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We formulate and theoretically analyze a mathematical model of COVID-19 transmission mechanism incorporating vital
dynamics of the disease and two key therapeutic measures—vaccination of susceptible individuals and recovery/treatment of
infected individuals. Both the disease-free and endemic equilibrium are globally asymptotically stable when the effective
reproduction number R0ðvÞ is, respectively, less or greater than unity. The derived critical vaccination threshold is dependent
on the vaccine efficacy for disease eradication whenever R0ðvÞ > 1, even if vaccine coverage is high. Pontryagin’s maximum
principle is applied to establish the existence of the optimal control problem and to derive the necessary conditions to
optimally mitigate the spread of the disease. The model is fitted with cumulative daily Senegal data, with a basic reproduction
number R0 = 1:31 at the onset of the epidemic. Simulation results suggest that despite the effectiveness of COVID-19
vaccination and treatment to mitigate the spread of COVID-19, when R0ðvÞ > 1, additional efforts such as nonpharmaceutical
public health interventions should continue to be implemented. Using partial rank correlation coefficients and Latin hypercube
sampling, sensitivity analysis is carried out to determine the relative importance of model parameters to disease transmission.
Results shown graphically could help to inform the process of prioritizing public health intervention measures to be
implemented and which model parameter to focus on in order to mitigate the spread of the disease. The effective contact rate
b, the vaccine efficacy ε, the vaccination rate v, the fraction of exposed individuals who develop symptoms, and, respectively,
the exit rates from the exposed and the asymptomatic classes σ and ϕ are the most impactful parameters.

1. Introduction

The December 2019 outbreak of the novel severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), causing
COVID-19, was first reported in Wuhan, Hubei Province of
China [1–4]. Coronaviruses can be extremely contagious
and spread easily from person to person [5]. The disease,
now a global pandemic, has spread rapidly worldwide, caus-
ing major public health concerns and economic crisis [3, 4,
6], having a massive impact on populations and economies
and thereby placing an extra burden on health systems
around the planet [7–9]. In fact, all social levels of the society

have suffered major disruptions due to the COVID-19 pan-
demic [10].

Starting with the work of Daniel Bernoulli in 1760
[11], the development of mathematical models has been
critical in our understanding of the dynamics of infec-
tious diseases [12]. With the work of Kermack and
McKendrick [13], mathematical models have since been
used to provide framework for understanding the dynam-
ics of infectious diseases. COVID-19 transmission dynam-
ics models are flourishing and abound in the literature
[14–19], to cite a few and the references therein. With
the availability of COVID-19 vaccine and its known high
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efficacy, there is an urgent need to assess the impact of
such vaccines with imperfect transmission-blocking effects
[6] and potentially refine previous mathematical models
of COVID-19 that incorporated the potential impact of
an imperfect vaccine [2, 8, 20]. A recent study by Pear-
son et al. [21] found that COVID-19 vaccination in
low- and middle-income settings is highly cost-effective
and even cost saving, when the vaccine is reasonably
priced and efficacy is high. Prior to pharmaceutical mea-
sures such as treatment and vaccination being available,
nonpharmaceutical intervention measures such as self-
quarantine of confirmed cases, isolation, face masks, hand
washing, social/physical distancing, and the most restric-
tive lockdowns, closure, or limited openings of shops
and schools have been relied upon and continue to be
widely implemented [22–24].

As COVID-19 vaccines are being deployed worldwide,
we formulate and qualitatively analyze a COVID-19 mathe-
matical model, taking into consideration available therapeu-
tic measures, vaccination of susceptible and treatment of
hospitalized/infected individuals. Our proposed model
incorporates some key epidemiological and biological fea-
tures of COVID-19, including demographic parameters
(recruitment/birth and death). Optimal control is carried
out using Pontryagin’s maximum principle as described in
[25] and applied in epidemiological models [26–35]. To
identify the model parameters with greater influence on
the initial disease transmission R0ðvÞ when vaccination and
treatment are implemented [36], a sensitivity analysis is car-
ried out using partial rank correlation coefficients (PRCCs)
and the results are shown graphically. This identification is
crucial to inform policy decision on which parameters to
focus either for data collection or to mitigate the spread of
the disease. To the best of our knowledge, this study pro-
vides the first in-depth mathematical analysis of the qualita-
tive dynamics of COVID-19 with an imperfect vaccine and
treatment.

The rest of the paper is organized as follows. The pro-
posed COVID-19 model is formulated in Section 2 and the-
oretically analyzed in Section 3. By applying Pontryagin’s
maximum principle, optimal control of the model to miti-
gate the spread of COVID-19 is presented in Section 4.
Numerical simulations performed to support theoretical

results are presented in Section 5. The conclusion is pro-
vided in Section 6.

2. Model Formulation and Analysis

Consider a homogeneous mixing within the population, i.e.,
individuals in the population have equal probability of con-
tact with each other. Using a deterministic compartmental
modeling approach to describe the disease transmission
dynamics, at any time t, the total population NðtÞ is subdi-
vided into several epidemiological states depending on indi-
viduals’ health status: susceptible SðtÞ, vaccinated VðtÞ,
exposed EðtÞ, symptomatic infected individuals IðtÞ, infected
asymptomatic AðtÞ, hospitalized HðtÞ, and recovered RðtÞ.
The total human population NðtÞ is given by

N tð Þ = S tð Þ +V tð Þ + E tð Þ + I tð Þ + A tð Þ +H tð Þ + R tð Þ: ð1Þ

Figure 1 depicts the schematic model flow. The descrip-
tion of the model variables and parameters is presented in
Table 1.

