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Abstract
Extreme cold environments are potential reservoirs of microorganisms producing unique and novel enzymes in response to 
environmental stress conditions. Such cold-adapted enzymes prove to be valuable tools in industrial biotechnology to meet 
the increasing demand for efficient biocatalysts. The inherent properties like high catalytic activity at low temperature, high 
specific activity and low activation energy make the cold-adapted enzymes well suited for application in various industries. 
The interest in this group of enzymes is expanding as they are the preferred alternatives to harsh chemical synthesis owing to 
their biodegradable and non-toxic nature. Irrespective of the multitude of applications, the use of cold-adapted enzymes at the 
industrial level is still limited. The current review presents the unique adaptive features and the role of cold-adapted enzymes 
in major industries like food, detergents, molecular biology and bioremediation. The review highlights the significance of 
omics technology i.e., metagenomics, metatranscriptomics and metaproteomics in enzyme bioprospection from extreme 
environments. It further points out the challenges in using cold-adapted enzymes at the industrial level and the innovations 
associated with novel enzyme prospection strategies. Documentations on cold-adapted enzymes and their applications are 
abundant; however, reports on the role of omics tools in exploring cold-adapted enzymes are still scarce. So, the review 
covers the aspect concerning the novel techniques for enzyme discovery from nature.
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Introduction

Temperature is one of the major criteria for an organ-
ism's survival as it affects the cell structure and function. 
The previously assumed lifeless extreme cold ecosystems 
are now known to harbor rich and diverse microbial com-
munities (Anesio et al. 2017). Life in an icy habitat is full 
of challenges; consequently, microorganisms thriving in 
harsh environments have suitably gained efficient survival 

strategies. A key factor for adaptation undoubtedly lies in 
the protein functionality, which is a major driver of metab-
olism and cell cycle. Cold-adapted enzymes (CAEs) are 
considered crucial for a psychrophilic lifestyle as the high 
specific activity of such enzymes compensate for the det-
rimental effects of low temperature. Their significance in 
comprehending the molecular basis of cold adaptation and 
a humongous biotechnological potential have aptly grasped 
the focus of modern researchers on cold-adapted bacteria 
known as psychrophilic/psychrotrophic bacteria (Ghosh 
and Pulicherla 2021). Much interest has developed in the 
isolation and identification of this group of bacteria as they 
are the potent sources of biocatalysts that remain functional 
under low to moderate temperatures. Microbial enzymes 
offer better alternatives to chemical synthesis with respect 
to their biodegradability, non-toxic nature, high selectiv-
ity, and high yields (Bruno et al. 2019). The global enzyme 
market value was estimated to be $9.9 billion in 2019 and 
is estimated to grow at a growth rate of 7.1% in the year 
2020–2027 (GrandViewResearch 2020). Furthermore, it is 
projected that enzymatic reactions can replace up to 40% of 
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the industrial chemical reactions that utilize toxic solvents 
(Bruno et al. 2019). In the quest of meeting the growing 
demands for novel biocatalysts with unique and special prop-
erties, many extreme environments are being explored for 
microorganisms as efficient sources. Amid the extremophilic 
microbial groups, psychrophilic microbes are major sought-
after sources for industrial applications (Al-Ghanayem and 
Joseph 2020). Psychrophiles have successfully colonized 
extremely low-temperature environments, frequently expe-
riencing temperatures close to or below 0 °C, extending from 
the Arctic and Antarctic, polar and Himalayan glaciers, sea 
ice, cold deserts, permafrosts to the deep sea and ocean bot-
toms (Bhatia et al. 2021). The unprecedented applications of 
cold-adapted enzymes in several industries provide a huge 
potential for the enzyme market in the near future.

Recent reports on cold-adapted enzymes have described 
their targeted applications in particular industries. The 
review article by Al-Ghanayem and Joseph (2020) summa-
rised and emphasized the role of cold-active enzymes in the 
detergent industry, where they have outlined the different 
enzymes used as detergent additives. Further, they have dis-
cussed the methods used for their commercial development 
and the associated scope and challenges in eco-friendly and 
sustainable product development. The other article focused 
on the applications of cold-active enzymes in food process-
ing and molecular biology and briefly described the struc-
tural features of these enzymes (Mangiagalli et al. 2020). 
Another recent review discussed the different psychrophilic 
microorganisms as a source of cold-adapted enzymes, their 
mechanisms of adaptation in a cold environment, and their 
application in different industries (Bhatia et al. 2021). In 
addition to the existing literature, the current review article 
highlights the role of different omics techniques in novel 
enzyme discovery. Comparison of the activity and kinetic 
parameters among mesophilic and psychrophilic enzymes 
to understand the advantages and disadvantages of the use 
of cold-adapted enzymes as industrial biocatalysts have also 
been outlined.

Overall, the current article thoroughly reviewed the 
recently reported cold-adapted enzymes, focusing on their 
chief adaptive features in response to cold and their applica-
tions in diverse industries. Additionally, the limitations in 
using cold-adapted enzymes at an industrial scale and future 
directions are discussed to fuel the ongoing psychrophilic 
enzyme research.

Adaptive features of cold‑adapted enzymes

The surrounding temperature has a direct effect on the activ-
ity of an enzyme. The concept of the inherent flexibility 
in CAEs and high specific activity at lowered temperatures 
has long been introduced. Multiple techniques have been 

employed to assess the structural flexibility of psychrophilic 
enzymes, including molecular dynamics simulations (MDS), 
neutron scattering, EPR spectroscopy, X-ray crystallogra-
phy, time-resolved fluorescence, and fluorescence quench-
ing (Margesin 2017). These studies have specified that the 
increased flexibility of catalytic regions results in higher 
catalytic efficiency and lower thermostability. Current inves-
tigations further add to the elucidation of CAE functioning 
at low temperatures. For instance, recent computational data 
obtained from MDS and other experimental data suggest 
that the flexibility of the psychrophilic enzymes exists at the 
periphery rather than the active site of the enzyme (Arcus 
et al. 2020). The flexibility is mainly enhanced by the weak-
ening of intramolecular bonds involved in protein folding 
and stabilizing the nascent polypeptide chain (Margesin 
2017). Furthermore, it has been observed that the reduction 
in the number of hydrophobic and electrostatic interactions, 
hydrogen bonds, and disulfide bridges favour the flexibility 
in a cold-adapted enzyme (Al-Ghanayem and Joseph 2020; 
Mandelman et al. 2019). Besides, modifications in amino 
acid composition, including lowered arginine/lysine ratio, 
increased glycine residues, fewer proline residues in the 
loops, more alpha-helices, and more non-polar residues on 
the protein surface, contribute to the conformational flex-
ibility (Al-Ghanayem and Joseph 2020). It is suggested that 
the formation of salt bridges among amino acids that leads to 
weak electrostatic interactions also contributes significantly 
to cold adaptation (Muñoz et al. 2017). Moreover, the preva-
lence of H-bonds is also responsible for maintaining protein 
stability (Casillo et al. 2017).

