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Introduction

Livestock is an integral part of societies worldwide and 
contributes to a host of human activities beyond food produc-
tion, including income, heritage, insurance, labor, and culture. 
Livestock’s positive contributions to society are contrasted by 
environmental impacts, which include greenhouse gas (GHG) 
emissions, biodiversity loss, and natural resource depletion, 
among others. Though environmental impacts of ruminant 
livestock production extend beyond GHG emissions (Rotz, 
2020), considerable effort has been dedicated specifically to 
quantifying and mitigating enteric methane (CH4) emissions 
from beef and dairy cattle, which is the focus of this review.

The primary sources of  GHGs in livestock systems are en-
teric CH4, CH4 and nitrous oxide (N2O) from manure handling 
and management, and N2O from feed production. Total 
GHG emissions are reported on a CO2-equivalent (CO2e) 
basis and represent the sum of all GHGs standardized to a 
common unit by weighting each gas to a global warming po-
tential (GWP). GWPs weighting factors were defined by the 
Intergovernmental Panel on Climate Change (IPCC). For ex-
ample, the GWP of carbon dioxide (CO2), CH4, and N2O have 
been computed as 1, 28, and 265, respectively, to represent 
their relative warming potential for a 100-yr period relative to 
CO2 (EPA, 2020).

Agriculture contributes about 10% of total U.S. GHG emis-
sions (Figure 1). Livestock contributes about 4% of total U.S. 
GHG emissions, excluding emissions from feed production and 
fuel use (IPCC, 2014).
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Implications

• Livestock are a critical part of worldwide communities 
and do emit greenhouse gases from these activities. 

• There are several methods to measure enteric methane 
emissions from livestock and there are limitations and 
benefits with these methods. 

• There are several methods including diet additives/
modification as well as genetic selection methods that 
show promise for mitigation of enteric emissions from 
livestock. 

• There are growing methods of how emissions are mod-
eled that may further expand the understanding of the 
role of livestock in greenhouse gas emissions that in-
clude life-cycle assessments. 
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Emissions from enteric fermentation and manure manage-
ment (direct emissions) represent about 41% of agriculture’s 
total GHG emissions, measured in CO2 equivalents, which 
means the aggregation of all emissions (Figure 2). Thus, while 
direct livestock contributions to the U.S. total GHG emissions 
are relatively small, they are directly responsible for 38% of 
U.S. CH4 emissions and 4% of U.S. N2O emissions.

In this review, we provide a high-level overview of the current 
state of enteric CH4 research in beef and dairy systems. First, we 
discuss common methods of measuring enteric CH4 emissions. 
Second, we discuss modeling individual enteric CH4 emissions. 
Third, we highlight current trends in feed additive mitigation re-
search, with a brief discussion of the potential for soil carbon se-
questration to offset carbon emissions from ruminant livestock. 
Last, we offer comments on how models and life-cycle assess-
ments (LCA) can be used to extrapolate from animal emissions 
to broader farm, regional, and supply chain contexts.

Measuring Enteric Methane Emissions from 
Ruminant Livestock

There are many methods for directly measuring enteric CH4 
from ruminant livestock, each with its strengths and weaknesses 
(Hammond et al., 2016; Jonker and Waghorn, 2020). Currently, 
widely accepted techniques for measuring enteric CH4 emissions 
are respiration chambers (i.e., the “gold standard”), the sulfur 
hexafluoride (SF6) tracer method (Johnson et al., 1994), and an 
automated head-chamber system (GreenFeed System; C-Lock 
Inc., Rapid City, SD). Irrespective of the method, calibration, 
and recovery, tests are required for method development and 
routine operations (Hammond et al., 2016). All three methods 
can measure enteric CH4 emissions from individual animals (or 

“point-source” measurements) and require an acclimation and/
or training period. Deciding which technique to use depends 
on the experimental objectives, available resources, the research 
team’s experience, and the experimental environment.