Since COVID-19 vaccination is available, it is realistic to
consider a specific vaccinated class V . The transition rates
from susceptible and vaccinated to exposed is given by,
respectively, by the following force of infection βS = bððωA
A + ωII + ωHHÞ/NÞ and βV = ð1 − εÞβS, where b is the effec-
tive contact rate, ωX with X ∈ fA, I,Hg represent the trans-
mission probability after a contact with an individual in
status X, and ε represents the infection reduction of vacci-
nated individuals. The nonlinearity of the force of infection
is one of the key features of dynamic infectious disease
models, because to model a population of individuals, the
status of each individual is required [37]. Individuals are
recruited into the population at a rate Π, with a fraction p
vaccinated and the remaining ð1 − pÞ susceptible. The latter
are vaccinated at a rate v. Because vaccine could be imper-
fect, that is, vaccination providing only partial protection,
we assume that vaccinated individuals can become exposed
to the disease bð1 − εÞ. It has been shown that even a par-
tially efficacious vaccine can offer a fundamental solution
to the SARS-CoV-2 pandemic [20]. The parameter ε repre-
sents the vaccine efficacy (or infection reduction of vacci-
nated individuals).
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Figure 1: Compartment diagram of the human component of the model.
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After close contacts with symptomatic, asymptomatic,
and hospitalized individuals, susceptible become exposed
with the disease. We assume that the rate of disease trans-
mission from asymptomatic to susceptible individuals is less
than that from symptomatic and hospitalized individuals.
While outbreaks usually persist for a shorter period of time,
the COVID-19 pandemic which started in December 2019 is
still ongoing, and for this reason, we incorporate vital
dynamics (recruitment and death). Let σ be the exit rate
from exposed class where a fraction ψ develops infection
while the remaining 1 − ψ becomes asymptomatic. The exit
rate from the asymptomatic class is λ. Asymptomatic indi-
viduals A are diminished by natural death at a rate μ (it is
assumed that death due to the disease in this group of indi-
viduals is negligible), by those developing symptoms and
moving to the asymptomatic class at a rate ð1 − ϕÞ, while a
fraction ϕ may recover naturally from the asymptomatic
infection and move to the recovered class R. Exit from the
infected class is γ, where a fraction ð1 − κÞ are hospitalized,
and a fraction κ recovers naturally. Finally, hospitalized indi-
viduals are treated and recovered at a rate τ. It is assumed
that symptomatic and hospitalized individuals experience
and additional disease-induced death rate δ, respectively.
We also consider that the recovered individuals die at a rate
μ, while a fraction η becomes susceptible again.

From the aforementioned and the model flow diagram of
the disease transmission mechanisms Figure 1, we derive the
following nonlinear system of ordinary differential equations
that captures the transmission dynamics of COVID-19.

From the model flow diagram in Figure 1, we derive the
following system of nonlinear ordinary differential equa-
tions:

_S = 1 − pð ÞΠ + ηR − βS + μ + vð ÞS,
_V = pΠ + vS − βV + μð ÞV ,
_E = βSS + βVV − σ + μð ÞE,
_I = σψE + λ 1 − ϕð ÞA − γ + μ + δð ÞI,
_A = σ 1 − ψð ÞE − λ + μð ÞA,
_H = γ 1 − κð ÞI − τ + μ + δð ÞH,
_R = γκI + λϕA + τH − η + μð ÞR,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð2Þ

with initial conditions

S 0ð Þ ≥ 0,
V 0ð Þ ≥ 0,
E 0ð Þ ≥ 0,
I 0ð Þ ≥ 0,
A 0ð Þ ≥ 0,
H 0ð Þ ≥ 0,
R 0ð Þ ≥ 0,

ð3Þ

Table 1: Model parameter values and source.

Parameter Description Value Reference

Π Recruitment rate of individuals into the population
10000
59 × 365 [26, 38]

p Proportion of recruited individuals who are vaccinated 0.0001 Assumed

v Vaccination rate 0.4 Assumed

ωA Reduction in the transmission from asymptomatic 0.3 [39]

ωI Increase in the transmission from symptomatic 1.8 Assumed

ωH Reduction in the transmission from hospitalized 0.3 Assumed

μ Natural death rate
1

59 × 365 [26, 38]

δ Disease-induced death rate 0.018 [40, 41]

ε Infection reduction of vaccinated individuals 0.8 Assumed

σ Exit rate from the exposed class 0.13 [9]

γ Exit rate from the infectious class 0.0833 [41]

κ Proportion of infectious who recover naturally 0.05 [42]

ψ Fraction of exposed who become infected 0.7 [39]

b Effective contact rate 1.12 [41]

τ Recovery rate of hospitalized individuals 0.0701 [40]

ϕ Proportion of asymptomatic who recover naturally 0.14 [9]

λ Exit rate from the asymptomatic class 0.13978 [39, 41]

η Rate at which individuals lose immunity 0.011 [19]
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where

βS = b
ωAA + ωI I + ωHH

N
,

βV = b 1 − εð ÞωAA + ωII + ωHH
N

:

ð4Þ

For simplicity, let g1 = μ + v, g2 = μ, g3 = σ + μ, g4 = γ
+ μ + δ, g5 = λ + μ, g6 = τ + μ + δ, and g7 = ðη + μÞ. Then,
model system 1 now reads

_S = 1 − pð ÞΠ + ηR − βS + g1ð ÞS,
_V = pΠ + vS − βV + g2ð ÞV ,
_E = βSS + βVV − g3E,
_I = σψE + λ 1 − ϕð ÞA − g4I,
_A = σ 1 − ψð ÞE − g5A,
_H = γ 1 − κð ÞI − g6H,
_R = γκI + λϕA + τH − g7R:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ

All the model parameters and their description, values,
and sources are presented in Table 1.

