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Surface Oxygen Injection in Tin Disulfide 
Nanosheets for Efficient  CO2 Electroreduction 
to Formate and Syngas

Tao Chen1,2, Tong Liu1, Tao Ding1, Beibei Pang1, Lan Wang1,2, Xiaokang Liu1, 
Xinyi Shen1, Sicong Wang1, Dan Wu1, Dong Liu1, Linlin Cao1, Qiquan Luo3, 
Wei Zhang1,4 *, Wenkun Zhu2 *, Tao Yao1 *

HIGHLIGHTS

• A surface oxygen-injection strategy is proposed to synergistically modulate the electronic structure of the  SnS2 nanosheets, thereby 
regulating the oxophilicity of the catalyst surface.

• The surface oxygen doping facilitates the  CO2 activation and enhances the affinity for HCOO* species.

• The oxygen-injection  SnS2 nanosheets exhibit a remarkable Faradaic efficiency of 91.6% for carbonaceous products with a current 
density of 24.1 mA  cm−2 at -0.9 V vs RHE.

ABSTRACT Surface chemistry modification represents a promising 
strategy to tailor the adsorption and activation of reaction intermedi-
ates for enhancing activity. Herein, we designed a surface oxygen-injec-
tion strategy to tune the electronic structure of  SnS2 nanosheets, which 
showed effectively enhanced electrocatalytic activity and selectivity of 
 CO2 reduction to formate and syngas (CO and  H2). The oxygen-injection 
 SnS2 nanosheets exhibit a remarkable Faradaic efficiency of 91.6% for 
carbonaceous products with a current density of 24.1 mA  cm−2 at −0.9 V 
vs RHE, including 83.2% for formate production and 16.5% for syngas 
with the CO/H2 ratio of 1:1. By operando X-ray absorption spectroscopy, 
we unravel the in situ surface oxygen doping into the matrix during reac-
tion, thereby optimizing the Sn local electronic states. Operando synchro-
tron radiation infrared spectroscopy along with theoretical calculations further reveals that the surface oxygen doping facilitated the  CO2 
activation and enhanced the affinity for HCOO* species. This result demonstrates the potential strategy of surface oxygen injection for 
the rational design of advanced catalysts for  CO2 electroreduction.
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1 Introduction

Electroreduction of carbon dioxide  (CO2RR) into high-value 
fuels and feedstocks offers a compelling pathway not only 
to meet the increasing energy demand, but also to alleviate 
the environmental crisis caused by  CO2 emissions [1–3]. 
According to the gross-margin model, formate is consid-
ered to be one of the most economically feasible products in 
the  CO2RR, which can be widely used as an important raw 
material in the chemical and pharmaceutical industries, as 
well as a potential hydrogen carrier and the liquid fuel for 
proton-exchange membrane fuel cell [4–6]. Up to now, vari-
ous metal-based electrocatalysts, such as Pd, In, Hg, Pb, Cd, 
and Sn, have been exploited to achieve the  CO2 electrore-
duction to formate [7–13]. Among these electrocatalysts, 
Sn-based materials have attracted considerable attention due 
to their advantages of earth abundance, non-toxicity, and 
low cost. Unfortunately, the catalytic performance of most 
Sn-based materials is still limited by the high energy barrier 
for  CO2 activation, which is usually attributed to the poor 
stabilization of  CO2*− intermediates [14–18]. To this end, 
it is of great significance to develop an efficient and durable 
Sn-based catalysts for the  CO2 electroreduction to formate.

Given that the  CO2 molecule activation is closely related 
to the number and inherent activity of active sites, many 
effective strategies have been employed to tailor the active 
sites of electrocatalysts for enhancing the efficiency of the 
 CO2 electroreduction to formate [19–21]. The surface chem-
istry modification, as a powerful strategy, has attracted great 
interest in adjusting electronic properties of active sites to 
target intermediate adsorption energy as well as harvest 
high selectivity [22–25]. For example, Xie et al. devel-
oped a general amino acid modification approach on Cu 
electrodes for the selective electroreduction of  CO2 toward 
hydrocarbons [26]. Previous theoretical calculations have 
confirmed that the *OCHO binding energy is closely associ-
ated with the oxophilicity of the catalyst surface, which can 
be achieved by modifying the surface of the electrocatalyst 
with oxygen atom [27]. For instance, Gao et al. reported 
a phenomenon that partially oxidized atomic cobalt layers 
effectively adjusted the electronic structure, promoted the 
activation of  CO2, and stabilized the relevant key interme-
diates, thereby enhancing the efficiency of the  CO2 elec-
troreduction to liquid fuel [28]. As another example, Won 
et al. prepared hierarchical Sn dendrites and found that the 

