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The Hippo pathway is a dynamic cellular signalling nexus that regulates differentiation
and controls cell proliferation and death. If the Hippo pathway is not precisely regulated,
the functionality of the upstream kinase module is impaired, which increases nuclear
localisation and activity of the central effectors, the transcriptional co-regulators YAP and
TAZ. Pathological YAP and TAZ hyperactivity consequently cause cancer, fibrosis and
developmental defects. The Hippo pathway controls an array of fundamental cellular
processes, including adhesion, migration, mitosis, polarity and secretion of a range of
biologically active components. Recent studies highlight that spatio-temporal regulation
of Hippo pathway components are central to precisely controlling its context-dependent
dynamic activity. Several levels of feedback are integrated into the Hippo pathway, which
is further synergized with interactors outside of the pathway that directly regulate specific
Hippo pathway components. Likewise, Hippo core kinases also ‘moonlight’ by phosphor-
ylating multiple substrates beyond the Hippo pathway and thereby integrates further
flexibility and robustness in the cellular decision-making process. This topic is still in its
infancy but promises to reveal new fundamental insights into the cellular regulation of this
therapeutically important pathway. We here highlight recent advances emphasising feed-
back dynamics and multilevel regulation of the Hippo pathway with a focus on mitosis
and cell migration, as well as discuss potential productive future research avenues that
might reveal novel insights into the overall dynamics of the pathway.

Introduction
The Hippo pathway was initially identified through genetic loss of function mosaic screens in the fruit
fly, Drosophila melanogaster [1–6]. The evolutionary conservation from flies to humans is extensive,
although key differences, including gene duplications, exist [7]. The signalling pathway consists of a
regulatory serine/threonine kinase cascade that when activated ultimately phosphorylate the
co-transcriptional regulators YAP and TAZ [7]. YAP was originally identified independently as an
interactor of Yes kinase [8], acidic oligomeric 14-3-3 proteins [9] and as a cofactor of the TEAD tran-
scription factors [10]. TAZ was also isolated as a 14-3-3 protein family-binding protein [11]. Since
these original findings, a substantial interest in YAP and TAZ and the biology that they drive has
evolved. Seminal studies identified MST1/2, STK25 and the MAP4K family of kinases as activators of
the large tumour suppressor kinase1/2 (LATS1/2) [12–16] (Figure 1A). LATS1/2 belong to NDR
family of serine/threonine kinases and directly phosphorylate YAP and TAZ on multiple sites. This
consequently cause YAP and TAZ to predominantly localise to the cytoplasm and thereby inhibits
YAP/TAZ. As YAP and TAZ do not contain DNA-binding domains, their transcriptional activity is
dependent on interaction with cognate nuclear transcription factors, predominantly the transcriptional
enhanced associate domain (TEAD) family [10,19–21]. Consequently, the dephosphorylation (and
thereby inactivation) of upstream components of the Hippo pathway kinase cascade is critical for YAP/
TAZ transcriptional activity. The supramolecular PP2A-STRIPAK (Striatin-interacting phosphatase and
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kinase) complex is central for this regulation [22–25]. This noncanonical phosphatase complex contains both
kinase and phosphatase subunits for enhanced regulation, which allows dynamic cellular regulation upon diverse
cellular stimuli and functions as an adaptable signalling centre [22]. STRIPAK complexes PP2A to multiple
Hippo components, such as the scaffolding protein NF2 as well as LATS1/2 activating kinases [14,24,26–29].
PP2A-STRIPAK consequently activates YAP and TAZ through dephosphorylation and suppression of the
upstream Hippo pathway kinase module [14,24,26–30]. The Hippo pathway is a central cellular signalling nexus
and regulated by polarity, cell density, machanotransduction and diffusible chemicals [7,31]. STRIPAK-YAP/
TAZ signalling is controlled by a range of stimuli, including activation of GPCR signalling by ligands, such as
the exemplar Hippo pathway regulator lysophosphatidic acid (LPA) [18,30]. The bioactive lipid LPA activates the
STRIPAK complex, which turns off the Hippo pathway kinase cascade [18,30,32,33]. Deactivating STRIPAK
inactivates YAP/TAZ activity and reduces tumorigenic potential and elevated expression of STRN3 and STRN4,
which function as recruiting STRIPAK factors for LATS activating kinases, are a prominent feature in some
cancers [25,26,34–36]. However, PP2A activity is widely decreased in a range of cancers and PP2A activators
show therapeutic promise [37,38]. Importantly, additional levels of nuclear YAP/TAZ regulation exist. This add-
itional regulation takes place both via nuclear Hippo pathway independent phosphorylation of YAP/TAZ, such
as upon energy stress via AMPK mediated phosphorylation of YAP [39,40], and apparent phosphorylation inde-
pendent mechanisms [41–43]. The critical role of Hippo pathway signalling in decision-making processes in
almost all types of fundamental cell biology has spurred a great interest into this pathway. A precise, dynamic
and robust regulation of the pathway is necessary, as otherwise developmental defects [44,45], fibrosis [46,47],
impaired regeneration and cancer [30,48–51] occur. This precise regulation is obtained through multiple spatio-
temporal level feedback, including transcriptional induction of upstream negative regulators, such as LATS2,
AMOTL2, CAV1 and NF2 [17,20,52–59]. This multilevel response consequently reinforces and feeds robustness
into the overall regulation of the pathway. Here, we highlight instances of fundamental cellular processes, using

