by surface modifications to

enhance and improve their targeting activity.85 Also, exosomes

administered through the inhalation route has shown a promising

approach to enhance the efficacy of local therapy.92 The combination

therapy of exosomes and traditional immune‐modulating drugs may

provide a synergic effect for the treatment of Covid‐19.93 Two ap-

proaches have been used to load therapeutic cargos (drugs, nucleic

acids, proteins, and peptides) into the exosomes.94 (1) Passive

methods; which are biological‐based cargo loading techniques. The

passive methods can be achieved by incubating the cargo with the

exosomes to introduce the cargo molecule to them through diffusion

and hydrophobic interaction. Another strategy is to employee

genetically engineered donor cells for overexpression of the cargo,

which is finally is packaged into exosomes.95 (2) Active methods;

these approaches are rely on the temporary disruption of the exo-

some membrane by mechanical/chemical methods (i.e. sonication,

extrusion, repetitive freeze‐thawing, electroporation, or using

chemical reagents), providing the desired compounds to diffuse into

the vesicles.96 Although during these processes the native structure

of the exosome can be damaged and may lost its therapeutic prop-

erties, active methods have shown higher loading efficacy compared

to passive methods.95,97

5 | CONCLUSION

Covid‐19 has reached epidemic proportions globally, affecting all

continents. Thus far, no specific antiviral drug is available for con-

trolling patients with SARS‐CoV‐2 infection. Due to the inefficiency

of most countries in rapid vaccination and a large number of cases,

the development of new therapeutic strategies has been the focus of

considerable research efforts to address this pressing clinical need.

MSCs and their derived exosomes have attracted much attention in

investigations of Covid‐19 treatment, owing to their promising

F I GUR E 3 Natural MSC‐Es have inherent therapeutic effects caused by their cargoes. They can modulate immune responses and reverse
tissue damages. (a) MSC‐Es can increase blood oxygen saturation and decrease lung severity score, neutrophil accumulation, fibrin score, and
alveolar wall thickness by reversing ALI and ARDS and repairing lung tissue. (b) In addition, they can inhibit cytokine storms by reducing pro‐
inflammatory factors and increasing anti‐inflammatory factors. (c) Also, MSC‐E miRNAs re‐regulate signaling pathways. The miR‐182‐5p and
miR‐23a‐3p both reduce the IKKβ level that is the NF‐κB pathway initiator by decreasing its synthesis and increasing its ubiquitination
respectively. The up‐regulation of the Nrf‐2 signaling pathway increases anti‐oxidant release on the other hand
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properties, including regenerative, immunomodulatory, and anti‐
inflammatory. Previous investigations have shown promise in pre-

clinical studies and is now being studied in various clinical trials. MSC‐
Es have shown significant influences in treating Covid‐19 and other

inflammatory and tissue injury diseases. MSC‐Es have been suggested

as a hopeful candidate for drug delivery and combination therapy,

owing to their ability to encapsulate various therapeutic agents, their

nano‐sized, and low immunogenicity. However, more investigation is

needed on the biodistribution and the in vivo metabolic fate of both

MSCs versus MSCs‐Es. The current challenges from the bench to

clinical practice, include the qualification control, the biodistribution,

and stability of each manufactory scale preparation of MSCs‐Es, which

should be investigated in future.
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