When researchers are interested in collecting highly accurate 
measures of enteric including hindgut CH4 emissions from a 
single to a few animals in a confinement environment, and where 
ample resources (highly skilled operators, time, and funds) 
are available, they may find respiration chambers well suited. 
However, while chambers provide highly accurate measures 
under these conditions, they are also more disruptive to animal 
behavior, have decrease feed consumption, and are not represen-
tative of open-air environments (Gunter and Cole, 2016).

Both the SF6 and GreenFeed systems are suitable for measuring 
emissions in open-air environments (e.g., feedlots, barns, or pas-
tures) and for a larger number of animals (Gunter and Cole, 
2016). However, neither of these methods capture hindgut emis-
sions, and only the GreenFeed system can capture diel variation 
through spot sampling, as the SF6 air-collection method is inte-
grative and diel variations of emissions are not divisible.

When a project calls for a greater number of samples at a 
lower cost than respiration chambers or sampling in an open-
air environment, the SF6 method provides a suitable alternative. 
This method still requires a skilled operator to ensure precision 
and can be highly variable, as measurements are influenced by 
background gas concentrations (which may be of concern if  
used inside barns; Hammond et al., 2016), sample collection 
rate (Deighton et  al., 2014a), reticulo-rumen environment 
(Deighton et al., 2014b), and cannulation (Beauchemin et al., 
2012). Following the modified SF6 protocol (Deighton et al., 
2014a) and avoiding the use of cannulated animals if  possible, 
or increasing their number if  unavoidable, can help to reduce 

Figure 1. U.S. GHG emissions by economic sector (EPA, 2020). 
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some of the experimental error associated with this method. 
Characterization of the influence of the reticulo-rumen envir-
onment, which may vary with diet and genetics, on CH4 sam-
pling using the modified SF6 method is the next step in further 
refining the SF6 method (Deighton et al., 2014b).

Finally, the GreenFeed system presents an alternative to the SF6 
method for sampling in open-air environments (Gunter and Beck, 
2018). This system has also been successfully used in pen-feeding 
situations (Huhtanen et al., 2019). However, as sampling requires 
voluntary visitation to the head chamber by the animal and ani-
mals may choose not to visit, sampling with the GreenFeed system 
requires more animals sampled over longer time periods and need 
to be carefully timed throughout the day to collect enough sam-
ples to accurately quantify and account for daily patterns in en-
teric CH4 emissions (Hammond et al., 2015, 2016).

Modeling Enteric Methane Emissions from 
Ruminant Livestock

While direct measurements of enteric CH4 emissions 
are ideal, collecting these data can be expensive and time-
consuming. Mathematical models can be used as a comple-
ment to experimental data to predict enteric CH4 emissions or 
mitigation potential of emerging innovations or to extend the 
analysis beyond the animal or farm boundaries (Rotz, 2018; 
Tedeschi, 2019). Models can be classified in the following ways:

• Empirical: based on statistical correlations between vari-
ables

• Mechanistic: based on underlying causal relationships
• Static: represents a single point in time

• Dynamic: represents change over time
• Deterministic: represents all variables as constants
• Stochastic: includes variability in model parameters

Although models can be used to extrapolate findings or re-
duce the cost of research, like experimental methods, math-
ematical models vary in their suitability for a particular 
application, the accuracy and precision of their estimates, and 
their ease of use. A  number of models have been developed 
to predict enteric CH4 emissions, among other variables, each 
with varying specificity and accuracy across species and pro-
duction environments (e.g., Mills et al., 2003; Kebreab et al., 
2008, 2019; Dougherty et  al., 2017, 2019; Niu et  al., 2018; 
Benaouda et al., 2019; Van Amburgh et al., 2019; Tedeschi and 
Fox, 2020; Hansen et al., 2021). Enteric CH4 prediction equa-
tions range from simple correlations with nutrient intake to a 
mechanistic and dynamic representation of carbohydrate and 
protein digestion and absorption over time.