Figure 1. Regulation of mitosis by the Hippo pathway and YAP/TAZ.

(A) Upstream Hippo pathway serine/threonine kinases control activation of LATS1/2 kinases, which in turn directly

phosphorylate YAP/TAZ on multiple serine residues and thereby controls YAP/TAZ transcriptional activity though regulating

their subcellular localisation. (B) In the nucleus, YAP/TAZ form transcription complexes with various transcription factors to

induce expression of cell cycle regulating genes. The cell cycle is further modulated by YAP/TAZ through its interaction with

chromatin-modifying proteins, such as nucleosome remodelling and deacetylase (NuRD) complex and histone

methyltransferase (HMT) complex, which promote remodelling of chromatin configuration to control gene transcription

programmes. (C) LATS1/2 kinases modulate cell cycle exit during late anaphase or telophase through phosphorylation of

CDC26 and CTCF. (D) Cyclin-dependent kinases provide an additional level of regulation of mitosis through direct

phosphorylation of YAP and TAZ.
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mitosis and cell migration as exemplars, that involve multilevel Hippo pathway-mediated integration. This
dynamic complexity and synergistic feedback likely function to tightly regulate and safeguard central cellular
processes.

Mitosis
Control of cell number is essential to animal development, regenerative processes and in tissue homeostasis.
Consequently, dysregulation of cell number may result in tumour formation, developmental defects or organ
failure. The Hippo pathway regulates cell number by modulating cell proliferation, cell death and cell differenti-
ation. These functions are shared and evolutionarily conserved from Drosophila to mammals [60]. Chromatin
topological organisation is instrumental in gene transcription and overall chromosome compartmentalisation
has emerged as critical to higher-order genome organisation [61,62]. During cell division, nuclear chromatin
undergoes marked changes with respect to shape and degree of compaction [63–65]. Once segregated by the
spindle, chromatin decondenses to re-establish its interphase structure competent for DNA replication and
transcription. The precise mitotic chromatin condensation and decondensation is therefore a highly regulated
process for mitotically active cells [63]. The Hippo pathway and YAP and TAZ contribute to the regulation of
mitosis through interaction with transcription factors, chromatin modifiers and by inducing expression of
mitotic genes.
YAP and TAZ modulate mitosis through the formation of a transcriptional complex with TEAD and AP-1,