Additionally, the cold adaptation of proteins is favoured 
by a higher number of large loops with lesser secondary 
structures causing higher entropy (Al-Ghanayem and Joseph 
2020). A comparative study of mesophilic and psychrophilic 
pectate lyase has suggested a similar mechanism of higher 
flexibility and some loop regions helping cold adaptation 
and thermal instability (Tang et al. 2019). At low-tempera-
ture conditions, a reduced proline content in cold-adapted 
proteins is accompanied by an increase in the number of 
prolyl isomerases crucial for the most rate-limiting step of 
protein folding, i.e., prolyl isomerization (Feller 2018). A 
recent study on DNA ligase derived from a psychrophilic 
Aliivibrio salmonicida, based on sequence comparison 
and homology modeling, showed greater hydrophobicity 
on the surface than its mesophilic homologs and indicated 
surface charge modifications, not flexibility, as the basis of 
cold adaptation (Berg et al. 2019). Crystal structure of a 
cold-adapted protease from a psychrophilic bacterium Pseu-
doalteromonas arctica PAMC 21717 indicated a wide sub-
strate pocket size, a conserved subtilisin-like fold with a dis-
tinct amino acid triad (asp, his, and ser) in the catalytic site 
might account for the cold adaptation of the protein (Park 
et al. 2018). Similarly, MDS-based study of cold-adapted 
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elastase revealed the presence of amino acids valine and 
isoleucine in the catalytic site accounting for the cold adap-
tation (Sočan et al. 2018). In a case study of β-galactosidase 
from the Antarctic archaeon Halorubrum lacusprofundi, the 
X-ray crystallography and MDS studies showed the mutation 
of just six amino acid residues could be responsible for cold 
adaptation (Karan et al. 2020). Another report on psychro-
philic β-glucosidase from Exiguobacterium antarcticum B7 
indicated oligomerization of the enzyme as a structural basis 
of cold adaptation, as concluded from the X-ray crystallogra-
phy, in solution and molecular dynamics simulation studies 
(Zanphorlin et al. 2016). One unique strategy was observed 
in a bacterial acyl aminoacyl peptidase, whereby the tunnel 
joining the active site and outer protein surface was found 
to be widened. This possibly allowed easier substrate acces-
sibility, enhancing the activity in cold (Brocca et al. 2016). 
Likewise, a dimerization of enzyme by domain swapping 
mechanism was reported to be responsible for the activity 
and stability of a cold-active acyl aminoacyl peptidase (Man-
giagalli et al. 2021). Hence, cold-adapted enzymes confer a 
strategy to psychrophilic/psychrotrophic microorganisms to 
successfully colonize the cold habitats. A summary of the 
adaptive features embodied by the cold-adapted enzymes is 
shown in Fig. 1.

Applications of cold‑adapted enzymes

The ultimate goal of biotechnology is the delivery and usage 
of developed processes or technology in different industries. 
CAEs are well suited for various industries due to their natu-
ral properties like high catalytic activity at low temperatures, 
cost efficiency, limited undesirable product formation, and 
many more (Bruno et al. 2019). Primarily, they require lesser 
energy for activity as compared to their mesophilic and ther-
mophilic counterparts. This property makes them well suited 
in current biotechnology industries where the prime goal is 
reducing the energy needs of a process. The applications of 
cold-adapted enzymes in various industries are discussed 
below and given briefly in Table 1. A brief overview of the 
application of cold-adapted enzymes in various industries is 
also shown in Fig. 2.

Food industry

Product formation in food industries is generally carried out 
at low temperatures as there are possibilities of food spoilage 
by microbial action at higher temperatures. High-temper-
ature treatments often lead to the alteration of nutritional 
value and the development of undesirable taste of the prod-
uct. In this aspect, CAEs are valuable assets in food indus-
tries due to their unique properties. The functionality of 
these enzymes at low temperatures is favorable to minimize 

food spoilage. Moreover, CAEs are thermolabile and can be 
inactivated by a mild increase in temperature, which is fur-
ther desirable in the food industry, where enzyme deactiva-
tion is needed after a specified time (Joseph et al. 2018). The 
application of different enzyme classes in the food industry 
is discussed below.

α‑Amylase

Amylase helps in the degradation of complex sugars into 
simpler monomers and is applied in the food industry to 
make beverages, bread and various dairy products (Joseph 
et al. 2018). Cold adapted amylases are considered advan-
tageous as they can be inactivated by a mild increase in 
temperature, making the process simpler (Mangiagalli 
et al. 2020). Recently, an amylase enzyme isolated from 
a cold-adapted Antarctic bacterium was found to be opti-
mally active at 20 ℃ and suggested to be valuable for food 

Fig. 1   Some major structural adaptive features for the increased flex-
ibility of cold-adapted enzymes
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Table 1   Applications of cold-adapted enzymes in various industries

Industry Cold-adaptive enzyme Application References

Food α-Amylase Beverages, bread, and various dairy 
products

Arabacı and Arıkan (2018), Sanchez et al. 
(2019), Rathour et al. (2020), Ottoni et al. 
(2020)

β-Galactosidase Production of lactose-free milk products, 
increasing sweetness of milk products

Liu et al. (2021), Mulualem et al. (2021)

Pectinase Clarification of fruit juice, natural oils 
extraction, wine, coffee, and tea making

Cavello et al. (2017), Carrasco et al. (2019), 
Tang et al. (2019), Merín and Morata de 
Ambrosini (2020)

Protease Food processing (tenderizing meat at 
low temperatures), bioactive peptides 
generation

Mageswari et al. (2017), Mukhia et al. 
(2021a, b), Nascimento et al. (2021)