natural oxygen content is closely related to the stability of 
 CO2*− intermediates and the selectivity of formate [29]. To 
improve the catalytic performance of Sn-based materials, 
oxygen modification is a promising strategy to regulate the 
surface oxophilicity of the catalysts and further manipulate 
their electronic structure. In fact, most of the catalysts with 
surface chemical modification have undergone structural 
evolution of the active phase under operation conditions, 
leading to deviations in the understanding the nature of the 
active site. Therefore, monitoring the structural evolution of 
Sn-based catalysts with surface oxygen modification under 
realistic working conditions is crucial for understanding the 
nature of the active phase and the rational design of targeted 
 CO2RR catalysts.

Herein, the  SnS2 nanosheets arrays on the carbon paper 
with surface oxygen modification were rationally designed 
under the guidance of density function theory (DFT) to 
effectively electroreduce  CO2 into formate and syngas (CO 
and  H2). The introduction of oxygen into the surface of  SnS2 
nanosheets achieved the exposure of Sn active sites and opti-
mal Sn electronic states, thereby enhancing the adsorption 
and activation of  CO2. Specifically, the  SnS2 nanosheets with 
surface oxygen modification exhibit a remarkable Faradaic 
efficiency of 91.6% for carbonaceous products at −0.9 V vs 
RHE, including 83.2% for formate production and 16.5% for 
syngas with the CO/H2 ratio of 1:1. Operando X-ray absorp-
tion spectroscopy unravels that the in situ surface oxygen 
doping into the matrix under working conditions effectively 
changes the local electronic state of Sn, thereby providing 
an optimized electronic structure to improve  CO2RR perfor-
mance. In addition, operando synchrotron radiation infrared 
spectroscopy and DFT calculations further confirm that the 
local electronic state of Sn is manipulated through surface 
oxygen modification, thereby promoting the  CO2 activation 
and enhancing the affinity for HCOO* species.

2  Experimental Section

The experimental details are provided in Supporting Infor-
mation (SI). This section briefly summarizes the synthesis 
measurements.

In a typical synthesis of  SnS2-xOx/CC, 5  mmol of 
 SnCl4·5H2O and 15  mmol of thioacetamide were dis-
solved in 40 mL of deionized water. The mixture and car-
bon paper (2 × 2) were then transferred into a Teflon-lined 
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stainless-steel autoclave, followed by being heated to 190 °C 
for 8 h. After the mixture was cooled down naturally to room 
temperature, the  SnS2/CC was washed by water three times 
and ethanol twice to remove any possible ions, followed by 
being dried under vacuum at 60 °C for 12 h. The  SnS2-xOx/
CC was prepared by placing the  SnS2/CC in the muffle fur-
nace that had been heated at 300 °C for several minutes.

3  Results and Discussion

3.1  Preparation and Characterization of  SnS2‑xOx/CC

At first, to gain insight into the effect of surface oxygen-
injection engineering on electronic properties of  SnS2 
nanosheets, we conducted DFT calculations by using the 
 SnS2 slab with/without oxygen injection as the models 
(Fig. 1a, b). Compared with the pristine  SnS2, the surface 
oxygen injection leads to a new additional state near the 
Fermi level (Fig. 1c, d), which is beneficial to manipulate 
the local electronic structure of Sn and expose the active 
site of Sn at the edges. Notably, O 2p states also contributed 
the unoccupied part of these levels, making them serve as 
the highly catalytically active sites. Furthermore, the elec-
tronic localization functions (ELF) exhibit that the charge 
density is mainly derived from the S atoms for both the  SnS2 
with/without oxygen injection (Fig. S1). Owing to the intro-
duction of oxygen atoms, the electron density of the whole 
system has undergone distinctly change, further indicating 
surface oxygen injection effectively tailors the local elec-
tronic structure of Sn.