Empirical models are well suited for use in conditions similar 
to those in which they were developed, as their results are spe-
cific to those contexts. They are also useful when input data 
or resources are limited. Predictions from these models out-
side of the conditions in which they were developed should be 
interpreted with caution. While convenient, these models will 
not provide the same level of nuance offered by mechanistic 
models. For practical applications or where more detailed input 
data and resources are available, mechanistic models may be 
a more appropriate choice. However, due to their complexity, 
engagement with an expert user is recommended to ensure the 
model is correctly parameterized and applied. Scaling results 
beyond the animal to the farm or region can be completed 

Figure 2. U.S. agricultural GHG emissions by activity (EPA, 2020).
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using process-based, whole-farm models, which represent all 
operations within the boundary of a farm or ranch (e.g., the 
Integrated Farm System Model [IFSM]; Rotz et al., 2018), the 
Ruminant Farm Systems Model (Hansen et al., 2021). 

Nutritional and Genetic Opportunities for 
Mitigating Enteric Methane Emissions from 

Ruminant Livestock

Across diets, dry matter intake drives ruminal methanogen-
esis, but diet composition is also critically important. As such, 
much of the mitigation literature has focused on nutritional 
interventions (Beauchemin et al., 2008, 2020; Caro et al., 2016), 
though some reviews have also covered reproductive, genetic, 
and management interventions (Hristov et al., 2013a, 2013b; 
Wattiaux et  al., 2019; Uddin et  al., 2020), including grazing 
beef systems (Thompson and Rowntree, 2020). Therefore, this 
section provides a high-level highlight of emerging, promising 
mitigation approaches from nutrition perspectives.

Feed additives
Many novel feed additives designed to reduce ruminal meth-

anogenesis are currently being tested (Honan et al., 2021); how-
ever, mostly in vitro and, therefore, still require in vivo and 
system-scale evaluation. In addition to requiring validation in 
vivo, questions about the practicality and safety of some prod-
ucts may prevent widespread commercial use. One novel CH4 in-
hibitor that has gained recognition in recent years for successful 
short-term mitigation is 3-nitroxypropanol (3-NOP). 3-NOP has 
been shown to reduce CH4 emissions in dairy cattle by 20% to 
40% (Lopes et al., 2016; Melgar et al., 2020a, 2020b, 2021), with 
greater reductions in dairy than beef cattle (Dijkstra et al., 2018). 
Studies in dairy cattle suggest that this decrease is achieved with 
no change in milk yield and little to no effects on milk compos-
ition (Lopes et al., 2016; Melgar et al., 2021). While variability 
exists across studies, generally, increasing 3-NOP dose decreases 
CH4 emissions, though the effect is mitigated by dietary factors, 
including dietary fiber content (Dijkstra et al., 2018).

Plant-based products (e.g., condensed tannins, saponins, and 
essential oils) can also serve as CH4 inhibitors (Tedeschi et al., 
2021). Most phytochemicals also have beneficial functions in 
the gastrointestinal tract of ruminants beyond reducing CH4 
production (e.g., anthelmintic and antioxidant properties) that 
may increase productive efficiency (Provenza and Villalba, 2010; 
Tedeschi et al., 2021) and play important ecological roles in wild 
and working lands (Villalba et al., 2019). Essential oils such as 
oregano and thyme have received attention in the past decade 
with demonstrated in vitro methane mitigation potential at high 
concentrations, but the translation to in vivo effects has proven 
difficult due to inhibition of rumen function and animal product-
ivity at high feeding levels (Benchaar and Greathead, 2011). One 
novel plant-based product that has recently received special atten-
tion is Asparagopsis taxiformis (seaweed), which was shown to re-
duce emissions by as much as 98% (Kinley et al., 2020). However, 
additional research regarding the feasibility and sustainability of 

seaweed as a feed additive is needed to answer critical questions 
related to the production of required quantities and bromoform 
stability and its long-term effects on productivity, reproduction, 
animal health, and welfare (Stefenoni et al., 2021).

Advancing the potential for 3-NOP, seaweed, and phytochem-
ical feed additives to serve as CH4 mitigators at the commercial 
scale requires additional research addressing the practicality, scal-
ability, and safety of their widespread use. For phytochemicals 
that have demonstrated in vitro CH4 mitigation potential and have 
documented ecological and antimicrobial benefits, additional in 
vivo and systems-level research quantifying potential benefits, 
co-benefits, synergisms among different plant-based products and 
tradeoffs of their use for enteric CH4 mitigation is needed.