3. Model Analysis

Well-posedness, nonnegativity, and boundedness of solu-
tions of the proposed model can be shown using basic theory
of dynamical systems as described in [43, 44]; also see [45,
46]. By adding all the equations of the system, we have _N
=Π − μN − δðI +HÞ ≤Π − μN . Therefore, it follows that
the biologically feasible region for model 1 is

D = S, V , E, I, A,H, Rð Þ ∈ℝ7
+ : N ≤

Π

μ

� �
: ð6Þ

3.1. Disease-Free Equilibrium and Basic Reproduction
Number. Model system 1 admits a disease-free equilibrium
(DFE) given by E0 = ðS0, V0, 0, 0, 0, 0, 0Þ, where

S0 = Π 1 − pð Þ
g1

,

V0 = Π pg1 + v 1 − pð Þ½ �
g1g2

:

ð7Þ

The linear stability of E0 is established using the next-
generation method [47, 48]. The rate of appearance of new
infections and the rate of transfer of individuals by all other
means are given by the following at least twice continuously
differentiable functions

F =

b
ωAA + ωI I + ωHH

N
S + b 1 − εð ÞωAA + ωI I + ωHH

N
V

0
0
0

2
6666664

3
7777775
,

V =

−g3E

σψE + λ 1 − ϕð ÞA − g4I

σ 1 − ψð ÞE − g5A

γ 1 − κð ÞI − g6H

2
666664

3
777775:

ð8Þ

From [48], the nonnegative matrix F and the nonsingu-
lar M-matrix V for the new infection terms and the remain-
ing transfer terms are given by

F =

0 bωI S0 + 1 − εð ÞV0� �
N0

bωA S0 + 1 − εð ÞV0� �
N0

bωH S0 + 1 − εð ÞV0� �
N0

0 0 0 0
0 0 0 0
0 0 0 0

2
6666664

3
7777775
,

V =

−g3 0 0 0
σψ −g4 λ 1 − ϕð Þ 0

σ 1 − ψð Þ 0 −g5 0
0 γ 1 − κð Þ 0 −g6

2
666664

3
777775: ð9Þ

Thus, the effective reproduction number is given by

R0 vð Þ = λ 1 − ϕð Þ 1 − ψð Þ + g5ψð Þ g6ωI + γ 1 − κð ÞωHð Þ + g4g6 1 − ψð ÞωA½ � g2 1 − pð Þ + 1 − εð Þ pg1 + 1 − pð Þvð Þ½ �bμσ
g1g2g3g4g5g6

= bμσ G1G2 +G3½ � G4 + 1 − εð Þ p μ + vð Þ + 1 − pð Þvð Þ½ �
μ + vð Þg2g3g4g5g6

,
ð10Þ
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where G1 = ððλð1 − ϕÞð1 − ψÞ + g5ψÞ, G2 = ðg6ωI + γð1 − κÞ
ωHÞ, G3 = g4g6ð1 − ψÞωA, and G4 = g2ð1 − pÞ:

The effective reproduction number R0ðvÞ is defined as
the average number of secondary infections generated by a
single infectious individual during his entire duration infec-
tiousness in a totally susceptible population when vaccina-
tion is implemented.

3.2. Stability of the Disease-Free Equilibrium. We now study
the global stability of the DFE using the approach described
in [49]. Consider a system of ordinary differential equations
of the form

dx
dt

= F x, Ið Þ,
dI
dt

=G x, Ið Þ,G x, 0ð Þ = 0,

8>><
>>: ð11Þ

where x ∈ℝm denotes (its components) the number of unin-
fected individuals and I ∈ℝn denotes (its components) the
number of infected individuals including latent and infec-
tious. Let U0 = ðx∗, 0Þ be the disease-free equilibrium of this
system, where 0 is a zero vector. Global stability of the DFE
is guaranteed when the following conditions (H1) and (H2)
are satisfied.

(H1) For dx/dt = Fðx, 0Þ, 0 is globally asymptotically sta-
ble (g.a.s.).

(H2) Gðx, IÞ = AI − Ĝðx, IÞ, Ĝðx, IÞ ⩾ 0 for ðx, IÞ ∈Ω,
where A =DIGðx∗, 0Þ is an M-matrix (the off diagonal ele-

ments of A are nonnegative) and Ω is the region where the
model makes biological sense.

Corollary 1 (see [49]). The fixed point U0 = ðx∗, 0Þ is a glob-
ally asymptotic stable (g.a.s.) equilibrium of (11) provided
that R0ðvÞ < 1 (l.a.s.) and that assumptions (H1) and (H2)
are satisfied.

Theorem 2 (global asymptotic stability of the DFE). The
DFE E0 of model 1 is globally asymptotically stable if R0ðvÞ
< 1:

Proof. First, we rewrite model 1 in the form 6 by setting x
= ðS, VÞ and I = ðE, I, A,H, RÞ.

Then, the DFE is given by U0 = ðx∗, 0Þ = ðΠð1 − pÞ/g1,
ðΠ½pg1 + vð1 − pÞ�Þ/g1g2, 0Þ and the system dx/dt = Fðx, 0Þ
becomes

_S = 1 − pð ÞΠ − g1S,
_V = pΠ + vS − g2V :

(
ð12Þ

This equation has a unique equilibrium point

x∗ = Π 1 − pð Þ
g1

, Π pg1 + v 1 − pð Þ½ �
g1g2

� �
, ð13Þ

which is globally asymptotically stable. Therefore, the condi-
tion (H1) is satisfied.