Then, the  SnS2 nanosheets arrays with partially oxidized 
surface on the carbon paper (denoted as  SnS2-xOx/CC) were 
prepared, as schematically illustrated in Fig. 2a. Specifically, 
the pristine  SnS2 nanosheets arrays were directly grown on 
the carbon paper by a simple hydrothermal method. After-
ward, the  SnS2-xOx/CC was further synthesized by the low-
temperature calcination of the as-prepared  SnS2/CC under 
the air atmosphere. The morphology of the  SnS2-xOx/CC 
was characterized by scanning electron microscopy (SEM) 
and transmission electron microscopy (TEM). As shown in 
Fig. 2b, the final products present a hierarchical nanosheets 
arrays composed of  SnS2-xOx nanosheets and flexible car-
bon paper. The TEM images of the  SnS2 and  SnS2-xOx took 
the nanosheet morphology (Figs. 2c and S2a), whereas 
the  SnS2 nanosheets were completely oxidized into  SnO2 

nanoplatelets (Fig. S3). The high-resolution transmission 
electron microscopy (HRTEM) image in Fig. 2d shows that 
the  SnS2-xOx lattice fringes with an interplanar distance of 
0.32 nm indexed to the (002) facets of  SnS2, confirming 
the as-obtained  SnS2-xOx nanosheets retain its pristine crys-
tal structure (Fig. S2b, c) [30]. Besides, there is an obvi-
ous circle of amorphous layer at the edge of the  SnS2-xOx 
nanosheet, which is attributed to the partial oxidation on 
the surface of the  SnS2 nanosheet. In addition, the homolo-
gous fast Fourier transform (FFT) pattern indicates the  SnS2 
phase recorded from [002] orientation (inset in Fig. 2e). 
The element of O was uniformly distributed on the whole 
 SnS2-xOx nanosheet which can be further confirmed by the 
high-angle annular dark-field energy-dispersive X-ray spec-
troscopy (HAADF-EDS) elemental mapping and EDS spec-
trum (Figs. 2f and S4).

To further investigate the phase composition and elec-
tronic structure of the  SnS2-xOx/CC, we performed X-ray 
diffraction (XRD) and X-ray photoelectron spectroscopy 
(XPS) measurement. As evidenced by the XRD patterns in 
Fig. S5, the  SnS2/CC and  SnS2-xOx/CC exhibited the dif-
fraction peaks at 30.74°, 32.09°, and 44.98°, which were 
indexed to the (200), (101), and (211) planes of hexagonal 
 SnS2 (JCPDS No. 23–0677) [31]. Remarkably, no additional 
peaks corresponding to the phases of  SnO2 could be found, 
indicating that the surface oxygen injection did not change 
the crystalline phase of  SnS2. We further carried out the XPS 
measurements to clarify the form of O existing in  SnS2-xOx/
CC. As disclosed by XPS survey spectra, a weak signal of O 
was recorded in  SnS2-xOx/CC, further confirming successful 
introduction of O (Figs. S6 and S7). In addition, the peaks at 
495.3 and 486.8 eV were attributed to Sn 3d3/2 and Sn 3d5/2 
of  SnS2-xOx/CC, respectively (Fig. S8) [32]. Compared with 
the  SnS2/CC, the Sn  3d3/2 and  3d5/2 peaks for  SnS2-xOx/CC 
shifted to higher binding energies, due to the larger electron-
egativity of O than that of S.