Xylanase Bread and baking industry to help in 
increasing softness of the bread

Qiu et al. (2017), Han et al. (2018), Liu et al. 
(2019), Li et al. (2020), He et al. (2020), 
Zang et al. (2020)

Lipase Improving flavours of various food prod-
ucts

De Souza et al. (2017), Musa et al. (2018), 
Cong et al. (2019)

Detergent and fabric Lipase Washing of fabrics at lower temperature Kumar et al. (2020), Sahoo et al. (2020), 
Phukon et al. (2020)

Amylase Arabacı and Arıkan (2018), Sanchez et al. 
(2019), Ottoni et al. (2020)

Protease Furhan et al. (2019), Salwan et al. (2020)
Molecular biology Alkaline phosphatase Dephosphorylation of the 5′ end of 

linearized DNA fragments at reduced 
temperature

Rina et al. (2000), Nandanwar et al. (2020)

Nucleases Degradation of DNA or RNA to remove 
contaminating nucleic acids

Maciejewska et al. (2019), Wang et al. 
(2019)

DNA ligase Joining of two DNA segments Berg et al. (2019)
Bioremediation Laccase Degradation of phenolics compounds, 

aromatic amines, and other organic com-
pounds at colder regions

Yang et al. (2018), Sahay et al. (2020)

Lipase Bioremediation of wastewater contami-
nated with oils in cold regions

Fan et al. (2017), Das and Chakrabarti 
(2018), Miri et al. (2019), Bhandari et al. 
(2021)

Xylene monooxygenase, Cat-
echol 2,3-dioxygenase

Bioremediation of xylene contaminated 
environments at low temperature

Miri et al. (2021)

Mics Endo-β-1,4-glucanase Biofuel production from seaweeds, cel-
lulosic bio-ethanol production at low 
temperature

Song et al. (2017), Chen et al. (2020)

Cellulase Cellulose processing industry requiring 
low temperature, saccharification of 
switchgrass and coffee grounds

Li et al. (2019), Ma et al. (2020), Sun et al. 
(2020)

β-Glucosidase Hydrolysis of cellobiose to ethanol Wu et al. (2018), Yin et al. (2020)
Lipase Biodiesel production at low temperature Karakaş and Arslanoğlu (2020)
Mannanase Hydrolysis of mannobiose from the non-

reducing end
Xie et al. (2020)

Superoxide dismutase Antioxidative and antiapoptosis Wang et al. (2017), Ruan et al. (2020)
Cephalosporin C acylase Low-temperature biosynthesis of 7-amino-

cephalosporanic acid
Tang et al. (2018)

N-Acetylneuraminate lyase Synthesis of sialic acids Gurung et al. (2019)
S-Formylglutathione hydrolase Synthesis of glutathione and formate Lee et al. (2019)
Transaminase Development of stereoselective amination 

at low temperatures
Bezsudnova et al. (2020)
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industries (Ottoni et al. 2020). Similarly, cold-adapted 
amylases isolated from psychrophilic/psychrotrophic 
microbes having potential application in the food industry 
have been reported from time to time (Arabacı and Arıkan 
2018; Sanchez et al. 2019; Rathour et al. 2020).

β‑Galactosidase

Galactosidases hydrolyze lactose into sugar monomers, 
i.e., glucose and galactose, reducing the lactose content 
in milk products. This is essential for the alleviation of 
lactose intolerance and the production of more sweetened 
milk products (Mangiagalli et al. 2020). The hydrolysis 
of milk to get lactose-free products is generally carried 
out at lower temperatures to avoid raw milk spoilage at 
a higher temperature (Czyzewska and Trusek 2021). The 
use of cold-adapted β-galactosidases for milk hydrolysis at 
refrigerated temperatures to get lactose-free milk products 
could benefit the industry (Horner et al. 2011). Recently 
a cold-adapted phospho-β-galactosidase enzyme cloned 
from Bacillus velezensis in E. coli BL21(DE3) was capa-
ble of hydrolyzing the milk lactose at 4 ℃ that could be 
beneficial in the food industry (Liu et al. 2021). Similarly, 
in another study, the β-galactosidase gene cloned from the 
metagenomic library was active in a temperature range of 
0–40 ℃ and had trans-glycosylation activity, which helps 
in the production of galacto-oligosaccharides from lactose 
(Mulualem et al. 2021). A detailed study on the applica-
tion of cold-adapted β-galactosidases in the food industry 
has been discussed in a previous review (Mangiagalli and 
Lotti 2021).

Pectinase

Pectinase enzyme hydrolyzes pectin, thereby helping in the 
reduction of viscosity and clarification of a fruit juice. Pec-
tinases are also employed in the food industry in natural 
oil extraction and purification, as well as in wine, coffee 
and tea making (Mangiagalli et al. 2020). The activity of 
cold-adapted pectinases at lower temperatures is beneficial 
in the food industry as they prevent the contamination of 
products at a reduced temperature which further helps in the 
preservation of volatile aromatic compounds in the products. 
In winemaking, cold-adapted pectinases are found advanta-
geous as they help in the clarification of juices at a lower 
temperature, thereby improving the release of aroma and 
polyphenols from the raw product (Mangiagalli et al. 2020). 
Recently, several cold-adapted pectinases are employed for 
fruit juice clarification (Cavello et al. 2017; Carrasco et al. 
2019; Tang et al. 2019). In another study, a cold-adapted 
pectinase-producing microorganism was employed for red 
winemaking, and the produced wine was found to possess 
better chromatic properties (Merín and Morata de Ambrosini 
2020).

Protease

In the food industry, cold-adapted proteases have a wide 
range of applications. This class of cold-adapted enzymes 
helps in the transformation of heat-labile products at a lower 
temperature and maintains the flavour and nutritional values 
of the products by lowering the possibilities of food spoil-
age (Hamid and Mohiddin 2018). Cold-adapted protease 
is also used in meat tenderization at a lower temperature 

Fig. 2   A summary of the 
applications of cold-adapted 
enzymes in various industries
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(Mageswari et al. 2017). Besides, it is employed in bioactive 
peptide generation from various food sources (Mukhia et al. 
2021b; Nascimento et al. 2021).

