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health indicators. SARS-CoV-2 mutation analysis in wastewater during the third pandemic wave revealed that the
alpha-variant was dominant. Our results demonstrate that clinical and environmental surveillance data can be com-
bined to create robust models to study the on-going COVID-19 infection dynamics and provide an early warning for
increased hospital admissions.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
grown rapidly worldwide, infecting more than 186 million people and
claiming 4million lives as of June 2021 (WHO, 2021). It can be transmit-
ted via inhalation of airborne droplets and its main manifestation is in-
fection of the respiratory system that ranges from innocuous to severe
(Anand et al., 2021; Zhu et al., 2020). Limited diagnostic testing capacity,
asymptomatic infections and pandemic fatigue to public health mea-
sures have hindered the ability to track the spread of SARS-CoV-2 and
the Coronavirus disease 2019 (COVID-19) pandemic. In response, the
surveillance of SARS-CoV-2 ribonucleic acid (RNA) measurements in
wastewater has been used to study COVID-19 epidemiology because it
is excreted into sewer system via feces, saliva, swabs and/or sputum
of infected individuals (Anand et al., 2021; Peccia et al., 2020). Such ex-
cretion into wastewater can be described using the RNA load shedding
profile from the total amount of virus RNA in wastewater at several
time points after infection (Chen et al., 2020; Wölfel et al., 2020; Xu
et al., 2020; Zhang et al., 2020).

Wastewater-based epidemiology (WBE) has been found to be a use-
ful method to track COVID-19 and potentially other infectious diseases
(Daughton, 2020). It has several advantages over individual patient
testing. First, it is able to identify infections in asymptomatic, presymp-
tomatic or mild cases (i.e., individuals unlikely to be diagnosed and
tested clinically) (Kaplan et al., 2021; Peccia et al., 2020). Second, WBE
is more efficient in that it reduces the number of tests required to eval-
uate a large population, costs considerably less, does not require patient
consent, and test results are available earlier. Third, it is especially useful
in locationswhere clinical testing is restricted, such as in poor countries
in which the monitoring programs for COVID-19 are not developed or
suchdevelopments are not a priority. Finally, the emergence of newvar-
iants within the population can be detected (Bar-Or et al., 2021). Reflec-
tive of these benefits,WBE has been utilized tomonitor and track SARS-
CoV-2 RNA within communities in many countries (Agrawal et al.,
2021; Ahmed et al., 2020b; Bivins et al., 2020b; Gonzalez et al., 2020;
Graham et al., 2021; Haramoto et al., 2020; Hokajarvi et al., 2021;
Kumar et al., 2020; La Rosa et al., 2020; Randazzo et al., 2020; Wolfe
et al., 2021).

While the number of studies reporting the detection of SARS-CoV-2
RNA in wastewater collection systems continues to grow, few reports
have attempted to develop environmental surveillance tools or epide-
miologicalmodels that relate SARS-CoV-2 RNAconcentrations inwaste-
water with meaningful public health endpoints, such as hospital
admission rates (Kaplan et al., 2021; Peccia et al., 2020). As such, there
is a need to correlate SARS-CoV-2 RNA levels and/or SARS-CoV-2 vari-
ants inwastewaterwith reported COVID-19 cases tofind leading indica-
tors, e.g., time delay. Such information would allow inferences to be
made about the progress of infection within the community and inform
stakeholders regarding the implementation of regulations or policy
measures (Bivins et al., 2020b). For example, the prediction of hospital
admission rates from viral load can serve as an early-warning system
for the health care infrastructure. Peccia et al. created epidemiological
models after measuring the concentration of SARS-CoV-2 RNA in pri-
mary sludge over a 3 month period (Peccia et al., 2020). They reported
a 2 to 8 day lag time between RNA load in the sludge and the manifes-
tation of positive cases (as well as hospitalizations). However, due to
the small sampling size, and positivity rates greater than 50% in the
early pandemic case data, a direct correlation between absolute SARS-
CoV-2 RNA concentrations in sludge and COVID-19 caseswas not exam-
ined. Kaplan et al. used a differential equation-based epidemiological
model and assumed SARS-CoV-2 shedding distributions to demonstrate
that hospitalizations could be anticipated from the SARS-CoV-2 RNA
load in primary sludge with a 3 to 5 day time lag (Kaplan et al., 2021).
They used basic reproductive number (R0) RNA versus hospitalization
rate and found the lagging indicator in a more epidemiologically mean-
ingfulway. The developedmodel provided amaximumerror of 15 cases
2

(from a total of 30 hospitalizations). Huisman et al. reported the lag in-
dicators between SARS-CoV-2 RNA load in wastewater and pandemic
indicators from data collected over a 4 month sampling period
(Huisman et al., 2021). This study provided a computational framework
to optimize fit between RNA load data and pandemic clinical indicators,
specifically adjusting the testing-cases inconsistencies. These investiga-
tors reported a time delay between RNA load in wastewater/primary
sludge and pandemic clinical indicators of 4 to 9 days. Using linear cor-
relation, Medema et al. (2020) related cumulative COVID-19 cases to
SARS-CoV-2 RNA load in wastewater (RNA copies/mL) with a time lag
of 6 days.