Genetic selection
Perhaps less studied, genetic selection may play direct and 

indirect roles in reducing enteric CH4 emissions. Methane 
emissions from livestock have been indicated as moderately 
heritable, with heritability estimates ranging from 0.12 to 
0.45 (Basarab et al., 2013; Beauchemin et al., 2020). Selection 
can occur through breed choice, parent selection for trait im-
provement, or heterosis. While direct selection for enteric CH4 
mitigation is unlikely, reductions in enteric CH4 emissions are 
more likely to come from indirect selection and management 
decisions, for example, through combinations between genetic 
selection for nutrient utilization and longevity, forage char-
acteristics, and management practices (Knapp et  al., 2014). 
Selection programs to improve feed utilization and efficiency 
in livestock are attractive options for potentially mitigating 
enteric CH4 emissions but must be balanced with other im-
portant outcomes (e.g., longevity). Other promising opportun-
ities include epigenetic control mechanisms or the possibility 
of integrating desirable genetic material into individuals using 
gene editing. Despite acquiring enormous quantities of gen-
omic information and associated knowledge to date, we are 
only approaching the beginnings of understanding these data, 
which may be used to inform genetic selection approaches 
that directly or indirectly mitigate enteric methane emissions 
(Pickering et al., 2015; Koltes et al., 2019).

An undervalued approach is a management decision to match 
breed type to local conditions (Provenza, 2008). Especially in beef 
and dairy production, many breeds are used in regions for which 
they are clearly not adapted, potentially reducing productive ef-
ficiency. Matching breed with environment and management has 
positive implications for productive efficiency, potentially redu-
cing enteric CH4 emissions per unit of product (Knapp et al., 
2014). However, one barrier to the implementation of this man-
agement strategy is that producers are rewarded economic incen-
tive based on animal performance and carcass quality attributes 
rather than the animal’s effect on or interaction with the eco-
system which can limit utilization of more adapted breeds. 

Due to its influence on improving animal performance, heter-
osis may be a more immediate genetic approach to reducing en-
teric CH4 emissions per unit of product and potentially broader 
environmental impact concerns for an industry comprised of 
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fewer (with respect to numbers of animals) production units, for 
example, the U.S. beef production system. More concentrated 
industries, such as dairy, poultry, or pork, may be able to utilize 
genetic selection programs with indirect impacts on reducing 
enteric CH4 emissions per unit product to a greater extent, even 
for traits with low heritability, due to the vertically integrated 
nature of the industry and faster genetic turnover.

Broadening the Scope: From Enteric Methane 
Emissions to Carbon Footprints

A role for carbon sequestration?
While not a direct enteric CH4 mitigation strategy, soil carbon 

sequestration has received increasing attention as a potential 
climate change mitigator, with ruminant livestock playing a 
role as graziers of grasslands worldwide (Teague et al., 2016; 
Fargione et  al., 2018; Bossio et  al., 2020). Globally, we have 
lost an estimated 133 Pg of soil carbon due to agricultural ac-
tivity (Figure 3; Sanderman et al., 2017). With great loss comes 
great opportunity; as grasslands cover approximately half  of 
the terrestrial surface, they remain an enormous soil carbon 
reservoir with the potential for sequestering additional carbon 
(Sanderman et al., 2017).

Soil organic carbon sequestration potential is highly 
context-specific and varies across ecoregions (McSherry and 
Ritchie, 2013). Drivers of soil carbon content and sequestra-
tion are climate, soil texture, and management history. Grazing 
management changes may also alter the productive capability 
and direct CH4 emission of a grassland, potentially with im-
plications for decreased CH4 emissions per unit of product but 
not in all cases (Savian et al., 2018; Thompson and Rowntree, 
2020). In some cases, improved herbage utilization efficiency 

has resulted in increases in absolute CH4 emission by the 
grazing system (Savian et al., 2018).