We now verify the second condition (H2). For model 1,
we have

G x, Ið Þ =

βSS + βVV − g3E

σψE + λ 1 − ϕð ÞA − g4I

σ 1 − ψð ÞE − g5A

γ 1 − κð ÞI − g6H

γκI + λϕA + τH − g7R

0
BBBBBBBB@

1
CCCCCCCCA
, ð14Þ

DIG x∗, 0ð Þ =

−g3
bωI

N0 S0 +V0 1 − εð Þ� � bωA

N0 S0 + V0 1 − εð Þ� � bωH

N0 S0 +V0 1 − εð Þ� �
0

σψ −g4 λ 1 −Φð Þ 0 0
σ 1 − ψð Þ 0 −g5 0 0

0 γ 1 − κð Þ 0 −g6 0
0 γκ λΦ 0 −g7

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð15Þ
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Clearly, A is an M-matrix. On the other hand,

Ĝ x, Ið Þ = AI −G x, Ið Þ =

βS
S0

N0 − S
� �

+ βv
V0

N0 −V
� �

0
0
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

ð16Þ

which implies that Ĝðx, IÞ ⩾ 0 for all ðx, IÞ ∈Ω. Therefore,
the conditions (H1) and (H2) are satisfied. By Corollary 1,
the global stability of the DFE is obtained. This completes
the proof.☐☐

Global stability of the DFE precludes the model to
exhibit bistability also known as backward bifurcation [50,
51], a situation where both the disease-free and endemic
equilibria coexist when R0ðvÞ < 1.

3.3. The Critical Vaccination Coverage. We investigate the
critical vaccination coverage rate that could help eradicate
the disease. R0ðvÞ≔RE. When there is no vaccination in
the community, that is, v = 0, then the effective reproduction
number reduces to

R0 = R0 0ð Þ = bσ G1G2 +G3½ � G4 + 1 − εð Þpμ½ �
g2g3g4g5g6

: ð17Þ

In fact, R0 is the so-called basic reproduction number
which is the average number of secondary cases arising from
one infectious individual in a totally susceptible population
[47, 52]. After some rearrangement, R0ðvÞ can be written as

R0 vð Þ = μ

μ + v
G4 + 1 − εð Þ pμ + vð Þ

G4 + 1 − εð Þpμ

R0 =
μ

μ + v
μ 1 − pð Þ + 1 − εð Þ pμ + vð Þ

μ 1 − pð Þ + 1 − εð Þpμ

R0 =
1

μ + v
μ 1 − εpð Þ + 1 − εð Þv

1 − εpð Þ

R0 =
R0
μ + v

μ + 1 − εð Þv
1 − εpð Þ

� 	
=R0

μ

μ + vð Þ + 1 − εð Þ
1 − εpð Þ

v
μ + vð Þ

� 	
:

ð18Þ

Thus,

R0 ∞ð Þ≔ lim
v⟶+∞

R0 vð Þ = 1 − εð Þ
1 − εpð ÞR0: ð19Þ

Taking the partial derivative of R0ðvÞ with respect to v
yields

∂R0 vð Þ
∂v

= μ

μ + vð Þ2
ε p − 1ð Þ
1 − εpð Þ

� 	
R0 = −

ε 1 − pð Þ
1 − εpð Þ

μR0
μ + vð Þ2 < 0:

ð20Þ

Therefore, ðð1 − εÞ/ð1 − εpÞÞR0 ⩽ R0ðvÞ ⩽R0, and
hence, R0 < 1 implies R0ðvÞ < 1, but the reverse is not true.
For R0 > 1, it is important to note that

R0 ∞ð Þ < 1⇔ 1 − εð Þ
1 − εpð ÞR0 < 1⇔ ε > ε∗ ≔

R0 − 1
R0 − p

: ð21Þ

This can be interpreted to mean that when the vaccine
efficacy ε is low and R0 is far greater than unity, the disease
may not be eradicated even if the vaccine coverage is high.
Figure 2 can be interpreted as additional efforts will be
needed to reduce R0ðvÞ below unity even when there is a
high vaccine coverage v. In fact, the role of human/social
behavior among those vaccinated (behavior compensation)
such as careless increase in social/physical contacts can
undermine vaccine impact [18, 20]. Thus, cautious phased
relaxation of nonpharmaceutical interventions could sub-
stantially reduce population-level morbidity and mortal-
ity [23].

The next result provides the critical vaccination thresh-
old v∗ for disease eradication.

Lemma 3. Assume that the basic reproduction number R0
> 1. Then, there exists

v∗ = μ 1 − εpð Þ R0 − 1ð Þ
ε − ε∗ð Þ R0 − pð Þ > 0, ð22Þ

such that R0ðv∗Þ = 1. Furthermore, R0ðvÞ > ð<Þ1 when v < ð
>Þv∗.

Figure 3 depicts the vaccine coverage v as a function of
R0, with a 91% vaccine efficacy ðε > ε∗Þ. The green surface
represents the case when the vaccine coverage v exceeds
the critical vaccination threshold v∗.