Causes of the variation in the lag times between RNA detection in
sewage and clinicalmanifestation of infection include societal responses
to the pandemic, daily variations in population size, limitations and dif-
ferences in the sampling inwastewater, aswell as analytical approaches
and inconsistencies with the clinical COVID-19 testing or the changes in
the time required to report case data as the pandemic progresses
(Medema et al., 2020; Peccia et al., 2020). Thismakes the correlation be-
tween the absolute SARS-CoV-2 RNA load and COVID-19 prevalence
data less reliable (Medema et al., 2020). Normalization of wastewater
RNA load to population size may partially resolve the variation in the
cases due to increases/decreases in population of the city (Ahmed
et al., 2020a); however more work is needed to improve the analytical
methods (Ahmed et al., 2020d), population estimation, and epidemio-
logical modelling methods for sewage surveillance of SARS-CoV-2. All
of these factors affect conclusions about the lag time between RNA
load in wastewater and pandemic clinical indicators. With the emer-
gence of new SARS-Cov-2 variants that demonstrate different transmis-
sion and COVID-19 severity (Singh et al., 2021;Wang et al., 2021), their
detection and quantification are important during sewage surveillance
of SARS-CoV-2 to explain accurately the infection dynamics. Last but
not least, the time lag variation between SARS-CoV-2 RNA load data
and COVID-19 pandemic clinical indicators needs to be investigated
over a longer period to validate the application of sewage surveillance
of SARS-CoV-2 as an early warning system.

The aims of the present study are to: (1) use an optimized analytical
methodwith a strict quality assurance (QA)/quality control (QC) system
to determine SARS-CoV-2 RNA concentrations in 192 consecutive days
ofwastewater samples; (2) detect the SARS-CoV-2 variants inwastewa-
ter and the effects on pandemic clinical indicators; (3) create advanced
computational workflows based on distributed lagmodelling and artifi-
cial neural networks to estimate the new admission rates to hospitals or
ICUs from wastewater viral loads.

2. Material and methods

2.1. Wastewater sampling

Daily composite flow proportional raw wastewater samples were
collected from the wastewater treatment plant of Attica, the region of
Greece that includes Athens metropolitan area and suburbs; this in-
cludes primary sedimentation, activated sludge processed with biologi-
cal nitrogen and phosphorus removal and secondary sedimentation
(Thomaidis et al., 2016). The wastewater treatment plant of Attica
serves a large percentage of the population of Greece. All the informa-
tion and the details about the studied wastewater treatment plant are
provided in Table S1A of the Supporting Information (SI) document.
The number of inhabitants was estimated daily based on the concentra-
tions of total phosphorus (P), total nitrogen (N), biochemical oxygen
demand (BOD), chemical oxygen demand (COD) and ammonium-
nitrogen (NH4-N) (as described elsewhere) (Been et al., 2014; van
Nuijs et al., 2011). The raw wastewater samples were collected daily
(from August 31, 2020 through March 21, 2021) in pre-cleaned high-
density polyethylene (HDPE) 2 L bottles, and transported at 4 °C to
the laboratory. All samples were processed immediately upon arrival
at the laboratory. Biosafety guidelines were followed during sampling,
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transportation and the analytical procedure (as described below). Addi-
tional details regarding sample preparation and analytical methods
used for SARS-CoV-2 RNA extraction and analysis (using RT-qPCR) are
provided in the Supplementary Material.

2.2. Stability study

There are only a few studies that have investigated the stability of
SARS-CoV-2 concentration in wastewater under various conditions
(Ahmed et al., 2020c; Bivins et al., 2020a; Hokajarvi et al., 2021). In
the present study, the stability of qPCR targets for SARS-CoV-2 and
Mengo Virus (MgV) in wastewater samples was investigated by mea-
suring the levels of the N1 and N2 gene of SARS-CoV-2 and the exoge-
nous control MgV at three different storage temperatures, i.e., 4 °C,
−20 °C, and −80 °C. One wastewater sample positive for SARS-CoV-2
was mixed and divided into five aliquots of 50 mL, with 10 μL of MgV
(Biomerieux, France) being spiked into each aliquot. The first aliquot
was immediately analyzed. The second aliquot was stored at −20 °C
for one day before being analyzed. The third aliquot was stored at
−20 °C for 7 days and then analyzed. The fourth aliquot was stored
for one day at 4 °C before being analyzed again. The fifth aliquot was
stored at−80 °C and analyzed one day later. All experiments were per-
formed in duplicate for the whole analytical procedure (Fig. S1).

2.3. Validation and quality control measures

To ensure the quality of themeasurements and the overall analytical
process, the following QA/QC measures were applied to every batch of
analyses: analysis of a procedural blank sample (PCR Grade water) to
evaluate cross-contamination, analysis of a positive quality control sam-
ple to insure run reliability, addition and determination of synthetic
DNAas internal control (Magnetic Beadkit (IDEXX)) to assess inhibition
and RNA purification, analysis of a PCR positive control and a PCR nega-
tive control and construction of a five-point calibration curve in each
run. More details about QA/QC can be found in the Supplementary Ma-
terial and Table S2.

2.4. Viral load

The population served by the wastewater treatment plant was cal-
culated in real time based on the concentration levels of five physico-
chemical parameters (i.e., total phosphorus, total nitrogen, BOD, COD
and NH4-N) for each sampling day from the beginning of the study
period. In addition, flow rates from the wastewater treatment plant
were provided daily (Table S1A, SIF). After the determination of virus
genome copies per liter (copies/L, Section 3, SIF), the concentration
was normalized to estimated population and the flow rates. In cases in
which inhibitionwas observed (i.e.,ΔCq< 2 between undiluted sample
and 1:4 dilution or ΔCq < 3.3 between undiluted sample and 1:10), the
viral load was corrected using the following equation:

RNA copies per L ¼ genome copy number � RNAtotal

RNAPCR

 !