It has been posited that grasslands that are sequestering carbon 
eventually reach a new soil carbon equilibrium, this convention 
has been contested recently in some regions, with a long-term 
grazing experiment in appropriately grazed vs. non-grazed grass-
lands (Liebig et al., 2010; Rowntree et al., 2020) and an on-farm 
chronosequence study of a multi-species grazing livestock op-
eration showing continual soil carbon accrual (Rowntree et al., 
2020). As drivers of long-term soil carbon accrual continue to 
be identified, at least in the short term, soil carbon sequestra-
tion may reduce the carbon footprint of livestock production, 
though some change in management is required to stimulate this 
process (Stanley et al., 2018). The long-term permanence of se-
questered carbon varies across soil types and has implications for 
soil carbon sequestration as a potential long-term mitigation op-
portunity for livestock production systems (Cotrufo et al., 2019). 
Accurately measuring soil carbon sequestration, permanence, 
and change over time, however, is difficult and has significant un-
certainty (Jandl et al., 2014). Achieving a greater understanding 
of soil organic matter dynamics and carbon sequestration across 
ecological regions, management, and soil depths is critical to 
understanding the potential long-term contribution of carbon 
sequestration to reducing the carbon footprint of livestock pro-
duction systems (Cotrufo et al., 2019).

While soil carbon sequestration may offset carbon emis-
sions from livestock production, from another perspective, 
land use for agriculture necessarily incurs tradeoffs with sus-
taining biodiversity in natural ecosystems as well as the carbon 
sequestration and other ecosystem services provided by those 
ecosystems. The potential for carbon sequestration to offset 
emissions from livestock production systems, therefore, must 
be matched with considerations for the “carbon opportunity 

Figure 3. Global distribution of modeled soil organic carbon (SOC; Mg C ha−1) change in the top 2 m. The legend is a histogram of SOC loss (Mg C ha−1), with 
positive values indicating loss and negative values depicting gains in SOC. Figure adapted from Sanderman et al. (2017).
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cost” of land use—or the opportunity for land to store carbon 
if  not used for agriculture (Hayek et al., 2021).

LCA and carbon footprints
Carbon footprints (or the sum of all GHG emissions weighted 

by their relative radiative forcing, per unit of product) are often 
used to evaluate the potential climate impact of products and 
have increasingly been applied to livestock production systems in 
the last couple of decades (de Vries and de Boer, 2010; de Vries 
et al., 2015; Mcclelland et al., 2018). Carbon footprints put the 
contribution of enteric CH4 emissions from the animal (and thus, 
potential mitigation strategies) in the context of a farm, region, 
or supply chain. They are calculated using the LCA methodology.

LCA is an accounting methodology for quantifying the im-
pacts of goods and services over their full life cycle: from raw 
material extraction through production, processing, transport/
distribution, consumption, and disposal. Environmental impacts 
related to human health, resource use, and ecosystem damage 
can be assessed with LCA (e.g., global warming, water consump-
tion, or ecotoxicity, among others). As LCA was designed to 
evaluate industrial processes, applying it to agricultural systems 
presents some challenges: the necessary data required to com-
plete an LCA are often unavailable from a single farm or ranch, 
and uncertainty in environmental flows in agroecological systems 
can complicate the collation of required “inventory” data. In 
addition, many of the standard impact assessment frameworks 
available only provide spatially and temporally integrated char-
acterization (e.g., eutrophication factors are only readily avail-
able at continental scale) and cannot provide accurate, locally 

relevant environmental impact estimates. The ability of LCA 
to quantify biodiversity and ecosystem impacts is also limited 
despite ongoing research in the area (Teillard et  al., 2016). 
Process-based models are sometimes used to fill gaps in life cycle 
inventory data and address these spatiotemporal limitations (e.g., 
Kim et al. (2019) used inventory data partially supplied by IFSM 
to conduct an LCA of changes in dairy management practices in 
the northeastern United States). Despite these limitations, LCA 
remains the best available approach to calculating product life 
cycle environmental impacts. Methodologies to overcome the 
aforementioned challenges are rapidly evolving; for example, 
there are new spatially and temporally specific characterization 
factors for water scarcity (Boulay et al., 2020).