which promote proliferation and regulate expression of a range of cell cycle genes, including genes driving G1/
S phase transition, DNA replication and quality control [20,66–70]. Moreover, YAP induces the expression of
the transcription factor MYM proto-oncogene like 2 (B-MYB) (encoded by MYBL2) [71], a subunit of the
multi-protein Myb-MuvB (MMB) complex. The MuvB core (composed of LIN9, LIN37, LIN52, LIN54 and
RBBP4) upon entry into the cell cycle dissociates from p130 in the mitotic repressive DREAM complex [72]
and binds to B-Myb during S phase to activate transcription of genes expressed late in the cell cycle.
Consequently, overexpression of B-Myb shifts this equilibrium in favour of the mitosis promoting MMB
complex and disrupts the DREAM complex [72,73]. Hyperactivation of B-Myb, therefore, cause elevated rate of
mitosis and hyperproliferation in a range of cancers [74]. In addition to transcriptionally inducing MYBL2
(encoding B-Myb), YAP/TAZ also complex with B-Myb, which facilitate Myb-MuvB (MMB) chromatin
binding and activation of the complex [71,75–77] (Figure 1B). Additional Hippo pathway-mediated regulation
of the MMB complex takes place via LATS2. LATS2 phosphorylates and thereby activates the dual-specificity
serine/threonine and tyrosine kinase DYRK1A, which in turn phosphorylates the LIN52 subunit of MuvB and
consequently promotes the assembly of the DREAM complex [78,79]. Of note, global phosphoproteomic
studies in glioblastoma cells highlight that DYRK1A may regulate the Hippo pathway, including via phosphor-
ylation of NF2 and MAP4K4 [80]. Similarly, in flies the DYRK-family kinase Minibrain (Mnb) promotes
Yorkie (Yki), the fly ortholog of YAP and TAZ-dependent tissue growth [81]. In addition to mediating their
activity via transcription factors, YAP/TAZ also interact and function with multiple chromatin-modifying pro-
teins, including SWI/SNF, GAGA factor, Mediator complex, Histone methyltransferase complex and the NuRD
complex [82]. Consequently, depending on the cellular context, YAP/TAZ dynamically interact with a wide
array of transcriptional regulators to control cell proliferation. However, the exact mechanism of how this
process is fine-tuned remains to be elucidated.
The Hippo pathway additionally regulates mitosis via the zinc finger transcription factor CCCTC-binding

factor (CTCF). CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in
ana/telophase [83–86]. CTCF and CTCF motifs function as cis-elements and therefore provide critical roles in
nucleosome positioning. Consequently, this governs the inheritance of nucleosome positioning at regulatory
regions throughout the cell cycle, especially those associated with fast gene reactivation following replication
and mitosis [84]. LATS2 likely translocate between the nucleus and the cytoplasm, and a visible fraction loca-
lises to the centrosome [87–89]. LATS kinases phosphorylate CTCF in the zinc finger (ZF) linkers and disable
its DNA-binding activity [90] (Figure 1C). Chromatin structural transitions during mitosis are tightly con-
trolled as perturbances in this dynamic process can lead to genome dysfunction and culminate in loss of cellu-
lar fitness [63,91]. While YAP/TAZ interact with transcription factors to regulate mitotic entry, LATS1/2 exert
negative feedback at the cytoplasmic level through direct inhibition of YAP/TAZ, as well as at the nuclear level
through disassociation of CTCF from chromatin domains containing YAP target genes [90].
The core Hippo pathway kinases LATS1 and LATS2 further bind to and regulate additional master regulators

of mitotic exit. LATS1 binds CDC25B [92] and LATS1/2 phosphorylate CDC26 (known as APC12) [93]
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(Figure 1C). Phosphorylation of CDC26 inhibits the interaction between CDC26 and anaphase-promoting
complex 6 (APC6) and thereby modify the tetratricopeptide repeat subcomplex APC/C, which promotes
mitotic exit through reduction in cyclin-dependent kinase (CDK) activity [93,94]. CDKs additionally regulate
mitosis via YAP [95] and TAZ [96] as YAP and TAZ are directly phosphorylated on multiple residues by
CDK1. CDK1-mediated TAZ phosphorylation inactivates TAZ oncogenic activity [96], whereas
CDK1-mediated YAP phosphorylation induces neoplastic cell transformation [95] (Figure 1D). Interestingly, it
appears that this mitotic phosphorylation of YAP and TAZ cause functionally opposite cellular responses, and
this, therefore, appears to be an example where YAP and TAZ divergence exist. Additionally, CDK8 directly
phosphorylate YAP and promote its activation and support tumour growth in colon cancer cells [97]
(Figure 1D). The precise details and intricate network of how CDKs mediate YAP/TAZ phosphorylation
during mitosis is currently not fully understood [95–97]. Importantly, Hippo pathway activity is critical for
cytokinesis, as cytokinesis failure triggers small G protein-mediated activation of the Hippo pathway tumour
suppressor kinase LATS2 [98]. LATS1/2-deficient cells or overexpression of YAP/TAZ cause spindle and
centrosome defects, which result in failures in correct chromosome segregation and highlights the role of
LATS1/2 in coordinating accurate cytokinesis [87,95,96,99,100]. In addition, CDK1 phosphorylates and acti-
vates LATS upon microtubule disruption and subsequent mitotic stress induced by chemicals. This genotoxicity
causes LATS to stabilise replication forks by controlling CDK2-mediated phosphorylation of BRCA2 [101,102].
CDK1 activity maintains adhesion during interphase [103], which might provide an additional level of
CDK1-mediated YAP/TAZ regulation during mitosis [104]. Furthermore, through an apparent
transcription-independent mechanism, phosphorylation of YAP by CDK1 is required for tight control of cyto-
kinesis [105]. YAP co-localises to the central spindle and midbody ring with proteins required for cell contrac-
tion as well as the polarity scaffold protein PATJ [105]. YAP is therefore required for accurate cytokinesis and
cell division to occur. It is worth noting that YAP is not essential for mitosis as multiple proliferative cell
model systems have been genetically engineered to be without YAP, as well as some in vivo systems such as the
zebrafish develop to adulthood and are fertile. In brief, the cell cycle affects YAP and TAZ through both
LATS1/2, CDK1 and CDK8-mediated phosphorylation and coordination of these kinases are central to imple-
ment upstream signals for precise timely progression through the cell cycle. This dynamic multilevel regulation
of YAP/TAZ and the LATS kinases likely ensures fidelity and robustness and thereby safeguard the timing of
proper cell division [89,91,98,101,106–108].