� concentratetotal

concentrateextracted

 !
� 1000 mL

wastewater

� �
� DF

where: RNAtotal is the total volume of RNA eluted from magnetic-bead
extraction (0.1 mL); RNAPCR is the volume of purified RNA tested in
PCR (0.005mL); concentratetotal is the total volume of wastewater con-
centrate (0.5mL); concentrateextracted is the volume of wastewater con-
centrate from which RNA was extracted (0.2 mL); wastewater is the
volume of original wastewater sample processed with PEG procedure
(50 mL); DF = 4 when the viral load was corrected based on Cq values
for 1:4 dilution or 10 for 1:10 dilution.
3

2.5. SARS-CoV-2 variant analysis with high-throughput sequencing

Next-generation sequencing (NGS)was utilized for the investigation
of existing variants of SARS-CoV-2 in wastewater samples in February
2021 (as described in our previous study) (Avgeris et al., 2021). Briefly,
library preparation was carried out using the Ion Xpress Plus Fragment
Library Kit (Ion Torrent, Thermo Fisher Scientific Inc.). Adapter ligation,
nick-repair and clean-up of the ligated dsDNAwere carried out accord-
ing to themanufacturer's protocol. Quantification of the adapter-ligated
library was performed using the Ion Library TaqMan Quantitation Kit
(Ion Torrent) in an ABI 7500 Real-Time PCR system (Applied
Biosystems). Emulsion PCR was employed for the template preparation
process on an Ion OneTouch 2 System, while enrichment was carried
out on the Ion OneTouch ES instrument, using the Ion PGM Hi-Q View
OT2 kit (Ion Torrent). Finally, NGS based on the semi-conductor se-
quencing methodology was performed in the Ion Torrent PGM system.

Bioinformatic evaluation of the derived NGS datasets included align-
ment of the sequencing reads to the SARS-CoV-2 reference genome
(NC_045512.2) with the Burrows-Wheeler Aligner (BWA-MEM)
(Li and Durbin, 2009). The successfully aligned sequencing reads
were visualized using the Integrative Genomics Viewer (IGV)
(Thorvaldsdottir et al., 2013). Finally, variant calling of both SNVs and
insertions/deletions was implemented using the iVar algorithm with
the recommended parameters (Grubaugh et al., 2019).

2.6. Development of hospital admission rates model

The data including normalized RNA copies SARS-CoV-2/100K inhab-
itants, number of positive cases in Attica, and the number of new
patients admitted to hospitals and ICUs were compiled for the period
August 31, 2020 through March 21, 2021. The pandemic indicators
(number of positive cases, new admissions to hospitals and new admis-
sions to ICUs) were gathered from daily reports developed by the
National Public Health Organization of Greece, i.e., EODY and the
Ministry of Health. The coefficient of variation for log-normal distrib-
uted data (CVln) (Forootan et al., 2017) was plotted against log10(RNA
copies/L) for more than 40 data points with at least 3 replicates to
find a threshold at which the wastewater-based epidemiology data
was statistically meaningful and they could be used for modelling
purpose.

CVln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Eð Þ SD Cqð Þð Þ2� ln 1þEð Þ−1

q

where E is efficiency of PCR method, the Cq is the quantification cycle.
Each variable (RNA load in wastewater and pandemic clinical data)
was treated as time-series data and was checked to detect turning
points using the mean and linear slope difference test in the timeSeries
R-package. The significance of turning points was evaluated by a proba-
bility value (P) (0.95) and quantity of information (I) according to
Kendall's information theory (Kendall et al., 1994). If I and P gets large
and small, there is a high possibility that the time-series data contain
a longer sequence of decreasing or increasing trends around the de-
tected turning point. This was used to evaluate a relationship between
the variables by having similar changes in their turning points (Gocic
and Trajkovic, 2013). The data was normalized between 0 and 100 for
internal comparability in their turning point detection. The turning
points were also used to investigate the lag between measurement of
RNA copies of SARS-CoV-2 in wastewater and positive COVID-19 cases.
To evaluate strength of Pearson's (linear) correlation coefficient be-
tween variables (positive cases and new admissions to hospitals or to
ICUs versus RNA copies of SARS-CoV-2), several levels of averaging
terms (n = 3, n = 4, n = 5 and n = 7) were applied. This was done
to establish linear regression models between time-series data. The av-
eraging was not based on a moving average, and averaging was per-
formed independently for n consecutive days without being including
in the next averaging batch. This was to decrease the effect of variation
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between daily activity and life/working style. The forecasting ability of
the linear model was evaluated externally by the data collected be-
tween February 15 and 21, 2021. This approach was compared to the
distributed lag measurement error time-series model (DLM). Although
turning points allow the detection of several top (lowest p-value) lags,
they may not represent the relationship between whole data and are
useful only for detecting peaks, not valleys. The second method (which
is used to estimate the lag value and averaging term)was based on root
mean square error of leave-one-out cross validation (RMSECV). The
RMSECV was calculated for averaging term and lag values between 0
and 10 (which is representative for long-term modelling of pandemic
data). To check by-chance correlation, RNA load in wastewater data
were randomly shuffled 10,000 times. The RMSECV, R2 and Q2 values
of these shuffled models should be less than the main model to verify
that the relationship between averaged SARS-CoV-2 RNA load inwaste-
water data and the pandemic clinical data is not random.

In addition to linear models, a multilayer artificial neural network
(ANN) model was developed using a backpropagation algorithm, the
leave-one-out cross validation technique and a test set to predict the
pandemic clinical indicators. To construct the ANN, SARS-CoV-2 RNA
copies in wastewater, fingerprint data (if RNA copies in wastewater
were above limit of quantification (LOQ), SARS-CoV-2 RNA fingerprint
gives a value of 1; when the inverse scenario occurs, it provides a
value of 0) and positive cases of SARS-CoV-2 infections were treated
as independent variables to model new admissions to hospitals. In the
ANN model structure, a fixed optimized lag value was applied to the
input data. ANN models were optimized and constructed in the R envi-
ronment using the neuralnet R package. The thirdmethod used for eval-
uating the COVID-19 pandemic data was based on the association
between the logarithm of the normalized SARS-CoV-2 RNA copies/
100K inhabitants using a Bayesian Distributed-Lag Nonlinear Model of
Poisson family with log-link (Zanobetti et al., 2000). To explore the as-
sociation over a long period, amaximum lag of+50 days andminimum
of−30 days were used, together with an imputation model with vague
prior variance for the viral load in wastewater beyond the limits of the
study period. A gamma-shaped lag-response association was assumed
(Kaplan et al., 2021; Lewnard et al., 2020), i.e., the regression coeffi-
cients were constrained to be positive and to follow a gamma distribu-
tion with unknown shape and scale. This approximates the shape of
both the incubation period of SARS-CoV-2 and the viral shedding in
feces (Wölfel et al., 2020),making it a rational choice. Analyseswere un-
dertaken using the JAGS R package. All codes are available in http://
trams.chem.uoa.gr/covid-19/.