3.4. Stability of the Endemic Equilibrium. After some alge-
braic manipulations, the endemic equilibrium of model sys-
tem 1 is obtained as

S∗ = 1 − pð ÞΠ + ηR∗

β∗
S + g1

,

V∗ = pΠ + vS∗

1 − εð Þβ∗
S + g2

,

E∗ = β∗
S S∗ + 1 − εð ÞV∗½ �

g3
,

A∗ = σ 1 − ψð ÞE∗

g5
,

I∗ = σψE∗ + λ 1 − ϕð ÞA∗

g4
,

6 Computational and Mathematical Methods in Medicine



H∗ = γ 1 − κð ÞI∗
g6

: ð23Þ

From the last equation of model system 1 and using the
definition of β∗

S , we obtain the following quadratic equation

β∗
S P2β

∗2
S + P1β

∗
S + P0


 �
= 0, ð24Þ

where P1 and P2 are positive constants given in the appendix
and

P0 = g1g2g3g4g5g6 R0 vð Þ − 1ð Þ: ð25Þ

Thus, β∗
S = 0 implies I = 0, which represents the disease-

free equilibrium, and hence, because P1 and P2 are positive,

equation (24) has a unique positive solution if and only if
P0 > 0, which is fulfilled when R0ðvÞ > 1. Therefore, we have
the following result.

Lemma 4. If R0ðvÞ > 1, model system 1 has a unique endemic
equilibrium E∗.

It can also be shown using the theory or permanence as
described in [53] that when R0ðvÞ > 1, the disease class IðtÞ is
uniformly persistent, that is, there exists a positive constant k,
such that

lim inf
t⟶∞

I tð Þ ≥ k: ð26Þ
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Figure 2: Graphical representation of ε∗ðR0Þ.
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Figure 4: Endemic equilibrium regions when R0ðvÞ > 1 in the (ωI , ωA) space.
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Consequently, the model system is uniformly persistent
when R0ðvÞ > 1.

Figure 4 depicts the impact of the reduction in trans-
mission from asymptomatic ωA, and the increase in trans-
mission from symptomatic ωI on the effective
reproduction number R0ðvÞ > 1 is shown in Figure 4. Sim-
ilar graphical representation for different model parame-
ters space can be found in [54]. The white panel in
Figure 4 shows the endemic equilibrium regions in the
(ωI , ωA) space when R0ðvÞ > 1. The solid line corresponds
to R0ðvÞ = 1. To mitigate the spread of the disease, it is
important that the reduction in the transmission from
asymptomatic ωA < 0:36 and the increase in transmission
from symptomatic ωI < 1:16.

4. Optimal Control Problem

We investigate the impact of implementing pharmaceutical
interventions to mitigate the spread of COVID-19. To
accomplish this, we introduce a set of time-dependent con-
trol variables ðu1ðtÞ, u2ðtÞ where

(a) u1ðtÞ represents the implementation of continuous
vaccination

(b) u2ðtÞ represents treatment of infected (often hospi-
talized) individuals

The proposed COVID-19 model with optimal control
ðu1ðtÞ, u2ðtÞÞ consists of the following nonautonomous sys-
tem of nonlinear ordinary differential equations.

_S = 1 − pð ÞΠ + ηR − βS + μ + u1ð ÞS,
_V = pΠ + u1S − βV + μ + uð ÞV ,
_E = βSS + βVV − σ + μð ÞE,
_I = σψE + λ 1 − ϕð ÞA − γ + μ + δð ÞI,
_A = σ 1 − ψð ÞE − λ + μð ÞA,
_H = γ 1 − κð ÞI − u2 + μ + δð ÞH,
_R = γκI + λϕA + u2H − η + μð ÞR:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð27Þ

We wish to find the controls that minimize the total
infected individuals, that is, to find an optimal control for
the two control strategies while reducing their relative costs.
In other words, we want to find the optimal values of ðu1
ðtÞ, u2ðtÞÞ that minimize the objective functional Jðu1, u2Þ
where

J u1, u2ð Þ =
ðT
0
A1E + A2I + A3A + A4H + B1u

2
1 tð Þ + B2u

2
2 tð Þ� �

dt,

ð28Þ

subject to the differential equation (27), where T is the
final time. This objective functional involves the total
exposed, asymptomatic, infected, and hospitalized individ-
uals, along with the cost of applying the controls u1ðtÞ and
u2ðtÞ. We consider a quadratic objective functional for
measuring the control cost as frequently used in the liter-
ature [29–32, 55]. The positive coefficients A1, A2, A3, A4,
B1 and B2 are balancing weight parameters, while the con-
trols ðu1ðtÞ and u2ðtÞÞ are bounded, Lebesgue integrable
functions [31, 32]. We then seek to find optimal controls
u∗1 and u∗2 , such that

J u∗1 , u∗2ð Þ =min
Ω

J u1, u2ð Þ: ð29Þ

To derive the necessary conditions that the two opti-
mal controls and corresponding states must satisfy, we
apply Theorem 5.1 (Pontryagin’s maximum principle
[25]) in Fleming and Rishel [56] to develop the optimal
system for which the necessary conditions that must be
satisfied by an optimal control and its corresponding states
are derived. In fact, Theorem 1 in Agusto [26] which is
based on the boundedness of solution of model system 1
without control variables ensures the existence of the opti-
mal control while the existence of an optimal control with
a given control pair follows from Fleming and Rishel [56]
and Caratheodory’s existence theorem [57]. For discus-
sions on various forms of the objective functional (linear,
quadratic), see [30, 58].

ℍ = A1E + A2I + A3A + A4H + B1u
2
1 + B2u

2
2

+ ξ1 1 − pð ÞΠ + ηR − βS + μ + u1ð ÞS½ �
+ ξ2 pΠ + u1S − βV + μ + uð ÞV½ �
+ ξ3 βSS + βVV − σ + μð ÞE½ �
+ ξ4 σψE + λ 1 − ϕð ÞA − γ + μ + δð ÞI½ �
+ ξ5 σ 1 − ψð ÞE − λ + μð ÞA½ �
+ ξ6 γ 1 − κð ÞI − u2 + μ + δð ÞH½ �
+ ξ7 γκI + λϕA + u2H − η + μð ÞR½ �,

ð30Þ

where ξi, i = 1,⋯, 7 are the adjoint variables or costate
variables. The following result presents the adjoint system
and control characterization.