Cell migration
Directional cellular migration is essential during embryo development and is necessary for tissue homeostasis,
such as epithelial turnover and in regenerative processes [109,110]. Since original studies carried out more than
110 years ago in both developing and injured embryonic chick embryos [111], the need to discover underlying
molecular and mesoscale level mechanisms has been evident. Since then, discoveries obtained from live-cell
imaging, in vivo model systems, biochemistry and ‘omics’ approaches have provided remarkable insights into
both single and collective cellular migration to obtain multicellular mesoscale migration [109,110,112,113].
Migration and navigation through diverse three-dimensional environments require orchestrated and temporal
change in cellular shape and directional movement of distinct cell populations [109,110,113]. Cell migration
takes place both as individual cells, but also as collective migration driven by cell–cell contacts and directed by
both chemical and biophysical cues [109,110,112,113]. Collective cell migration of epithelial cells requires
coordination of actin cytoskeleton dynamics and YAP/TAZ activity, which is driven by YAP-mediated feedback
interactions that involve down-regulation of E-cadherin and activation of Rac1 [114–116]. Interestingly,
E-Cadherin is a prominent upstream cell–cell junction regulator of YAP/TAZ in mammalian epithelial cells
[115,116].
The actin cytoskeleton is central to cell migration [117]. Dynamic polymerisation of actin monomers

(G-actin) allow the generation of polar and branched actin fibres (F-actin) [117]. This process is spatiotempor-
ally controlled by nucleation and elongation factors [117]. Consequently, actin polymerisation, retrograde actin
network flow, treadmilling and contractility greatly mediated by the actin motor protein MyosinII play central
roles in cell migration [110,117]. Cell migration integrates both context and cell type-specific chemical, cell–cell
and cell–extracellular matrix (ECM) stimuli [109,110,113]. As a result, aberrant cell migration causes develop-
mental defects, impaired regenerative processes and metastasis [109,110,113]. The Hippo pathway via the tran-
scriptional mediators YAP/TAZ-TEAD function as a cellular rheostat for cellular migration, as it incorporates,
mediates and dictates the necessary feedback to provide the cellular dynamics for directional migration
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[18,21,55,114,118–125]. Molecularly this feedback take place at several levels, which include sensing and inte-
grating events at the plasma membrane and via the cytoskeleton [12]. YAP/TAZ are at the core of cue integra-
tion required for actin dynamics and cell migration while dysregulation of these dynamics allow cancer cells to
change shape, invade surrounding tissues and metastasis [21,122–124,126]. YAP/TAZ are activated by
F-actin-mediated mechanical tension and this YAP/TAZ tension sensing is inhibited by actin polymerisation
inhibitor latrunculin B. Inhibition of F-actin formation causes LATS1/2 to complex with scaffolding proteins,
become activated and subsequently inactivate YAP/TAZ [104,127,128]. This indicates that F-actin inhibits, and
G-actin potentially facilitates this complex formation. RhoA regulates the level and dynamics of F-actin depoly-
merisation, such as increasing cytoskeleton rigidity and promoting a metastatic phenotype. YAP directly regu-
lates actin dynamics through transcriptional up-regulations of Rho GTPase-activating proteins (GAPs)
ARHGAP29 and ARHGAP18 [124,129,130], which suppresses RhoA activity and thereby destabilises F-actin. In
contrast, YAP/TAZ can also induce Rho guanine exchange factor (RhoGEF) ARHGEF17 that activates RhoA
activity [131] (Figure 2A). This combined escalates G- and F-actin turnover and promotes migration [124].
Thus, actin cytoskeleton dynamics regulate YAP/TAZ activity but YAP/TAZ also provide feedback into this
modulation through the expression of actin regulating factors.
Plasma membrane receptors and subdomains are critical in transducing changes in the extracellular environ-