Xylanase

This enzyme helps in the degradation of hemicellulose pre-
sent in all flours to get simple soluble sugars. This makes 
the dough fluffy, voluminous and also increases its softness 
and elasticity (Joseph et al. 2018). This process is carried 
out before baking and performed at a lower temperature 
(Hamid and Mohiddin 2018), whereby cold-adapted xyla-
nases have been used in the process (Dornez et al. 2011). 
Recently, many cold-adapted xylanases were isolated from 
diverse microorganisms and explored for their application in 
the food industry (Qiu et al. 2017; Han et al. 2018; Liu et al. 
2019; He et al. 2020; Zang et al. 2020).

Lipase

Lipases are used in the food industry to improve the flavours 
of various food products. The lipase action commonly syn-
thesizes various flavouring esters like ethyl caproate, ethyl 
lactate, and butyl butyrate. Due to the inherent properties of 
cold-adapted lipases, such as faster reaction time, increased 
flexibility and stability, low activation energy, they are use-
ful in preparing food products (Mhetras et al. 2021). Cold-
adapted lipases have been used for the synthesis of ethyl 
hexanoate (Musa et al. 2018), methyl and ethyl butyrate (De 
Souza et al. 2017), ethyl lactate, butyl butyrate, and ethyl 
caprylate (Cong et al. 2019), which act as flavouring agents 
in the food industry.

Besides, a cold-adapted 1,4-α-glucan branching enzyme 
isolated from a probiotic strain Bifidobacterium longum was 
used to convert amylopectin/amylose to linear malto-oligo-
saccharides, which can aid in enhancing the slow digest-
ibility of wheat starch (Li et al. 2020). The enzyme also has 
a potential application in the production of low-glycaemic 
index soft cereal foods.

Detergent and fabric industry

The dirt in the clothes mainly consists of lipids, polysac-
charides, and proteins. The removal of these stains from 
the fabrics requires manual heating and beating of the 
cloths. This, in turn, reduces the life of the fabrics and also 
leads to decolorization. Additionally, removing the dirt 
from the cloths in colder environments requires hot water, 
increasing energy consumption. To address these prob-
lems, enzymes are used in the detergents to improve the 
washing performance. Generally, the washing process is 
done at harsh conditions like alkaline pH and low tempera-
ture, so cold-adapted alkaline enzymes are beneficial in 

detergent formulations (Al-Ghanayem and Joseph 2020). 
In the detergent industry, commonly used cold-adapted 
enzymes are lipases, proteases, and amylases. Cold-
adapted lipases isolated from different microorganisms 
have been explored for their detergent compatibility and 
suggested for detergent formulations (Kumar et al. 2020; 
Sahoo et al. 2020; Phukon et al. 2020). Amylases help in 
the removal of polysaccharides containing stains from the 
fabrics. Recently cold-adapted amylases isolated from dif-
ferent sources have been suggested for use as a detergent 
additive (Arabacı and Arıkan 2018; Sanchez et al. 2019; 
Rathour et al. 2020; Ottoni et al. 2020). Likewise, the pro-
tein stains present in the fabrics are removed by proteases, 
and cold-adapted proteases have been demonstrated as 
potential detergent additives (Furhan et al. 2019; Salwan 
et al. 2020). A detailed study on cold-adapted enzymes as 
detergent additives has been reviewed recently (Al-Gha-
nayem and Joseph 2020).

Molecular biology

Enzymes are the fundamental tools in several molecular 
biology applications. In general, mesophilic or sometimes 
thermophilic enzymes are used in molecular biology. CAEs 
are less explored for their use in molecular biology. How-
ever, CAEs could benefit certain techniques where thermo-
lability is needed to denature the used enzyme after a speci-
fied time. Moreover, CAEs in molecular biology could be 
beneficial where the reaction proceeds at a lower tempera-
ture. Various CAEs which have applications in this field are 
mentioned below.

Alkaline phosphatase

The enzyme helps catalyse the dephosphorylation of the 5′ 
end of linearized DNA fragments, thereby preventing the 
dsDNA self-ligation of plasmid vectors (Zappa et al. 2001). 
Generally, commercially available mesophilic alkaline phos-
phatase isolated from the calf intestine is used for this pur-
pose (Sambrook et al. 1989). However, the used enzyme 
has some drawbacks as it requires some time in inactiva-
tion owing to its thermostability (Nandanwar et al. 2020). 
In this regard, the use of cold-adapted alkaline phosphatase 
could be beneficial. Cold-adapted alkaline phosphatases 
from psychrophilic organisms Pandalus borealis and Alte-
romonas undina P2 are available commercially (Nandanwar 
et al. 2020). Moreover, in another study, a cold-adapted and 
heat‐labile alkaline phosphatase isolated from an Antarctic 
strain was suggested for its application in dephosphorylation 
of nucleic acids that could be a valuable asset in molecular 
biology (Lee et al. 2015).
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Nucleases

Nucleases aid in DNA or RNA degradation and help remove 
contaminating nucleic acids from the reaction mixture. After 
their action, the used nucleases have to be removed from 
the reaction mixture, and this is generally done by degrad-
ing the enzyme mixture through an increase in the reac-
tion temperature. Here, the use of cold-adapted nucleases 
would be beneficial as they can be easily degraded and inac-
tivated by minor heat treatments. Cold-adapted nucleases 
isolated from psychrophilic microbes Shewanella sp. and 
Pandalus borealis are available commercially (Nandanwar 
et al. 2020). Similarly, cold-adapted nuclease isolated from 
a psychrophilic Psychromonas ingrahamii can be explored 
for its application in molecular biology (Maciejewska et al. 
2019). In another study, a cold-adapted RNase enzyme was 
isolated from the Antarctic sea ice-inhabiting bacterium Psy-
chrobacter that could be further studied for its application in 
molecular biology (Wang et al. 2019).

DNA ligase

The enzyme helps in forming phosphodiester bonds between 
two DNA fragments leading to the joining of those two DNA 
segments. The most commonly used ligase for the said pur-
pose is isolated from bacteriophages. Frequently the opti-
mum temperature for the action of DNA ligases in molecular 
biology is low, so the use of cold-adapted ligases would 
be beneficial (Nandanwar et al. 2020). Recently three cold-
adapted DNA ligases isolated from psychrophilic organisms 
were characterized for their temperature optima and thermal 
stabilities and can be explored further for their application 
in molecular biology (Berg et al. 2019).