The surface-sensitive synchrotron radiation soft X-ray 
absorption structure (XAS) was further employed to inves-
tigate the changes in the local electronic structure of  SnS2 
caused by surface oxygen-injection engineering. As shown 
in Fig. S9, O K-edge XAS spectra for  SnS2-xOx/CC and pure 
 SnO2/CC displayed similar shapes, implying  SnO2 species 
were formed on the surface of  SnS2-xOx/CC, further con-
firming the surface oxygen injection successfully replaced 
the S atoms. In addition, S L-edge XAS spectra exhibited 
the two characteristic peaks located at 163.3 eV (S-Sn π* 
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peak) and 166.6 eV (S-Sn σ* peak) observed in pure  SnS2/
CC and the  SnS2-xOx/CC (Fig. S10). Compared with pris-
tine  SnS2/CC, the relative strength of S-Sn for  SnS2-xOx/CC 
was slightly reduced, which was attributed to the substitu-
tion of partial S atoms on the surface of  SnS2-xOx/CC by O 
atoms. Meanwhile, the X-ray absorption near-edge structure 
(XANES) measurement was employed to further investigate 
the effect of surface oxygen injection. Compared with pris-
tine  SnS2/CC, the white line peak of the  SnS2-xOx/CC shifted 
to the high-E region, due to the electronegativity of O being 
greater than that of S, in consistent with the results of Sn 3d 
XPS spectrum (Fig. S11). Given that the white line peak of 
Sn K-edge intensity originating from the transition of the 
1 s to 5p orbital, the increase in the white line peak intensity 
after surface oxygen injection indicates the increases in the 

possibility of electron transition from the 1 s-5p orbital. The 
above results reveal the surface oxygen injection effectively 
manipulates the local electronic structure of Sn.

Furthermore, the Fourier transform (FT) k2-weighted 
extended XAFS (EXAFS) spectrum of the Sn K-edge was 
employed to further reveal the effect of surface oxygen injec-
tion on the local electronic structure of Sn at the atomic 
level. Considering the surface oxygen injection into the 
 SnS2 nanosheets, we performed out least-squares EXAFS 
curve fitting analysis for Sn by considering two backscat-
tering paths, including Sn–S and Sn–O. Compared with the 
 SnS2/CC, the Sn K-edge FT-EXAFS curve for  SnS2-xOx/
CC presented a new peak at 1.49 Å, which is ascribed to the 
Sn–O coordination (Fig. 2a) [33]. By quantitative EXAFS 
curve fitting analysis, the coordination number of Sn-S for 
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 SnS2-xOx/CC is confirmed to be 4.3, smaller than that of 
pristine  SnS2/CC (6.0), and the coordination number of 
Sn–O is verified to be 2.1, further confirming surface oxy-
gen injection successfully replaced the S atoms (Table S1 
and Fig. S12). Moreover, the wavelet transform (WT) of Sn 
K-edge EXAFS oscillations exhibited the intensity maxima 
at 4.3 Å−1 and around 8.2 Å−1 of  SnS2-xOx/CC, which asso-
ciate with Sn–O and Sn–S contributions, respectively (Fig. 
S13). Taken together, the successful injection of surface 
oxygen effectively manipulated the local electronic struc-
ture of  SnS2.

3.2  Electrocatalytic  CO2RR Performances 
of the  SnS2‑xOx/CC

Surface oxygen-injection engineering provides a poten-
tial prospect for enhancing the  CO2 electroreduction. 
The electrocatalytic  CO2 reduction activities of the three 
Sn-based catalysts were evaluated using a three-electrode 
H-cell in  CO2-saturated 0.5 M  KHCO3. The linear sweep 
voltammetric (LSV) curves in Fig. S14 revealed that the 
 SnS2-xOx nanosheets exhibited higher current density than 
that of pristine  SnS2 nanosheets, confirming the injection 
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of oxygen effectively enhanced the electrocatalytic activity 
of  SnS2/CC. Particularly, the geometrical current density 
of  SnS2-xOx/CC achieved 19.68 mA  cm−2, which was 2.7 
times higher than that of pristine  SnS2/CC at overpotential 
of −0.8 V vs RHE (Fig. 2a). For these three Sn-based cata-
lysts,  H2, CO, and formate were the main catalytic products, 
which are quantified by online gas chromatography and 1H 
NMR analysis (Fig. S15). Figure 2b exhibits partial current 
density for carbonaceous products (CO and formate), respec-
tively. At all applied potentials, the  SnS2-xOx/CC presented 
the largest current density among the three electrocatalysts, 
demonstrating the high activity for  CO2 electroreduction. 
As shown in Fig. 2c, the  SnS2-xOx/CC displayed the highest 
Faradaic efficiency (FE) for carbonaceous products among 
the three electrocatalysts, while the pristine  SnS2/CC exhib-
ited the lowest FE value. At −0.9 V vs RHE, the  SnS2-xOx/
CC exhibited the FE of 91.8% for carbonaceous products, 
including the FE of 83.5% for formate production and the FE 
of 16.5% for syngas with the  H2/CO ratio of 1:1. It is worth 
noting that such syngas ratio is optimal for multiple chemical 
synthesis (e.g., Fischer–Tropsch synthesis, fermentation and 
alcohol synthesis, and hydroformylation processes). Further-
more, the as-prepared  SnS2-xOx/CC displayed an excellent 
durability for 10-h potentiostatic test with the less than 3% 
decay in current density, together with the FE for formate 
and CO keeping steady at −0.9 V vs RHE (Fig. 2d). The 
above results demonstrate that the  SnS2-xOx/CC represents 
a promising catalyst for persistently producing formate and 
syngas toward  CO2RR.