ment to cellular effects. YAP/TAZ-TEAD induce ECM receptors including the expression of the heterodimeric
CD98/LAT1 [132] (encoded by SLC3A2 and SLC7A5), a dual function amino-acid transporter and integrin
coreceptor, which thereby link mechanotransduction directly to cellular metabolism [132–136] (Figure 2B).
Moreover, focal adhesions (FAs) together with integrins, which is integral to linking the ECM to the cytoskel-
eton, serve as components of the FAs spatio-temporal dynamics [119,137]. YAP/TAZ-TEAD through the
generation of (FA) docking proteins and regulators (de)sensitise the dynamic transmission of forces between
the cytoskeleton and ECM and thereby mediates the changes in cellular tension necessary for migration
(Figure 2C). In addition to plasma membrane receptors, YAP/TAZ-TEAD are also essential for the expression
of the machanotransductive and endocytic competent plasma membrane domains termed caveolae [56,57].
Caveolae [138,139] locate and form in migrating cells to the rear due to low membrane tension where they
activate RhoA and control contractibility [140] (Figure 2D). Cells genetically modified to have no caveolae
consequently have directional cellular migration defects [140,141].
The Hippo pathway also interacts with additional cytoskeletal regulators and is modulated by multiple levels

of mechanical stimuli, including shear stress responses, cell–cell interactions, and the stiffness of the microenvir-
onment [31,48]. YAP/TAZ-TEAD regulate the expression and secretion of a range of ECM components and
additional growth factors, such as AREG, CYR61, CTGF and THBS1 [20,142–144] (Figure 2). This allows the
formation of chemoattractant gradient that promotes cell migration while relaying extracellular mechanical
signals to transcriptional regulation (Figure 2E). In addition to secretory extracellular factors, the mechanical
extracellular environment regulates Hippo pathway activity. Upon low stiffness Ras-related GTPase (RAP2) binds
to and activates ARHGAP29, which results in MAP4K and subsequent LATS1/2 activation. Consequently, YAP/
TAZ are inhibited and RAP2 serves as an intracellular mechanosensor to relay stress from the ECM [143]. This
combined integration with the actin cytoskeleton likely fine-tune a spatiotemporally co-ordinated actomyosin
system necessary for directional cell migration.

Outlook
The Hippo pathway contains several levels of regulatory and feedback mechanisms. Prominent examples of
feedback mechanisms regulating YAP/TAZ activity takes place through transcriptional up-regulation of LATS2,
AMOTL2 and NF2 [55,58,59,145], modifiers of the actin cytoskeleton and plasma membrane components, such
as caveolae [56,57]. It is evident that multiple levels of both positive and negative cellular feedback regulation
are centred on the Hippo pathway in most, if not all, central cellular processes. Here, we have focussed on two
of these processes, mitosis (Figure 1) and cellular migration (Figure 2). Many more examples are described else-
where, such as integration of processes and organelles at the plasma membrane [12], cell size [132], mechano-
transduction [31], fibrosis [46,47], cell polarity [146–148], metabolism [40,132,134–136,149], integration with
auto- [150] and mito-phagy [151], in great part through interaction with numerous other cellular pathways [7].
These multilevel feedback loops are likely in place to dampen noise and prevent signal fluctuations, and to
further integrate inputs from the cellular microenvironment [31,152–154]. An interesting initial perplexing
observation is that many types of solid cancers are addicted to hyperactive YAP/TAZ [52,155]. However, it is
well established that the pathway has an exceptionally low general somatic point mutation load [156], which
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means that the course to oncogenesis is currently not fully established. Corruption of the integrated and multi-
level cellular feedback and regulation is therefore a likely cause as it offsets cellular and tissue homeostasis,
which can result in developmental defects, fibrosis or cancer [30,44–51]. These dynamic molecular couplings
serve in non-pathological conditions as flexible integrators of context-dependent stimuli, and likely provide
robustness and thereby safeguard fundamental cellular processes from failing. YAP/TAZ, therefore, regulate
both the expression of receptors and prominent signalling molecules, including chemical and matrix compo-
nents [7,12]. YAP/TAZ play a central role by changing both the microenvironment chemical gradients and
the intracellular response to already established physiochemical gradients within the microenvironment.