Bioremediation

There is a continuous increase in environmental pollution 
because of human activities. To remove the pollution from 
the environment, bioremediation of the pollutants is nec-
essary where pollution from the environment is removed 
by the action of organisms or their products like enzymes 
(Okino-Delgado et al. 2019). Microbial enzymes efficiently 
remove pollutants from the environment and are consid-
ered inexpensive in bioremediation (Bhandari et al. 2021). 
However, bioremediation in a cold environment by meso-
philic/thermophilic enzymes is ineffective because of the 
low activity of mesophilic/thermophilic enzymes in these 
regions (Miri et al. 2019). In this regard, CAEs, due to their 
inherent property, are valuable tools for bioremediation. 
Some CAEs valuable in bioremediations are mentioned 
below:

Laccase

This class of enzyme catalyses the oxidation of various 
phenolic compounds, aromatic amines, and other organic 
compounds (Bhandari et al. 2021). They help in the deg-
radation of various xenobiotic compounds and further aid 
in the bioremediation of polluted water. In a study, the lac-
case enzyme isolated from Aspergillus nidulans was active 
in a temperature range of 10–80 °C and helped decolorize 
various dyes and be useful for environmental bioremediation 
(Sahay et al. 2020). A cold-adapted laccase enzyme cloned 
from a metagenomic library showed potential in the biore-
mediation of dyes and prove beneficial in polluted water 
bioremediation (Yang et al. 2018).

Lipase

Lipases catalyse the degradation of oils and help in the 
bioremediation of soil or water contaminated with oil resi-
dues and petroleum contaminants (Bhandari et al. 2021). 
Cold-adapted lipases are useful in the bioremediation of 
wastewater contaminated with oils in cold regions. Cold-
adapted lipases are regularly explored for their application in 
the bioremediation of oil-contaminated environments (Fan 
et al. 2017; Das and Chakrabarti 2018; Miri et al. 2019).

Other enzymes

Cold-adapted amylases isolated from different microbes 
are explored for the bioremediation of agricultural and 
household waste (Arabacı and Arıkan 2018; Ottoni et al. 
2020). In a study, cold-adapted endoxylanase was reported 
for its potential bioremediation application (He et al. 2020). 
Another study explored the use of cold-adapted xylene 
monooxygenase and catechol 2,3-dioxygenase to degrade 
p-xylene and could be employed for bioremediation of 
xylene contaminated environments at low temperatures 
(Miri et al. 2021).

Additional applications

CAEs have applications in other biotechnological industries 
besides mentioned above. One important biotechnological 
application of CAEs lies in the formation of biofuels. As 
we know, due to the continuous consumption of petroleum 
fuels and their limited existence, there is a need to look for 
an alternative energy source. Biofuels such as ethanol are 
considered an alternative to petroleum fuels, and they can 
be generated by the enzymatic hydrolysis of cellulose or 
related biomass. The generation of biofuels at colder regions 
by CAE treatment of biomass is beneficial as they are more 
active at such regions than their mesophilic counterparts. 
Additionally, the generation of cellulosic bio-ethanol or 
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related biofuels requires low-temperature degradation of 
the biomass, so the use of CAEs is beneficial in this aspect 
(Chen et al. 2020). Recently, many CAEs isolated from dif-
ferent organisms were explored for biofuel generation, which 
can be considered for industrial-scale production (Song 
et al. 2017; Wu et al. 2018; Li et al. 2019; Chen et al. 2020; 
Karakaş and Arslanoğlu 2020; Ma et al. 2020; Sun et al. 
2020; Xie et al. 2020; Yin et al. 2020).

CAEs also have potential applications in the synthesis of 
various pharmaceutical compounds. The synthesis of phar-
maceutical compounds requires extreme reaction conditions 
like low temperature and solvent stability, so CAEs, due 
to their inherent property, are advantageous in this aspect 
(Noby et al. 2020). In recent times, CAEs are being stud-
ied for their application in the synthesis of various pharma-
ceutical compounds and further large-scale production of 
such compounds (Wang et al. 2017; Noby et al. 2018; Tang 
et al. 2018; Gurung et al. 2019; Lee et al. 2019; Bezsud-
nova et al. 2020; Ruan et al. 2020; Mhetras et al. 2021). A 
cold-adapted epoxide hydrolase gene, isolated from Sphin-
gophyxis alaskensis, was cloned in E. coli, and the purified 
enzyme showed activity at 10 ℃ (Woo et al. 2007). The 
purified enzyme could be beneficial in preparing enantiopure 
epoxides, which are used in the pharmaceutical industry.

The other major classes of cold-adaptive enzymes used in 
the industries include oxidoreductases and lyases. Oxidore-
ductases are the class of enzymes that helps in the transfer 
of electrons between molecules. Numerous cold-adapted 
oxidoreductases have been isolated and purified from psy-
chrophiles as psychrotrophic organisms having application 
in various industries. Cold-adapted alanine dehydrogenases 
are oxidoreductases that help generate optically active 
amino acids at cold temperature and have been isolated 
from microbes inhabiting cold temperature regions (Galkin 
et al. 1999; Irwin et al. 2001, 2003). Leucine dehydrogenase 
enzyme is used to synthesize l-tert-leucine, an intermedi-
ate in synthesizing several chiral drugs (Jiang et al. 2016). 
Several cold-adapted leucine dehydrogenases capable of 
functioning at low temperatures have been purified and used 
to synthesize chiral drugs (Zhao et al. 2012; Li et al. 2014; 
Wang et al. 2018). Superoxide dismutase is another sub-
class of oxidoreductase which has an antioxidative property 
that helps in reducing the oxidative damage of cells (Ruan 
et al. 2020). Several cold-adapted superoxide dismutase 
enzymes have been explored from the psychrophiles and 
used to prepare food, cosmetics, and healthcare products 
(Zheng et al. 2006; Castellano et al. 2006; García Echauri 
et al. 2009; Abrashev et al. 2016; Wang et al. 2016, 2017, 
2020).

Lyases are the enzyme class that includes enzymes 
involved in the breakage of chemical bonds in molecules 
through a process other than hydrolysis and oxidation. Car-
bonic anhydrase is one such lyase involved in the catalysing 

of CO2 hydration to form bicarbonates (Vullo et al. 2015). 
Numerous carbonic anhydrase enzymes have been isolated 
from cold-inhabiting microbes with potential application in 
the synthesis of pharmacological agents or as agents for reg-
ulating acid–base homeostasis (Vullo et al. 2015; De Luca 
et al. 2015, 2016a, b). Besides carbonic anhydrase, another 
sub-class of lyase known as pectate lyase has been isolated 
from psychrophilic/psychrotrophic microbes with potential 
application in textile industry (Laurent et al. 2001; Margesin 
et al. 2005; Yuan et al. 2012; Mukhopadhyay et al. 2015; 
Tang et al. 2019).