3. Results and discussions

3.1. Optimization and validation of the analytical method

The effect of pre-analytical factors on the measurement of SARS-
CoV-2 RNA load in wastewater samples was performed to allow the de-
velopment of an optimized and validated method that would minimize
day-to-day variations in the analytical measurements (Gerrity et al.,
2021; Graham et al., 2021; Huisman et al., 2021; Peccia et al., 2020). De-
tails about optimization and validation of the analytical methods can be
found in the supplementary filewhich includes: (1) the effect of storage
conditions on the stability of SARS-CoV-2 RNA concentrations (Fig. S1);
(2) comparison of analytical methods (Table S3); and (3) method vali-
dation (Table S2). The optimized protocol was validated for limit of de-
tection (LOD), method sensitivity, repeatability, trueness and precision,
and proved to be fit for purpose. A strict QA/QCprotocolwas established
and followed every day. In addition to these conventional method vali-
dation criteria (which can be found in the literature, e.g., Pérez-Cataluña
et al., 2021; Philo et al., 2021), the storage conditions were evaluated.
The results clearly revealed that the ideal storage temperature for
SARS-CoV-2 detection and mutational/variant analyses in wastewater
samples was 4 °C and the RNA load remained stable for up to seven
4

days. Very low temperatures (i.e., −20° and −80 °C) were shown to
rapidly destroy the genetic material, likely due to destabilization of
the capsid of the virus and consequent exposure of the RNA to RNAses
present in the wastewater.

3.2. Monitoring the SARS-CoV-2 load in wastewater treatment plants of
Attica

The first COVID-19 case in Greece was recorded on February 26,
2020 and the highest number of confirmed cases (during the sampling
campaign) in Attica (1701 infections) occurred on March 17, 2021
(National Public Health Organization, 2021). Since the start of the pan-
demic, Greece has implemented three lockdowns (the last one being on
February 20, 2021). Using the final validated method, the viral load was
investigated and detected in all wastewater samples. The time-course of
viral load and the measured COVID-19 positive cases data by National
Public Health Organization (NPHO) of Greece are presented in Fig. 1.

The reported COVID-19 cases can be separated into 3 phases (Fig. 1).
The first was August 31st through November 7th. At the beginning of
this phase, the viral load was relatively steady, with no large fluctua-
tions. There was an increased viral load after the first week of opening
schools (September 14). This period also included the return from sum-
mer vacation, likely resulting in the number of inhabitants served by the
wastewater treatment plants of Attica being lower than normal. There
was a steep increase in the wastewater viral load after October 20.
This phase ended with the announcement of the second lockdown on
November 7. The second phase, November 8 through January 25, re-
flects the effectiveness of restrictions during the lockdown period
(which included the Christmas holidays). During this phase, the viral
load was the lowest for the whole study period, with values below the
LOQmost of the time. However, a gradual increasewas observed during
the last days of January. The third phase, January 26 through March 21,
almost coincides with the third wave of the pandemic. During this pe-
riod, the largest increase in the number of cases occurred, andwas likely
related to the increasing prevalence of the alpha variant (B.1.1.7) of
SARS-CoV-2 (Hellenic National Public Health Organization, 2021).
Although the third lockdown started on February 20, there was no re-
duction in viral load or cases immediately after the lockdown an-
nouncement. During this period, the viral load was the highest for the
entire study. It is notable that the viral load was usually lower on days
of the weekend than weekdays. This pattern may have resulted from
commuters in and out of the Attica peninsula. This trend was observed
during all of the study period.

3.3. SARS-CoV-2 variants analysis in the wastewater treatment plant of
Attica

The surge in viral load inwastewater and confirmed COVID-19 cases
recorded in Attica (the region of Greece that includes Athens) from the
beginning of February 2021 prompted us to analyze the mutational/
variant profile of SARS-CoV-2 in wastewater samples collected in
February 2021. S gene-related deletions (del69-70HV, del144Y), and
missense mutations (L18F (C21614T), T20N (C21621T/A), P26S
(C21638T), D80A (A21801C), K417N (G22813T), E484K (G23012A),
N501Y (A23063T), D614G (A23403G), H655Y (C23523T), P681H
(C23604A), A701V (C23664T), T716I (C23709T), S982A (T24506G))
were targeted for the detection and quantification in the following
SARS-CoV-2 variants of concern (VOC): Β.1.1.7/UK lineage (Variant
VOC_202012/01; alpha variant), B.1.351/South Africa lineage (Variant
20H/501.V2; beta variant) and.1/Japan-Brazil lineage (Variant 20J/
501Y.V3; gamma variant). These analyses led to the conduct of 5.38mil-
lion sequencing reads,with amedian read length of 339 bp. Thefindings
of these analyses are summarized in Tables 1 and 2.

Based on the frequency of the genetic markers analyzed, the Β.1.1.7/
alpha lineage variant of concern was detected in 96.3% ± 2.2 (mean ±
SE) of the total sequencing reads, while genetic markers specific for

http://trams.chem.uoa.gr/covid-19/
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Fig. 1. Viral load in wastewater and surveillance data; the SARS-CoV-2 load (RNA copies SARS-CoV-2/100K inhabitants) in the wastewater from wastewater treatment plants in Athens
(blue bars) and NPHO-reported COVID-19 confirmed cases (orange line) are shown for the period August 31, 2020 through March 21, 2021. SARS-CoV-2 data are presented as
mean ± SE from 191 wastewater samples.