Figure 2. YAP/TAZ activity is central to coordinating cell migration.

Cell migration requires the coordination of various plasma membrane components that link extracellular matrix to the cell

cytoskeleton. (A) YAP/TAZ influence the dynamics of the actin cytoskeleton through the expression of Rho GTPase-activating

proteins (ARHGAP18, ARHGAP29) and Rho guanine exchange factor (ARHGEF17), which in turn modulates RhoA activity.

(B) LAT1/CD98 is a disulfide-linked heterodimer composed of SLC3A2 and SLC7A5 that promotes cell migration and survival

by coupling nutrient availability and integrin activity. LAT1/CD98 exports glutamine in exchange of importing amino acids, such

as leucine, isoleucine and arginine. SLC3A2 of the LAT1/CD98 heterodimer binds integrins and amplifies integrin-mediated

signalling. (C) At the leading edge of the cell, activation of integrin receptors through binding of extracellular matrix (ECM)

components promotes focal adhesion complex assembly and the contractile forces generated by the actin cytoskeleton

enables movement of the cell. (D) Plasma membrane subdomain caveolae expression is regulated by YAP/TAZ and plays a

mechanoprotective role by flattening in response to mechanical forces, such as cellular stretching and osmotic swelling. In

migrating cells, caveolae frequently localise to the rear due to low membrane tension. (E) YAP/TAZ-TEAD-mediated

transcriptional activity promotes the production of matricellular proteins, such as CYR61 and CTGF. These signalling factors

promote cell adhesion, migration and proliferation.
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New insights will undoubtedly be gained by implementing genetically encoded tagged versions of the Hippo
pathway components expressed via genome-editing strategies to allow for the expression of these versions at
endogenous levels. Further implementation of the use of distinct spectral sensitivity, for instance using light
LOV domains [157] or drug-induced dimerisation, such as the knock sideways techniques [158], will be power-
ful. However, the initial focus must be on fully validating these systems to ensure that they function as the
endogenous protein. This validation is facilitated at least for some of the components where highly specific
antibodies are readily available for immunofluorescence imaging [159,160]. Comparative analysis that the cellu-
lar stability of the genome-tagged proteins, the steady-state expression levels and localisation dynamics closely
follow that of the endogenous untagged version is critical. The realisation that widely used GFP derivatives
(27 kDa) are relatively large proteins compared with YAP (70 kDa) and TAZ (55 kDa) is imperative. Some of
these fluorescent proteins have additional dimerisation properties, which might combine with potential add-
itional properties such as their ability to form biological condensates [161–163] as well as the ability to pass
through the size filtering nuclear pore complexes [164]. Consequently, tagging Hippo pathway components
might functionally impair YAP/TAZ and thus highlights that detailed design and characterisation must be
carried out. The use of intra- or nano-bodies activatable optogenetic tools combining the specificity and
orthogonality of intrabodies with the spatio-temporal precision of optogenetics might overcome some of these
limitations [165–168]. Taken advantage of the full spectrum of these exciting techniques will be especially
powerful to delineate the dynamics of the pathway, while also allowing to distinguish the intrinsic challenge
within the Hippo pathway to determine between transcription dependent and independent mechanisms. We
forsee that by using advanced experimental approaches, additional multilevel cellular regulation and integration
centred on the Hippo pathway will become apparent in the years to come [55,56,58,59,145]. Realisations of
these molecular couplings will provide fundamental insights into cellular processes while also providing new
foundational therapeutic opportunities to target the challenging Hippo pathway.

Perspectives
• Multilevel dynamic feedback is critical to safe-proofing fundamental cellular processes — the

Hippo pathway is at the centre of this cellular decision-making process.

• It remains challenging to distinguish Hippo pathway transcription independent from dependent
functions, as YAP/TAZ regulates more than 1000 genes [69,126,169,170].

• The use of newly developed technologies allows for establishing ‘moonlighting’ functions. For
instance, what other substrates do STRIPAK and the range of Hippo pathway kinases have
besides regulation of the core Hippo pathway? Spatio-temporal cooperation between compo-
nents within the Hippo pathway and additional cellular components adds further complexity to
the Hippo pathway. It is likely that in the years to come, additional layers of these feedback
loops and synergistic multilevel regulation will be revealed and these discoveries are likely to
be of therapeutic importance. It might therefore be useful to think about the pathway as a
network instead of a linear pathway.
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