Theorem 5. Given an optimal control ðu∗1 , u∗2 Þ and corre-
sponding state solutions ðS, V , E, I, A,H, RÞ of the corre-
sponding state system 1, there exists adjoint variables,
ξi, i = 1,⋯, 7, satisfying
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The controls u∗1 and u∗2 satisfy the following optimality

condition:

u∗1 =max 0, min 1, ξ2 − ξ1ð ÞS
2B1

� �� �
,

u∗2 =max 0, min 1, ξ7 − ξ6ð ÞH
2B2

� �� �
,

8>>><
>>>:

ð32Þ

Proof. The differential equations governing the adjoint vari-
ables are obtained by differentiation of the Hamiltonian
function, evaluated at the optimal control. Then, the adjoint
system can be written as

ξ′1 = −
∂ℍ
∂S

,

ξ′2 = −
∂ℍ
∂V

,

ξ′3 = −
∂ℍ
∂E

,

ξ′4 = −
∂ℍ
∂I

,

ξ5′ = −
∂ℍ
∂A

,

ξ′6 = −
∂ℍ
∂H

,

ξ′7 = −
∂ℍ
∂R

,

ð33Þ

with zero final time conditions (transversality) ξiðTÞ = 0.
Replacing the derivatives of ℍ with respect to S, V , E, I, A,
H, R in the above equations, we obtain the optimality condi-
tion (32). The optimal conditions for the Hamiltonian are

given by ∂ℍ/∂u∗1 = ∂ℍ/∂u∗2 = 0 or equivalently ∂ℍ/∂u∗1 = 2

B1u
∗
1 + ðξ2 − ξ1ÞS = 0, ∂ℍ/∂u∗2 = 2B2u

∗
2 + ðξ7 − ξ6ÞH = 0

.From the above equations, we obtain

u∗1 =
ξ1 − ξ2ð ÞS
2B1

,

u∗2 =
ξ6 − ξ7ð ÞH

2B2
:

ð34Þ

Thus, u∗1 and u∗2 satisfy (32).☐☐

5. Numerical Simulations

To illustrate the theoretical results, numerical simulations
are carried out. Model parameter values for the numerical
simulations with their description and source are listed in
Table 1. Whenever parameter values were not available in
the literature, we assumed realistic values for the purpose
of illustration.

5.1. Model Fitting. Following the approach described in [14],
model system 1 is fitted with daily new COVID-19 cases in
Senegal from 29 March to 29 April 2020, which correspond
to the first wave of infections in the country. It is important
to note that while starting with an expanded model helps to
account for the various disease classes explicitly, for the
model fitting, model system 1 is reduced to a simpler version
which retains the key compartments and characteristics of
the complex one by eliminating similar classes [28]. This
reduction involves removing the asymptomatic and hospi-
talized classes, which implies that the reduction in the trans-
mission from hospitalized individuals is equated to zero, that
is, ωH = 0. The main key requirement for the simple model
to approximate the complex one is that the susceptible class
S should contain the same number of individuals in both

ξ′1 = 1 − S
N

� �
βs ξ1 − ξ3ð Þ + V

N
βv ξ3 − ξ2ð Þ + u1 ξ1 − ξ2ð Þ + μξ1,

ξ′2 =
βs

N
S ξ3 − ξ1ð Þ + 1 − V

N

� �
βv ξ3 − ξ2ð Þ + u ξ2 − ξ1ð Þ + μξ2,

ξ′3 =
βs

N
S ξ3 − ξ1ð Þ + βv

N
V ξ3 − ξ2ð Þ + σϕ ξ5 − ξ4ð Þ + σ ξ3 − ξ5ð Þ + μξ3 − A1,

ξ′4 =
S
N

βs − bωIð Þ ξ3 − ξ1ð Þ + V
N

βv − b 1 − εð ÞωIð Þ ξ3 − ξ2ð Þ + γκ ξ6 − ξ7ð Þ + γ ξ4 − ξ6ð Þ + μ + δð Þξ4 − A2,

ξ′5 =
S
N

βs − bωAð Þ ξ3 − ξ1ð ÞV
N

βv − b 1 − εð ÞωAð Þ ξ3 − ξ2ð Þ +Φλ ξ4 − ξ7ð Þ + λ ξ5 − ξ4ð Þ + μξ5 − A3,

ξ′6 =
S
N

bωH − βsð Þ ξ1 − ξ3ð Þ + V
N

b 1 − εð Þ − βvð Þ ξ2 − ξ3ð Þ + u2 ξ6 − ξ7ð Þ + μ + δð Þξ6 − A4,

ξ′7 =
S
N

ξ3 − ξ1ð Þ + V
N
βv ξ3 − ξ2ð Þ + η ξ7 − ξ1ð Þ + μξ7,

ξ′i Tð Þ = 0 for i = 1,⋯7:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð31Þ
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models (when one compares both models compartment
wise). The observed data were fitted in MatLab using the
optimization function createOptimProblem. The estimated
value of the basic reproduction number of the disease in
Senegal during the period under consideration is R0 = 1:31,
a value close to unity, which might explain why the first
wave of COVID-19 infections did not pick up in Senegal.
Figure 5 depicts the daily cumulative number of COVID-
19 cases in Senegal. Red dots represent actual confirmed
cases while the blue curve is the best fitting curve of the
model.