Comparison of cold‑adapted enzymes 
with mesophilic enzymes

Cold-adapted enzymes have huge market potential in bio-
technology industries because of their inherent properties, 
making them a better catalyst at low temperatures. Cold-
adapted enzymes have catalytic advantages at low tem-
peratures, and compared to their mesophilic counterparts, 
they can perform well in extreme conditions. Therefore, 
the cold-adapted enzymes have been studied for their spe-
cific activity and kinetic parameters compared to their 
commercial and non-commercial mesophilic counterparts. 
In one such study, the activity and kinetic parameters of a 
cold-adapted β-galactosidase enzyme isolated from Ant-
arctic psychrophile Pseudoalteromonas haloplanktis were 
compared to mesophilic commercial β-galactosidase iso-
lated from E. coli (Hoyoux et al. 2001). The study showed 
that the optimal temperature of activity for cold-adapted 
β-galactosidase was 10 ℃ lower than its mesophilic coun-
terparts. Additionally, the P. haloplanktis enzyme showed 
better kcat, Km, and (kcat/Km) values than its mesophilic 
counterpart at lower temperatures. These kinetic param-
eters showed that the cold-adapted β-galactosidase is bet-
ter suited to work in colder temperatures compared to 
its mesophilic enzyme counterpart. In another study, the 
activity of a cold-adapted β-galactosidase enzyme iso-
lated from Antarctic Rahnella inusitata was compared to 
the commercial mesophilic enzyme of Aspergillus oryzae, 
and it was found that the cold-adapted enzyme retained 
higher relative activity at lower temperatures than the 
commercial enzyme (Núñez-Montero et al. 2021). In a 
similar study, the specific activity and kinetic parameters 
of cold-active protease isolated from psychrophilic bac-
terium were compared with the commercially available 
mesophilic subtilisin Carlsberg from Bacillus licheni-
formis (Sigma-Aldrich) (Park et al. 2018). The results 
showed that the cold-active protease showed a specific 
activity of 160.8 U/mg at 10 ℃ while the commercial pro-
tease showed an activity of 22.6 U/mg at the same tem-
perature. Additionally, the cold-active protease showed 



3 Biotech (2021) 11:426	

1 3

Page 9 of 18  426

better Kcat, Km, and Vmax values than the commercial 
enzyme. In another report, the influence of temperature 
on the activity of cold-adapted aspartate transcarbamylase 
enzyme isolated from psychrophilic bacterial strain TAD1 
was compared with its mesophilic counterpart isolated 
from the mesophilic E. coli (Sun et al. 1998). The results 
showed that the activity of the cold-adapted enzyme was 
maximum in the temperature range of 0–30 ℃, while 
the activity of its mesophilic counterpart was maximum 
above 35 ℃; moreover, the substrate specificity of the 
cold-adapted enzyme was higher than that of the meso-
philic enzyme. These studies pointed out that the cold-
adapted enzyme showed better catalytic activity, substrate 
specificity, and turnover number at low temperatures than 
their mesophilic counterparts. However, there are some 
disadvantages of cold-adapted enzymes like low ther-
mostability and loss of activity at a moderately higher 
temperature. Considering all the factors, cold-adapted 
enzymes can be a valuable tool in biotechnology, where 
low-temperature conditions are required for a chemical 
reaction. A detailed comparison of activity and kinetic 
parameters of cold-adapted enzymes with their commer-
cial and non-commercial mesophilic enzymes is presented 
in Table 2.

Role of omics in novel enzyme discovery

Currently, the term “omics” has become popular in the 
field of enzymology. The approaches of “omics” are rel-
evant in the discovery and development of novel efficient 
extremozymes for industrial applications. Furthermore, the 
use of bioinformatics in gene annotations and comparative 
genome analyses offer unprecedented evidence for func-
tional genes and enzymatic pathways that enhance our over-
all understanding of an organism’s metabolic and enzymatic 
potentials (Zhu et al. 2020). To begin with, the bacterial 
whole-genome sequencing has been greatly significant in 
deciphering the survival strategies of psychrophilic bacteria 
in cold environments (Kumar et al. 2018, 2019). Genome 
sequence data has enabled enzyme prediction in psychro-
philic/psychrotrophic bacteria obtained from extreme niches 
of the glacier ecosystem (Kumar et al. 2015a, b, 2018, 2019; 
Pal et  al. 2017). Comparative genomics and molecular 
adaptation analysis of psychrotrophic Arthrobacter strains 
revealed the prevalence of cold-adapted proteins, with the 
tryptophan amino acid being favourable over tyrosine for 
thermal stability of cold-adapted enzymes (Mukhia et al. 
2021a). A recent study on the enzymatic potential of Psy-
chrobacter sp. utilized comparative genomic approaches 

Table 2   Comparison of cold-adapted enzymes with commercial and non-commercial mesophilic enzymes in terms of kinetic parameters

Enzyme Enzyme source Tem-
perature 
(℃)

Vmax (U/mg) kcat (s) kcat/Km Km (mM) References

β-Galactosidase Psychrophilic Pseudoalte-
romonas haloplanktis

25 – 33 13.7 (/s/mM) 2.4 Hoyoux et al. (2001)

Mesophilic E. coli – 2 0.15 (/s/mM) 13
Protease Pseudoalteromonas arctica 10 1.83 1.04 – 0.65 Park et al. (2018)

Mesophilic subtilisin 
Carlsberg from Bacillus 
licheniformis (Sigma-
Aldrich)

0.31 0.14 – 0.02

Alcohol dehydrogenase Antarctic Moraxella sp. 25 – – 946.7 (/min/mM) 0.58 Tsigos et al. (1998)
Mesophilic Horse liver 

ADH
– – 100 (/min/mM) 0.6

Aspartate transcarbamylase Psychrophilic bacterial 
strain TAD1

– – – – 1.5 Sun et al. (1998)

Mesophilic E. coli – – – 11.4
Ornithine Transcarbam-

ylase
Psychrophilic Moritella 

abyssi
5 – – – 1.78 Xu et al. (2003)