Table 2
SARS-CoV-2 variants present in the wastewater treatment plant of Athens; frequencies of
analyzed SARS-CoV-2 variants of concern.

Variant of concern % frequency† Genetic markers analyzed

Β.1.1.7/UK lineage (variant
VOC_202012/01)

96.3 ± 2.2 N501Ya, D614Ga, P681H, T716I, S982A,
del69-70 HV, del144Y

B.1.351/South Africa lineage
(variant 20H/501.V2)

ND D80A, K417Nb, E484Kb, N501Ya,
D614Ga, A701V

P.1/Japan-Brazil lineage (var-
iant 20J/501Y.V3)

ND L18F, T20N, P26S, K417Nb, E484Kb,
N501Ya, D614Ga, H655Y

ND: not detected.
† % proportion of SARS-CoV-2 variants of concern in wastewater samples. Data are

presented as the mean ± SE.
a Common genetic marker for Β.1.1.7/UK, B.1.351/South Africa & P.1/Japan-Brazil vari-

ants.
b Common genetic marker for B.1.351/South Africa & P.1/Japan-Brazil variants.
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the B.1.351/beta (i.e., D80A, K417N, E484K and A701V) and P.1/gamma
(i.e., L18F, T20N, P26S, D138Y, K417N and E484K) lineages were not de-
tected. The Β.1.1.7/UK lineage (Variant VOC_202012/01), which
emerged in southeast England in November 2020, has been associated
with ≈50% increased transmissibility and mortality rates (Davies
et al., 2021a; Davies et al., 2021b; European Centre for Disease
Prevention and Control, 2021). The prevalence of the Β.1.1.7 vari-
ant in of February 2021 wastewater samples agrees with the sig-
nificantly increased new COVID-19 cases and hospitalization
cases in Attica for this period onwards.

3.4. Estimation of hospital admission rates: short-term modelling

An inherent uncertainty associated with environmental surveillance
of SARS-CoV-2 RNA in wastewater is that the measurements might fall
below the LOQ of the qPCR analytical method leading to the estimation
of new hospitalizations not being accurate. For instance, Huisman et al.
excluded few samples due to low quality and included the samples that
had a threshold greater than 10% of the BCoV concentration in their
study (Huisman et al., 2021). In our study, a threshold of 2.60e+11
SARS-CoV-2 RNA copies/100K inhabitants was applied to the normal-
ized RNA load. This value was calculated from the CVln versus log10
(RNA copies/L) curve of PCR results. As can be seen in Fig. S2, data
with a CVln higher than 35% (which equates to SARS-CoV-2 RNA cop-
ies/100K inhabitants below 2.6e+11) would show great variation and
therefore should not be used for modelling of COVID-19 indicators.
Two modelling workflows were used: 1) models that use an averaging
term in addition to lag and 2) models that do not include averaging
terms and are based on probability modelling. For a first modelling ap-
proach based on linear regression, use of several levels of averaging
Table 1
SARS-CoV-2 variant analysis in the wastewater treatment plant of Athens; targeted DNA-seq a
cern.

Position Reference base Alternative base Alternative freque

del69-70HV TACATG −N(6) 98.63
del144Y TTA −N(3) 98.31
N501Y (A23063T) A T 99.88
D614G (A23403G) A G 84.26
P681H (C23604A) C A 93.29
T716I (C23709T) C T 99.85
S982A (T24506G) T G 99.90
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terms (n=3, n=4, n=5 and n=7)was found to be necessary to im-
prove the ability to predict pandemic clinical data. This could be due to
day-to-day variations in life and working activities of Athens inhabi-
tants, as well as weekly public restriction measures. Another factor af-
fecting the correlation between WBE and pandemic clinical data was
the time lag between wastewater RNA concentration and patient
cases/hospitalizations. The aim of the present study was to improve
the resolution of forecasting to several days ahead and determine the
offset between RNA load in wastewater and pandemic clinical data.

Temporal differences in the turning points of these data
(i.e., between a large increase or decrease in the number of SARS-CoV-
2 RNA copies/100K inhabitants and in the number of positive cases/
nalysis of genetic markers for detection and quantification of SARS-CoV-2 variants of con-

ncy (%) Total depth Reference amino acid Alternative amino acid

252,808 HV –
225,804 Y –
244,198 N Y
261,583 D G
344,390 P H
338,016 T I
257,801 S A



Fig. 2. Identifying the time lag between RNA load in wastewater and SARS-CoV-2 pandemic clinical cases; turning points and difference between changes in the scaled SARS-Cov-2 RNA
copies inwastewater/100k inhabitants and number of positive cases are presented. The grey dashed line is the CVln (%) threshold (i.e., 2.6e+11 normalized SARS-CoV-2 RNA copies/100K
inhabitants (scaled value is 14%)). The black dashed lines are the top five detected turning points in the scaled SARS-Cov-2 RNA copies in wastewater/100k inhabitants. The blue dashed
lines are the turning points detected in the trend profile of COVID-19 positive cases. The temporal separation between the blue dashed lines and the black dashed lineswere used to derive
lag time (delay) between turning points and peaks. Kendall information theory is calculated from−log2 (probability value |t) at given time (P is the probability to observe a turning point
at time (t)).
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new admissions to hospitals or ICUs) provide information about the
delay (or lag time) between the RNA load in wastewater and pandemic
clinical data. The most significant turning points are shown in Fig. 2.
Most of the detected turning points revealed low p-values ranging
from 1.26e−05 to 8.45e−43. This implies that at the detected turning
points and dates, the turning points followed a normal distribution.
Five potential turning points were detected in the time series data of
normalized SARS-CoV-2 RNA copies/100K inhabitants. These preceded
the turning points in the number of pandemic clinical cases by an aver-
age of 2 to 4 days (Fig. 2). These results can be used qualitatively in that
pandemic clinical cases would be expected to increase 3–4 days after a
rise in the SARS-CoV-2 RNA copies/100K inhabitants in wastewater.