Inspired by surface oxygen injection to improve the  CO2 
electroreduction performance of  SnS2/CC, we studied the 
microscopic reaction kinetics of the pristine  SnS2/CC and 
 SnS2-xOx/CC. Based on cyclic voltammogram measurements 
at different scan rates, the double-layer capacitance (Cdl) 
value increased from 3.27 mF  cm−2 of the pristine  SnS2/
CC to 3.75 mF  cm−2 of the  SnS2-xOx/CC, indicating that 
surface oxygen injection effectively increases the electro-
chemical active surface area (ECSA) of the electrocatalysts 
(Figs. S16 and S17). Given that the ECSA of the electro-
catalysts is positively correlated with the active sites, we 
have reason to believe that the surface oxygen modification 
effectively exposes the active site of Sn. The Tafel plots 
were further employed to verify the rate-limiting step of the 
Sn-based catalysts in the  CO2RR process. The Tafel slopes 
of the Sn-based catalysts were all close to 118 mV  dec−1, 

demonstrating that the activation of  CO2 served as the rate-
limiting step (Fig. S18) [34,35]. In addition, the Nyquist 
plots were used to confirm the facilitated electron transfer 
process [36]. The  SnS2-xOx/CC displayed the charge trans-
fer resistance  (RCT) of 12.1 Ω, which was smaller than that 
(15.8 Ω) of  SnS2/CC (Fig. S19). Therefore, surface oxygen 
injection effectively accelerates the charge transfer process 
of  SnS2/CC during the  CO2RR (Fig. 3).

3.3  Operando X‑ray Absorption Spectroscopy Study

Given that the bulk phase stability of transition metal chal-
cogenides with heat treatment is destroyed, the bulk phase 
is in a relatively unstable state [37]. Based on the equilib-
rium theory of crystalline chemistry, the catalyst in the 
electrolyte driven by both energetical and kinetical force 
will tend to freely optimize the structure of the entire bulk, 
so that the bulk tends to a relatively stable state [38–41]. 
Therefore, we employed operando XAFS measurements to 
monitor the structural evolutions of the  SnS2-xOx/CC under 
realistic working conditions. Figure 4a shows the operando 
Sn K-edge XANES spectra at different applied potentials, 
along with the data for Sn foil,  SnS2, and  SnO2 as references. 
When cathodic potentials were applied, the absorption edge 
of Sn K-edge XANES spectra shifted toward low-E side 
compared to the case of the open-circuit condition, indi-
cating the decrease in the Sn valence state during  CO2RR 
process. Furthermore, when a cathodic potential of −0.9 V 
versus RHE was applied, the white line peak intensity was 
significantly increased in relation to the case (−0.4 V versus 
RHE), indicating more 5p electrons participate in the reac-
tion. After the reaction, the white line peak approximately 
returned to the state (−0.4 V versus RHE), further confirm-
ing that the  SnS2-xOx/CC catalyst undergone in situ recon-
struction during the reaction and tended to form a relatively 
stable state.