E. coli 37 – – – 2.4
α-Amylase Psychrophilic Pseudoalte-

romonas haloplanktis
– – 294 – – D'Amico et al. (2003)

Pig pancreas – – 97 – –
Arginine kinase Deep-sea Clam Calyp-

togena kaikoi
25 – 3.3 – – Suzuki et al. (2012)

Mesophilic Corbicula 13.4 – –
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for identifying a gene for cold-active protease that can be 
cloned and expressed for further characterization (Perfumo 
et al. 2020). A similar approach can be adopted for finding 
other important bacterial biocatalysts useful for industrial 
processes. The modern genomic approaches are useful in 
providing relevant information on the structure and mecha-
nisms of enzymes. This allows a deeper understanding of 
the cold-active enzymes regarding their compatibility as 
detergent additives (Al-Ghanayem and Joseph 2020). For 
instance, genome-based computational analysis of a psy-
chrotrophic Chryseobacterium polytrichastri ERMR1:04 
helped predict the structure of its lipase enzyme, its broad 
temperature activity, and substrate specificity for developing 
a potential detergent formulation (Kumar et al. 2020). For 
the maximum discovery of industrially relevant enzymes 
with novel properties from microbial sources, the use of 
the culture-free technique of metagenomics is very valu-
able. Metagenomics allows the isolation of genetic material 
directly from the environmental samples for further screen-
ing and finding novel enzymes (Madhavan et al. 2017). 
Function-based metagenomic screening and sequence-based 
metagenomic approaches are commonly used for enzyme 
discovery (Madhavan et al. 2017). These approaches can 
be adopted for the identification and isolation of new cold-
adapted enzymes having novel properties. Recently, a cold-
active type-I pullulanase enzyme was isolated from a hot 
spring metagenome library that was found to be active at 
low temperature and effective in starch debranching (Thakur 
et al. 2021). In other recent studies, the cold-active esterase 
gene was identified from the permafrost (Kryukova et al. 
2019) and deep-sea sponge (Borchert et al. 2017) metagen-
omic libraries that were further cloned and expressed in the 
E. coli host. Similarly, functional metagenomics identified 
a cold-active α-amylase from a cold environment homolo-
gous to α-amylase of Clostridia, retained above 70% rel-
ative activity at 1 °C, and showed useful properties as a 
detergent enzyme (Vester et al. 2015). In one interesting 
study, functional metagenomics enabled the finding of mul-
tiple enzymes i.e., α-amylase, β-galactosidase, phosphatase, 
from the permanently cold Ikaite columns that showed 
low sequence homology but exhibited functional proper-
ties (Vester et al. 2014). The cold-adapted β-galactosidase 
showed lactose hydrolysis and hence potential candidature 
for the dairy industry. Lipase is an important industrial 
enzyme, and the metagenomics approach has been useful 
in its discovery from cold sources such as deep-sea sedi-
ment (Chan et al. 2016); marine sponge Stelletta normani 
(Borchert et al. 2017), Ircinia sp. (Su et al. 2015); Siberian 
permafrost (Petrovskaya et al. 2017) and many others. In 
another instance, a gene for novel cold-active and metal ion-
tolerant xylanase enzyme was isolated from the metagen-
ome of frozen soil and recombinantly expressed in E. coli 
(Qiu et al. 2017). One recent study reported a cold-adapted, 

thermostable laccase-like enzyme from a marine metagen-
omic library, which retained above 40% maximal activity at 
10 °C. The enzyme showed superior decolorization ability 
as well as tolerance to salt and organic solvents and finds 
potential use in the bioremediation of dye wastewater (Yang 
et al. 2018). Alkaline phosphatase plays a pivotal role in 
molecular biology, particularly the one with thermolabile 
nature. The first metagenomic thermolabile alkaline phos-
phatase with efficient DNA dephosphorylating property was 
isolated from ocean-tidal flat sediment (Lee et al. 2015). 
Therefore, the metagenomic approaches have undoubtedly 
facilitated the screening, isolation, and bioprospection of 
cold-adapted enzymes from extreme niches.

In addition to metagenomics, the metatranscriptomic 
approach could be very advantageous in novel enzyme 
discovery. The metatranscriptomic approach has allowed 
the study of gene expression patterns of a microbial com-
munity in response to particular environmental conditions 
(Hu et al. 2019). Likewise, the metatranscriptomic study 
of the cold environments could help us understand the key 
genes involved in microbial cold adaptation and survival at 
these niches. Furthermore, the targeted metatranscriptomic 
study of the hydrolytic enzymes expressed in the cold habitat 
could help discover novel cold-adapted enzymes (Raymond-
Bouchard and Whyte 2017). Besides, metatranscriptomics 
and recombinant DNA technology could aid in the quicker 
and economical discovery of cold-adapted enzymes with 
superior activities (Białkowska and Turkiewicz 2014). The 
approach has been used recently in the discovery of novel 
hydrolytic enzymes from various habitats like compost 
microbiome (Mello et al. 2017), sheep rumen microbiome 
(He et al. 2019), and metal-contaminated soil (Mukherjee 
et al. 2019). Despite the vast advantage of metatranscriptom-
ics over the conventional approaches, the use of metatran-
scriptomics in the novel cold-adapted enzyme discovery is 
limited and could be investigated further for quicker and 
economic exploration.

Metaproteomics is another emerging discipline for 
exploring the functional capabilities of microbial popula-
tions in extreme niches (Maseh et al. 2021). This approach 
enables the prospecting of entire microbial enzymes present 
in an environment through top-down or bottom-up methods 
(Abiraami et al. 2020). Bottom-up or shot-gun approach is 
the commonly accepted one that involves protein digestion 
and feeding into LC–MS for protein identification. In con-
trast, the top-down method directly detects the intact protein 
by LC–MS. With recent advancements in high-throughput 
mass spectrometry, protein separation systems, and updated 
databases for documentation, the field of metaproteom-
ics is progressing. It may provide a promising future for 
bioprospection of novel industrial enzymes from extreme 
niches. The technique has been applied for the elucidation of 
proteins in the microbiota of fermented food (Ji et al. 2017), 
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anaerobic fermentation system (Jia et al. 2017), marine 
sponge microbial symbionts etc. (De Mares et al. 2018), 
yet its application in extreme cold regions like glaciers and 
permafrosts remains to be explored. Altogether, the research 
on metagenomic, metatranscriptomic and metaproteomic 
approaches for extremophilic enzymes is escalating and 
opening up new opportunities for the discovery of novel 
enzymes from nature. A summary of the role of omics tools 
in novel enzyme discovery is described in Fig. 3.