The data were averaged (maximum for 4 days) after applying 3 or
4 days lags. Themodels of normalized SARS-CoV-2 RNA copies/100K in-
habitants and pandemic clinical cases (i.e., positive clinical cases), new
patients admitted to hospital or to ICU after 4 days lag followed by
3–4 days average are shown in Fig. S3. Using these averaged and lagged
linear regression models and the data from 3 or 4 days of normalized
SARS-CoV-2 RNA copies/100K inhabitants, the positive clinical cases,
new patients admitted to hospital or to ICU can be estimated 3–4 days
in advance. The predictive utility of these models was evaluated for
the period February 19 to 22, 2021 (test set) (Table 3). This period of
data collectionwas intentionally not included during themodellingpro-
cedure in the training set. Despite the increase in viral loads, the number
of reported positive clinical cases was lower than the model predicted.
This wasmainly due to the number of tests being performed decreasing
because of heavy snow and bad weather conditions which hindered
clinical testing. However, the numbers of new admissions to hospitals
Table 3
Predicting pandemic clinical cases in Athens using the averaged and lagged linear regres-
sion models; prediction of the number of SARS-CoV-2 positive clinical cases, new admis-
sions to hospital or new admissions to ICU cases in Athens using normalized SARS-CoV-
2 RNA copies/100K inhabitants identified in wastewater from February 19 to 22 (2021)
by 4 days lag and 4 days average data.

Variable Experimental data Predicted datab

(Averaged by
4 days)a

(Averaged by 4 days and +4 day
lag)

Positive clinical cases 564c 930 (874–987)
New hospital admissions 156 180 (165–194)
New ICU admissions 13 16 (14–17)

a Averaged data between February 15 and 18, 2021.
b Numbers in parentheses represent the lower and upper 95% confidence intervals.
c The number of people being tested for SARS-CoV-2 decreased due to adverse weather

conditions occurring between February 15 and 21, 2021.
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and the ICU were predicted (confirmed n = 156, estimated n = 180
(165–195)). This supports the contention that reliable wastewater
data may be used to predict the dynamics of SARS-CoV-2 infections, es-
pecially when clinical testing is restricted. However, from the R2 value
results (R2 = 0.888 (lag = 4 days, averaging = 4 days) for new hospi-
talizations and R2 = 0.877 (lag = 4 days, averaging = 4 days) for
new ICU admissions), it is apparent that admissions to hospitals or to
ICUs don't have similar lag and averaging values as those derived for
COVID-19 positive cases (R2 = 0.947 (lag = 4 days, averaging =
4 days)).

While other important studies have established the correlation be-
tween viral RNA loads in wastewater and the rise in positive clinical
cases and new admissions to hospital via distributed lag regression
(Peccia et al., 2020; Zulli et al., 2021) or sewage surveillance of SARS-
CoV-2 (Medema et al., 2020), only qualitative conclusions have been
made thus far. Peccia et al. found that the rise in copies of RNA in pri-
mary sludge from wastewater treatment plants were reflected in re-
ported COVID-19 cases within 6–8 days (Peccia et al., 2020). It is
important to appreciate that the lead time after detection of RNA
loads in wastewater as a pandemic indicator is under debate due to
high variability (Bibby et al., 2021; Olesen et al., 2021). Previously, the
lead time for WBE of COVID-19 in early detection had been estimated
to be a maximum of four days (Bibby et al., 2021). In addition to pre-
analytical factors, the behaviors of individuals (e.g., work attendance
and lifestyle during the pandemic) and changes in the population size
can influence the SARS-CoV-2 RNA loads in wastewater samples and
lead to variability in the predictive models (Huisman et al., 2021;
Olesen et al., 2021; Thomas et al., 2017). Therefore, the use of an averag-
ing term (in addition to WBE lead time) to decrease the effect of such
variations is vital. The present study serves as a proof of concept that
the positive clinical cases and new admissions to hospitals and ICUs
can be predicted using a linear regression analysis during the rise of a
pandemic wave if the daily RNA copies/L measurement in wastewater
has a CVln value below 35% and is higher than LOQ.

3.5. Estimation of hospital admission rates: long-term modelling

It is also possible to predict SARS-CoV-2 positive clinical cases, and
new admissions to hospitals and ICUs 5 to 9 days ahead. The lag dura-
tion between copies of SARS-CoV-2 RNA in wastewater and pandemic
clinical data and averaging values were optimized by root mean square
error (RMSE) of leave-one-out cross validation technique (Fig. 3). The
positive clinical cases can be estimated 5 days ahead if the number of
RNA copies in wastewater are averaged by 8 days. The new admissions
to hospitals and ICUs can be estimated 8 and 9days (respectively) ahead