5.2. Long-Term Dynamics of the Disease.We investigated the
impact of vaccination and treatment on mitigating the
spread of COVID-19. An iterative fourth-order Runge-
Kutta method (both forward and backward algorithms) is
employed to compute the optimal controls and state values
used. For more details on this approach, see [29, 32].

The baseline weight parameters A1 = A2 = A3 = A4 = 1,
B1 = 12, B2 = 19 are chosen to illustrate the optimal control
strategies, as well as the following nonnegative initial condi-
tions S = 2500, V = 10, E = 20, I = 70, A = 3,H = 3, R = 1.
These weights do not necessarily have a significant meaning
attached, but are only of theoretical sense to illustrate our
proposed control strategies [31–33, 59]. Using parameter
values in Table 1, the reproduction number R0ðvÞ > 1, indi-
cating that the disease is endemic in the population. The
positive constants A1, A2, A3, and A4 represent, respectively,
the weight that balance off the COVID-19 exposed, infected,
asymptomatic, and hospitalized individuals; B1 and B2 are,
respectively, the weight constant for vaccination and treat-
ment. Because low cost could potentially be associated with
COVID-19 vaccination compared to its treatment (as the
cost associated to u2ðtÞ includes the cost of medical exami-
nation, hospitalization, and medicines), the weight factor
B1 has been made lower than B2, while the two control strat-
egies u1, u2 are all constrained between zero and one, that is,
0 ≤ uiðtÞ ≤ 1, i = 1, 2. For instance, if u1 = 0, it implies no
COVID-19 vaccination, and u1 ≠ 0 implies vaccination cam-
paign measures are being implemented in the community.

Table 1 provides all the model parameter values used for
the simulations.

Figure 6 depicts the time series of model system 1 for the
susceptible, vaccinated, exposed, and infected classes.
Because of the potential limitations of vaccines in some set-
tings, we consider in Figure 7 a saturated Holling type II vac-
cination rate

v≔
v

1 + ξS
, ð35Þ

where ξ represents the limitation of the availability of vac-
cine [60]. We observe that when vaccines are widely avail-
able, the number of susceptible individuals decreases pretty
fast as more and more people are getting the vaccine (the
vaccinated class V increases at the onset of implementation
(Figure 7)).

5.3. Impact of Control Interventions: Vaccination and
Treatment. In the next set of figures generated from model
system 14, optimal control strategies are implemented.
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Figure 5: Model fit with cumulative daily COVID-19 cases in Senegal, 29 March–29 April 2021.
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Figure 6: Profile of S, V , E, and I without saturation.
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Using the model parameter values in Table 1, the basic
reproduction number R0 = 2:21 > 1. For community with
no vaccination program ðv = 0Þ, the basic reproduction
number R0 = 4:67 is almost double compared to the case
when vaccination program is introduced. These values are
in agreement with those estimated in recent COVID-19
modeling studies [61–63]. Figures 8–12 depict the graphical
representations of the simulations of the COVID-19 model
as a function of time without control and with optimal con-
trol. As can be observed on Figures 8–12, implementing con-
trol measures at the optimum level could help to mitigate the
spread of the disease as shown by the significant decrease in
the total number of individuals in the diseased classes and an
increased in the vaccinated class. Figure 13 depicts the pro-
file for the effect of the control functions u1ðtÞ and u2ðtÞ
on the dynamics of the model system. The two control mea-
sures need to be optimally implemented for the first 75 days
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Figure 8: Dynamics of the vaccinated class V .
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Figure 9: Dynamics of the exposed class E.
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and maintained for at least 3 months (close to 100 days). It is
important however to note that while therapeutic measures,
vaccination, and treatment are very effective in curtailing the
spread of the epidemic, more control efforts are required to
eradicate the disease when R0ðvÞ > 1. Thus, continuously
and concurrently applying both pharmaceutical and non-
pharmaceutical public health interventions such as face
mask, hand washing, and social distancing should be
encouraged [64].

5.4. Sensitivity of the Reproduction Number R0ðvÞ. Because
mathematical models are symbolic/mechanistic representa-
tions of complex biological systems, some model parameter
values are not often known with certainty due to natural
and seasonal variations, potential measurement errors [18].
To show how changes in model parameters values affect R0

ðvÞ, we determine the relative importance of model parame-
ters to disease transmission and graphically depict how sen-
sitive the effective reproduction number is to the model
parameters. Early ranking the intervention measures and
other model parameters based on their impact could ideally
partially inform the process of prioritizing public health
intervention measures to be implemented, thereby helping
policy and decision-makers to focus on those key impactful
interventions. Figure 14 indicates that when the vaccine effi-
cacy ε is low and R0ðvÞ is greater than unity, the disease may
not be eradicated even if the vaccine coverage v is high. The
epidemiological implication is that high vaccine efficacy and
vaccination coverage will drastically reduce the number of
secondary infections in the community. This result also
agrees with the conclusion from Figure 2. The graphical rep-
resentation (contour plots) of R0ðvÞ in the parameter space
(v, τ) is similar to Figure 14, and this tends to suggest that
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Figure 12: Dynamics of the hospitalized class H.
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the impact of the vaccine efficacy is similar to the effect of
treatment on the initial disease prevalence.

Partial rank correlation describes the relationship
between two variables while at the same time removing
the effects of several other variables from the relationship
[65, 66]. We perform sensitivity analysis by employing
the partial rank correlation coefficients (PRCCs) and the
Latin hypercube scheme to identify the impact of each
model parameters on the initial disease transmission R0ð
vÞ. PRCCs showing the effect of varying the input parameters
on the effective reproduction number R0ðvÞ are shown in
Figure 15. All parameters with positive PRCCs will result in
an increase on the number of initial disease transmission,
while an increase in parameters with negative PRCCs will
result in a reduction of R0ðvÞ. By exploring Figure 15, the most
influential parameters can be identified. Model parameters
that should be targeted to reduce the spread of the disease
are the effective contact rate b, the infection reduction (vaccine
efficacy) of vaccinated individuals ε, the fraction of exposed
individuals who develop symptoms, and, respectively, the exit
rates from the exposed and the asymptomatic classes σ and ϕ.