Challenges and future directions

Regardless of the enthralling aspects and humongous 
applications of psychrophilic enzymes, there still lie limi-
tations in the industrial applications of these enzymes on 
a large scale. To begin with, the sampling and cultivation 
of microorganisms from extreme environments in itself 
are challenging. Although low-temperature habitats are 

Fig. 3   The role of omics tools in the discovery of novel enzymes. Figure created using BioRender (https://​biore​nder.​com/)

https://biorender.com/


	 3 Biotech (2021) 11:426

1 3

426  Page 12 of 18

known to dominate the earth's biosphere, which makes 
psychrophiles/psychrotrophs to be one of the most abun-
dant extremophiles to exist (Collins and Margesin 2019), 
their cultivation is limited to a very low number. The 
unique and fascinating features of these organisms that 
confer biotechnological significance pose complications 
in handling and cultivation. Traditional methods of enrich-
ment and isolation may support the growth and prolifera-
tion of fast-growing organisms while subduing the growth 
of cold-adapted microbes with slow metabolic rates (Cario 
et al. 2019). Adequate and efficient strategies are neces-
sary to improve the existing cultivation techniques to make 
them appropriate for psychrophiles. Innovations in terms 
of improved and extended in situ cultivation techniques 
that resemble the natural environmental conditions can 
be targeted for the better recovery of novel cold-loving 
microorganisms. Furthermore, finding the desired enzyme 
for targeted application is challenging as it requires pre-
cise methods for selection from huge natural biodiver-
sity. The persistent implementation of omics approaches 
could fill the gaps associated with inefficient culturing 
techniques and advanced enzymatic pathway predictions 
(Usmani et al. 2021). The dearth of appropriate genetic 
tools for metabolic engineering of psychrophilic enzymes 
to enhance the catalytic efficiency and product yield is a 
limiting factor (Zhu et al. 2020). Likewise, the equipment 
and instruments tend to show low tolerance to extreme 
conditions operative during enzyme processing which 
reduces their efficiency and lifespan (Bhatia et al. 2021). 
The development of molecular tools and bioprocessing 
equipment that will endure extreme conditions would help 
overcome some industrial limitations. Low-temperature 
catalysis is particularly significant in food industries; 
however, its use is still limited by many factors, such as 
costly enzyme isolation and purification procedure, low 
stability of the enzymes, and minimal exploration of cold 
niches for novel cold-adapted microbial sources (Kud-
dus 2018). The approaches of genetic engineering in the 
expression of psychrophilic enzymes in mesophilic hosts 
using efficient systems will lead to enhanced production 
of recombinant enzymes. This may provide solutions to 
the existing bottlenecks associated with large-scale down-
stream processing to meet the commercial requirements. 
More efforts are required to identify inexpensive nutrient 
sources for achieving large-scale economic production of 
cold-adapted enzymes through targeted strain improve-
ment. Further, extensive in-depth study of enzyme crys-
tal structures can contribute significantly to deciphering 
structure–function relationships that will ultimately aid 
industrial applications (Furhan 2020). Additionally, the 
omics approaches could offer useful perspectives for devel-
oping cost-effective and economically viable biocatalysts. 
Upcoming challenges for the industrial use of cold-adapted 

enzymes will include meeting the demand for tailored and 
customised, stable biocatalysts from the massive pool of 
uncultivable microorganisms by means of next generation 
“omics” techniques. Nonetheless, many practical chal-
lenges are associated with implementing metagenomic 
analysis (Sarmiento et al. 2015). The extraction of high-
quality DNA and cell recovery from extremophiles of 
environmental samples is difficult, and suitable host–vec-
tor combinations are required for the expression of recov-
ered metagenomic genes, which restricts the potential of 
functional metagenomics (Ahmad et al. 2019). Moreover, 
metagenomic approaches for enzyme discovery rely on 
the gene sequence homology to enzymes in the database, 
which might impede the finding of very novel enzymes, 
particularly in relatively obscure psychrophiles. One major 
challenge for psychrophilic enzymes lies in the vast tech-
nological gap between laboratory-based enzyme produc-
tion and the accomplishment of an ultimate commercial 
product ready for marketing (Zhu et al. 2020; Bhatia et al. 
2021). One key factor can be the extensive time frame 
taken from the discovery to the commercialization of a 
bacterial enzyme (Ferrer et al. 2019). The entire process 
is time-consuming as it includes multiple steps of finding 
the efficient enzyme through approaches of bioinformatics, 
systems biology, genome engineering, cloning and expres-
sion, and functional metagenomics that fit the industrial 
requirements. Enzymes must undergo a series of process-
ing through mutagenesis and protein engineering to be 
industry-ready (Bhatia et al. 2021). Therefore, the devel-
opment of appropriate host–vector expression systems 
for metagenomics libraries and more refined methods for 
protein engineering, and highly efficient high-throughput 
technologies are crucial for encountering the current chal-
lenges. Finally, the technological gap can be effectively 
addressed by innovations through the integration of aca-
demic or research institutes and industrial partners for 
streamlined and shortened technical and pipeline devel-
opments (Ferrer et al. 2019).

Conclusion

Exploring the microbial communities of extremely cold 
environments has contributed significantly to under-
standing psychrophilic lifestyle, their physiological and 
molecular mechanisms of adaptation. This, in turn, would 
be relevant for further applications of psychrophilic 
enzymes through protein engineering and evolution. 
With an increasing demand for cheap, renewable, and 
eco-friendly alternatives to the wide utilization of harsh 
chemicals in industrial processes, as well as rising con-
cerns over environmental and economic issues, extreme 
environments have been targeted as sources of efficient 
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biocatalysts. Despite the enormous benefits, cold-adapted 
enzyme technology faces setbacks for the lab-scale jour-
ney to the industry. In the coming years, the untapped 
microbial resources may be exploited by implementing 
structure-based protein engineering and directed evolution 
to develop broad substrate-specific cold-adapted enzymes 
(Nandanwar et al. 2020). Further understanding of in-
depth enzymatic machinery would promote innovations 
in these biocatalysts’ novel applications, further promoting 
the ‘white biotechnology.'
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