Fig. 3. Grid search for optimal averaged lagged linear regression model; optimization of lag and averaging term using RMSE of leave-one-out cross validation in the estimation of positive
cases (A), and new admissions to hospitals (B) or ICUs (C). The lower RMSECV results in better prediction performance. Each surface plot (A–C) shows the changes in RMSECV value around
lag and averaging values. In plots D–F (positive cases, new admissions to hospitals, and new admissions to ICUs, respectively), data were subjected to linear regression analysis, with the
line of best fit being shown as a dotted line. The test datewith badweather is shownwith redmarker. The grey dashed line is the CVln (%) threshold (i.e., 2.6e+11 normalized SARS-CoV-2
RNA copies/100K inhabitants). In the plots G–I (positive cases, new admissions to hospitals and new admissions to ICUs, respectively), the RNA load datawere shuffled randomly and then
subjected to linear regression analysis. R2 and Q2 valueswere calculated for the randomized data and comparedwith themainmodel (shown as red and green dotted lines, respectively).
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if the number of RNA copies in wastewater are averaged by 8 days. As
can be seen in Fig. 3, if the averaging factor is being neglected and
only the lag value is considered, the RMSECV values become
unacceptably high in the modelling of pandemic clinical data.
Therefore, the present results support the inclusion of an averaging
term in addition to the lag value during the modelling of SARS-CoV-2
pandemic clinical data when using normalized SARS-Cov-2 RNA cop-
ies/100K inhabitants. This is understandable given that with every
new measure, there were varying lifestyle and working patterns
throughout the recorded period. Such variations could alter the means
bywhich individualswere exposed to SARS-CoV-2within theweek; av-
eraging the data compensates for these variations. However, the num-
ber of data entries recorded over a longer period of time may be
needed to enhance the predictive accuracy. It is noteworthy that using
lag values between 2 and 8 provides lower RMSECV than those models
without a lag value (Fig. 3). This supports the results in the previous
“short-term modelling” section. However, as seen before, the models
include several outliers (compare Fig. S3 with Fig. 3). The correlation
7

and shuffling of RNA load in wastewater are presented in Fig. 3. All of
the shuffled models provide RMSECV, R2 and Q2 values less than the
main models developed for positive cases, and new admissions to
hospitals and ICUs.

Estimation of RNA load inwastewater can bemade independently of
clinical testing indicators, and, in specific circumstances, such as adverse
weather conditions and decreases in testing, provide a better represen-
tation of the status of SARS-CoV-2 infections in a population
(Fernandez-Cassi et al., 2021). On the other hand, SARS-CoV-2 RNA
loads in wastewater can be significantly influenced by sewer transpor-
tation, the analytical method used, environmental conditions
(e.g., temperature) (Ahmed et al., 2020d) and insufficient sensitivity
(e.g., levels fall below 35% CVln). To address these limitations, an
artificial neural network model was used in the present study that
combined the results from clinical testing (COVID-19-positive cases)
and SARS-CoV-2 RNA load in wastewater to model new admissions to
hospitals and to ICUs. The resultant analyses revealed the most optimal
lags (taking into account their RMSECV) to be used to correlate SARS-
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CoV-2 RNA copies/100k inhabitants with positive clinical cases, new ad-
missions to hospitals and ICUs to be 5, 8 and 9 days, respectively (Fig. 3).
As such, the ANNmodels (Fig. 4) were also developed that included the
averaging terms of 3 and 4 days for new admissions to hospitals and
ICUs, respectively. These were the minimum averaging terms found to
have lowest number of outliers and RMSEtest values.

ANN models are also useful for estimating the new admissions to
hospitals and ICUs fromRNA load from 8 to 9 days aheadwith lower av-
eraging terms if combined with positive cases (3 and 4 days averaging
for newadmissions to hospitals and ICUs, respectively). The results indi-
cate that inclusion of the 3 day lag for positive cases data and 8 day lag
for SARS-CoV-2 RNA load in wastewater data results in very accurate
prediction of the new admissions to hospitals, i.e., training set R2 =
0.956 and test set R2 = 0.924 (Fig. 4E). Acceptable results (training set
R2 = 0.902 and test set R2 = 0.865) were also obtained in modelling
Fig. 4. Artificial Intelligence for modelling of SARS-CoV-2 pandemic data; the grid search re
admissions to ICUs (B). The best combination of the hidden layer is the region where it show
hospital and ICUs, respectively. The blue lines are bias in each node and the black line is the c
C and D show the importance of variables in ANN structure. Plots E and F show the predicted
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new admissions to ICUs using a 4 day lag for positive cases data and
9 day lag for RNA load inwastewater data (Fig. 4F). However, the impor-
tance of variables in ANN structure (bar chart in Fig. 4C and D) indicates
that the use of positive cases in modelling new admissions to hospitals
is more significant than modelling new admissions to ICUs (equal vari-
able importance for positive case and RNA load in wastewater data).
This result may have been anticipated, given that not all of the positive
cases would be expected to end up in the ICU. Our results relating to
new admissions to hospitals are consistent with Peccia et al. (2020)
who reported that sewage sludge results are not a leading indicator of
progress of SARS-CoV-2 infection compared to positive test results. Fi-
nally, we have not reported the use of new hospital admission data in
addition to positive cases and RNA load in wastewater data because
the lag between new admissions to hospitals and new admissions to
ICUs is 1 day. Such amodel would have limited applications in planning
sults for selection of hidden layers in ANN in new admissions to hospitals (A) and new
ed the lowest RMSE value. Plots C and D show the ANN structure for new admissions to
ombination of layers and the weights used for each input data. The bar charts in the plots
versus experimental data for new admissions to hospitals and ICUs, respectively.
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actions to be taken to deal with the pandemic. Another issue associated
with the use of positive cases in the ANN model is that any factors that
disrupt the clinical testing process (such as inclement weather or
pandemic-related restrictions on movement by the general public)
can adversely impact the reliability of the model. This would reduce
its forecasting ability and lead to inaccurate estimation of new admis-
sions to hospitals or to ICUs. On the other hand, the advantage of
these ANNmodels is that it can reduce the error of prediction of newad-
missions to hospitals or to ICUs for any SARS-CoV-2 RNA load in waste-
water measurement that is below LOQ or CVln 35% by using data from
positive clinical cases. The developed ANN and linear regressionmodels
were applied on the pandemic data recorded between February 15 and
22, 2021. Table S4 lists the estimated and actual observed data for each
pandemic indicator (i.e., positive cases, new admissions to hospitals or
ICUs). The newadmissions to hospitals during thisweekwere 102 (Feb-
ruary 15–17, 2021) and 150 (February 18–20, 2021) which are very
close to the estimated values of 86 (95% CI: 82–90) and 153 (95% CI:
148–159), respectively. Over these same periods, the number of new
admission to ICUs, 12 and 13, are also close to the estimated values of
9 (95% CI: 8–10) and 14 (95% CI: 13–15) (Table S3).