Figures 16 depicts the impact of the effective contact
rate b and the vaccine efficacy on the effective reproduc-

tion number R0ðvÞ. As expected, to reduce the value of
R0ðvÞ below unity, the effective contact rate must be very
low, almost irrespective of the vaccine efficacy. That is,
despite the availability of vaccines, care-free mixing should
continue to be monitored to avoid excessive number of
contacts. Similarly, Figure 17 indicates that irrespective of
the treatment rate, effective contact rate should be mini-
mized to mitigate the spread of COVID-19 in the
population.

6. Conclusion

We formulated a deterministic model of the transmission
dynamics of COVID-19 with an imperfect vaccine. The
model is theoretically analyzed; its effective and basic
reproduction numbers are derived. The disease-free equi-
librium is globally asymptotically stable, and the disease
could be eradicated when the reproduction number is
below unity. The critical vaccination threshold is derived,
and it is noted that if the vaccine efficacy is low and the
disease reproduction number is high, the disease may
not be eradicated even if a large proportion of the pop-
ulation is vaccinated. That is, additional efforts will be
needed to reduce R0ðvÞ below unity even if vaccine cov-
erage is high.

We then introduce into model system 1 time-dependent
control variables u1ðtÞ representing vaccination and u2ðtÞ
representing treatment of hospitalized individuals and
applied the Pontryagin maximum principle to determine
the optimal control strategy for mitigating the spread of
the disease. We analytically derived the optimality condi-
tions for disease eradication. The model fits quite well the
observed daily data from Senegal early COVID-19 epidemic.
Numerical simulations of the optimal control of the full
model are carried out using a set of model parameter values.
Numerical simulations indicate that COVID-19 can be con-
trolled in the community with the implementation of vacci-
nation and treatment. While our results suggest that
vaccination and treatment are very effective in mitigating
the spread of COVID-19, more efforts are needed to eradi-
cate the disease. Thus, a combination of or concurrently
applying personal protection/preventive measures (non-
pharmaceutical public health interventions) such as face
masks, hand washing, and social distancing should continue
to be encouraged.

Finally, we performed a sensitivity analysis using the
partial rank correlation coefficient in conjunction with the
Latin hypercube sampling technique, to identify the model
parameters that significantly influence the initial disease
transmission R0ðvÞ. Early identification of model parameters
with greater influence on disease transmission is important
to inform policy decision on which parameters to focus
either for data collection or to mitigate the spread of the
disease.

This study is not exhaustive, and future studies could
investigate the impact of both therapeutic and (adherence
to) nontherapeutic measures on the dynamics of
COVID-19.
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Appendix

A. Expressions P1 and P2

Expressions of the coefficients P1 and P2 of quadratic equa-
tion (24), with ε1 = 1 − ε and p1 = 1 − p.

P1 = bε1g7γκ1lμωHpϕ1ψ1σ + bε1g7γκ1lμωHp1ϕ1ψ1σ

+ bε1g5g7γκ1μωHpψσ + bε1g5g7γκ1μωHp1ψσ

+ δε1g1g7γκ1lpϕ1ψ1σ + bε1g6g7lμωIpϕ1ψ1σ

+ bε1g6g7lμωIp1ϕ1ψ1σ + δε1g7γκ1lp1ϕ1ψ1σv

+ δε1g1g5g7γκ1pψσ + bε1g5g6g7μωIpψσ

+ bε1g5g6g7μωIp1ψσ + bε1g4g6g7μωApψ1σ

+ bε1g4g6g7μωAp1ψ1σ + δε1g1g6g7lpϕ1ψ1σ

+ δg2g7γκ1lp1ϕ1ψ1σ + δε1g5g7γκ1p1ψσv

+ ε1ηg6γκlϕ1ψ1σv + δε1g6g7lp1ϕ1ψ1σv

+ ε1ηγκ1lϕ1ψ1στv + δε1g1g5g6g7pψσ

+ δg2g5g7γκ1p1ψσ + ηg2g6γκlϕ1ψ1σ

+ δg2g6g7lp1ϕ1ψ1σ + ηg2γκ1lϕ1ψ1στ

+ ε1ηg5g6γκψσv + δε1g5g6g7p1ψσv

+ ε1ηg4g6lϕψ1σv + ε1ηg5γκ1ψστv

+ ηg2g5g6γκψσ + δg2g5g6g7p1ψσ

+ ηg2g4g6lϕψ1σ + ηg2g5γκ1ψστ

− ε1g1g3g4g5g6g7 − g2g3g4g5g6g7,

P2 = δε1g7γκ1lpϕ1ψ1σ + δε1g7γκ1lp1ϕ1ψ1σ

+ δε1g5g7γκ1pψσ + δε1g5g7γκ1p1ψσ

+ ε1ηg6γκlϕ1ψ1σ + δε1g6g7lpϕ1ψ1σ

+ δε1g6g7lp1ϕ1ψ1σ + ε1ηγκ1lϕ1ψ1στ

+ ε1ηg5g6γκψσ + δε1g5g6g7pψσ

+ δε1g5g6g7p1ψσ + ε1ηg4g6lϕψ1σ

+ ε1ηg5γκ1ψστ − ε1g3g4g5g6g7:

ðA:1Þ
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