Global warming potential
Integrating enteric CH4 emissions with total GHG produced 

by livestock systems requires standardizing emissions for mul-
tiple gases across multiple sources. To accomplish this, IPCC 
developed the aforementioned GWP, or “carbon footprint” 
metric. The GWP characterizes the heat absorbed by a GHG 
relative to the amount of heat that would be absorbed by CO2 
over a pre-specified time horizon, divided by the system’s total 
output. Thus, GWP converts the climate contribution of dif-
ferent GHGs such as CH4 or N2O into a common scale referred 
to as CO2-equivalents (CO2e) and is used to evaluate poten-
tial climate impacts from various sources. When applied to an 
evaluation of U.S. milk production, this method enabled the 
estimation of a national carbon footprint of about 2.1 kg CO2e 
per kilogram of milk consumed, wherein 25% of the footprint 

Figure 4. Methane in the carbon cycle. Figure reproduced from Thompson and Rowntree (2020) with permission. 
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was attributed to enteric CH4, 23% to manure CH4 and N2O, 
and 19% to fuel and fertilizer emissions from the feed produc-
tion phase (Thoma et  al., 2013). Transportation represented 
about 8% of the total footprint.

The GWP metric is time-integrated and relates the radia-
tive forcing of one pulse emission of GHG to a pulse emission 
of CO2 over a chosen time horizon: 100 or 20 yr in the case 
of GWP100 or GWP20, respectively (Myhre et  al., 2013). The 
GWP100 is calculated based on a time horizon of 100 yr and 
is the current universal standard GHG metric. The GWP100 
metric is under criticism for the use of short-lived climate 
pollutants (SLCP) like CH4, because it does not completely 
account for the fact that CH4 is both produced and destroyed 
(Pierrehumbert, 2014; Lynch et al., 2020).

Methane is constantly being removed from the atmosphere 
by a process called hydroxyl oxidation (Figure 4). If  CH4 emis-
sions exceed the amount being oxidized, global warming will 
occur. However, if  CH4 emissions are less than oxidization, 
then temporary cooling should occur. Therefore, it is the rate 
of change in CH4 emissions over time that determines its cli-
mate impact through its effect on atmospheric concentration. 
A related metric that accounts for this dynamic is the GWP* 
(Allen et al., 2018). The GWP* better accounts for SLCPs like 
CH4. Instead of converting GHG emissions to CO2e, which 
is always positive, it equates the climate impacts from a one-
step permanent change of an SLCP emission to that caused 
by a one-off  “pulse” change of CO2 (CO2 warming-equivalent; 
CO2we). Therefore, CO2we can be either positive or negative to 
indicate the “warming” or “cooling” of the temperature com-
pared with 20 yrs ago, related to an increase or decrease of CH4, 
respectively. Lynch et al. (2020) compared GWP100 and GWP* 
across emission scenarios and showed that GWP* accounts 
for the influence of atmospheric CH4 dynamics on climate im-
pacts, whereas GWP100 assumes all CH4 emissions contribute to 
warming, thus overestimating climate impacts when emissions 
are constant or decreasing. This is of great importance to the 
U.S. livestock sector, where national beef and dairy inventories 
are either constant or shrinking.

Summary

Technological interventions for reducing enteric CH4 from 
beef and dairy systems abound. Respiration chambers en-
able researchers to obtain highly accurate enteric CH4 meas-
urements from controlled environments, whereas SF6 and 
GreenFeed systems present opportunities for measuring emis-
sions in open-air environments. Several resources are avail-
able to aid researchers in method selection, depending upon 
the intended application. Currently, 3-NOP appears to be a 
promising inhibitor for enteric CH4 production, with seaweed 
garnering additional interest. Evaluation of the practicality, 
feasibility, long-term mitigation potential, and long-term ef-
fects on productivity, reproduction, and animal health of feed 
additives is critical to identifying commercially relevant CH4 
mitigation options. As plant phytochemicals have potential 

animal health and ecological co-benefits in addition to being 
potential CH4 mitigators, they should be studied from interdis-
ciplinary, system approaches. Beyond the animal, soil carbon 
sequestration presents a potential opportunity for reducing the 
carbon footprint of ruminant livestock production systems, at 
least in the short term.
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