3.6. Estimation of hospital admission rates; Bayesian distributed-lag
nonlinear modelling

The aforementioned models were based on fixed lags and they in-
cluded an averaging term. Although exclusion of the averaging terms
results in somewhat less accurate prediction, it remains valid to track
the changes in pandemic data in accordance with changes in RNA load
in wastewater (Fig. S4). The distributed finite lag models provided
mean errors of 141.08, 23.61 and 3.024 cases for positive cases, new ad-
missions to hospitals, and new admissions to ICUs, respectively. In an at-
tempt to decrease the error, the data was subjected to Bayesian
Distributed-Lag Nonlinear Model (DLNM) analyses. The cumulative re-
gression coefficients were 0.74 (95% CI: 0.63–0.89) for positive cases,
0.95 (95% CI: 0.80–1.29) for new admissions to hospitals, and 0.72
(95% CI: 0.59–0.91) for new admissions to ICUs. This indicates that a
10% increase in viral load results in 7.3% (95% CI: 6.2–8.9%), 9.5% (95%
CI: 7.9–13.1%) and 7.1% (95% CI: 5.8–9.0%) increases in cases, new ad-
missions to hospitals and to ICUs (respectively) spread out over a long
time period. Despite the diffuse lag-response association, the model
had a good fit to the data, as illustrated in Fig. S5. The DLNM analyses re-
vealed viral loadmeasurements to be associated with pandemic clinical
indicators and, therefore, could be used to predict the burden on
healthcare services. However, without adopting an averaging term,
the substantial day-to-day variation in viral load in wastewater limits
the practicality of predictions using DLNM, and the alternative afore-
mentioned modelling approach would be anticipated to be a more reli-
able means of estimating COVID-19 pandemic indicators.

4. Conclusions

In the present study, we developed and showed that an optimized
wastewater-based epidemiology measurements for SARS-CoV-2 RNA
load in raw wastewater that accounted for the uncertainty derived
from various sources (population estimation, viral load, feces quantity
per person, quantity of SARS-CoV-2 shed for symptomatic and asymp-
tomatic cases andmeasurement of various SARS-CoV-2 variants present
inwastewater samples) can be used as ameans to estimate the progres-
sion of the CovidID-19 pandemic within a community. We showed that
dailymeasurements ofwastewater samples correlatewellwith the clin-
ical data. This enables real-timemonitoring of COVID-19pandemic indi-
cators, improves prevalence prediction, and thereby facilitates the
decisions by stakeholders, such as health departments and health care
systems. A long period of monitoring SARS-CoV-2 load (and analyzed
its variants) in raw wastewater samples was performed. This was
needed to reveal important epidemiological information about the
9

trends of infection and causes of rapid changes in both environmental
and clinical data. Based on the frequency of the genetic markers ana-
lyzed, the Β.1.1.7/alpha lineage VOC was detected in 96.3% ± 2.2
(mean ± SE) of the total sequencing reads. The prevalence of the
Β.1.1.7 variant in wastewater samples collected in February 2021 sup-
ports the rapid variation and increases in the new COVID-19 cases and
hospitalization cases seen in Attica, at the time. The use of LOQ as a
threshold was found to result in some outliers (measurements with in-
sufficient sensitivity), whereas the use of the coefficient of variation for
log-normally distributed data 35% (CVln) during environmental
surveillance of SARS-CoV-2 seems to be a betterway tomeasure thresh-
old. Novel modelling approaches under epidemiological constraints
were developed to estimate new admissions rates to hospitals and in-
tensive care units from population-based, normalized SARS-CoV-2
RNA loads in wastewater samples. Two modelling workflows were de-
veloped: 1) models that use an averaging term in addition to lag time
to remove variations; 2) models that do not include averaging terms
and are based on probability modelling. Using an averaging term be-
tween 3 and 8 days, the new admissions to hospital and to ICUs can
be accurately estimated from 2 to 8 days ahead with 95% confidence.
Day-to-day variations in SARS-CoV-2 RNA load and clinical data
(e.g., changes in testing frequency throughout the week) introduces
variability into the modelling results. Although their estimation accu-
racy for pandemic indicators may not be comparable to the averaged-
lag regression analysis presented here, the mean error derived from
lag regression analysis remains low. For example, in the present study,
mean errors (%) of 7.72%, 8.29% and 10.8% (mean error divided bymax-
imumnumber of cases observed for each pandemic indicator) were ob-
served for new admissions to hospital, confirmed positive cases and
new admissions to ICUs, respectively. The grid search approach to find
optimum lag times between SARS-CoV-2 RNA load in wastewater sam-
ple and pandemic clinical indicators provided even better results than
the turning point-based method. The two ANN-based models revealed
that both clinical and environmental surveillance data are complemen-
tary and can be used togetherwith other epidemiological indices to bet-
ter understand the status of COVID-19 in the general population.
Especially in the case of new admissions to ICUs, environmental surveil-
lance data appeared to be as important an indicator as community-
based clinical surveillance. The findings of the present study provide
valuable new approaches for predicting SARS-CoV-2 outbreaks and es-
timating the risk of SARS-CoV-2 transmission from symptomatic and
presymptomatic cases. We anticipate the conditional uses of SARS-
CoV-2 RNA load in wastewater (e.g., lag, averaging terms, and filtering
out less meaningful analytical measurements by 35% CVln value) may
advance the development of new approaches under epidemiological
rational constraints.
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