Furthermore, the EXAFS was further employed to reveal 
the atomic reconstruction of the  SnS2-xOx/CC catalyst under 
working conditions (Figs. 4b and S20). At first sight, the 
Fourier transform curves of  SnS2-xOx/CC displayed a sig-
nificantly dampening in the Sn-S coordination peak and a 
heightening in the Sn-nonmetallic coordination peak under 
working condition. Specifically, at the applied potential of 
−0.4 V versus RHE before the occurrence of  CO2RR, the 
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EXAFS fitting results showed that the Sn–O coordination 
number increased from 2.5 to 3.6, which may be ascribed 
to the further doping of surface oxygen into the  SnS2 lattice 
during the reaction. To further verify the above conjecture, 
we performed XRD on the  SnS2-xOx/CC after reaction. As 
expected, the intensity of the diffraction peaks of  SnS2 was 
significantly reduced after the reaction, and the character-
istic peak of  SnO2 appeared in the  SnS2-xOx/CC after reac-
tion (Fig. S21). Moreover, at the potential of -0.9 V ver-
sus RHE during  CO2RR, Sn–O coordination number arose 

from 3.6 to 4.2 and the Sn-S coordination number remained 
unchanged, which may be attributed to the adsorption of the 
reaction intermediate species. When the cathode potential 
was removed, the Sn–O coordination number recovered to 
the state at −0.4 V, while the coordination number of Sn–S 
remained unchanged (Table S2). The above results indi-
cated that the  SnS2-xOx/CC had undergone dynamic surface 
reconstruction and surface oxygen doping plays a critical 
role under reaction conditions.
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3.4  Operando Synchrotron Radiation Fourier 
Transform Infrared Spectroscopy Study

Operando synchrotron radiation Fourier transform infrared 
spectroscopy (SR-FT-IR) was further employed to investi-
gate the catalytic mechanism for the well-designed  SnS2-xOx/
CC during the  CO2RR. All SR-FTIR spectra were recorded 
with the electrocatalysts at  CO2RR catalytic process (open 
circuit, − 0.6, − 0.7, − 0.8, and − 0.9 V) to reveal the produc-
tion and transformation of key intermediates. As displayed 
in Fig. 4c, the monodentate carbonate groups (m-CO3

2−) 
appeared at the peaks of ~ 1520  cm−1, demonstrating that 
more  CO2 was adsorbed on the surface of electrocata-
lyst with the decrease in applied voltage. Meanwhile, a 
new characteristic peak appeared in the SR-FTIR spectra 
of ~ 1694  cm−1  (CO2·− radicals) and the intensity of peak 
continually increased as the applied potentials decreased, 

indicating that the  CO2 molecules adsorbed on the catalyst 
surface were activated to  CO2·− radicals during the reac-
tion [[42]]. Meanwhile, as the cathode potential decreases, 
the peak intensity at ~ 1541  cm−1  (HCOO−) increased fur-
ther confirming the excellent proton trapping ability of 
 CO2·− radicals [33]. The peaks at ~1354  cm−1 and ~1660 
 cm−1 is ascribed to the symmetry vibration of the HCOO* 
intermediates, which corresponds to the key intermediates 
or the products for  CO2 electroreduction [43]. Based on the 
above-mentioned operando SR-FTIR analysis, the pathway 
of electroreduction from  CO2-to-HCOOH conversion by the 
 SnS2-xOx/CC could be proposed as the following reactions 
(Fig. 4d):

(1)
Step 1 ∶ CO2(g) + e−+∗

→ CO∗

2
− (Activation process)

(2)
Step 2 ∶ CO∗−

2
+ HCO−

3
(aq) → HCOO∗ + CO2−

3
(Surface reaction)
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3.5  Density Functional Theory (DFT) Calculations

DFT calculations were employed to elucidate the catalytic 
contribution from partial oxidation at  SnS2-xOx for  CO2RR. 
The models for pristine  SnS2 and  SnS2-xOx were chosen for 
the simulation. Figure S22 shows optimized adsorption con-
figurations of HCOO* intermediates on the armchair edges 
of the pristine  SnS2 slab and  SnS2Ox slab with distinguish-
able Sn-O distances. from the material [44]. Specifically, the 
Sn–O bond length  (dSn-O) is 2.28 Å for  SnS2, while the bond 
length  dSn-O for  SnS2-xOx is reduced to 2.24 Å, implying that 
the surface oxygen injection effectively enhances the bind-
ing to the HCOO* intermediate. Besides, DFT calculations 
were further conducted on the Gibbs free energy (ΔG) with 
multiple elementary reaction steps over  SnS2 with/without 
oxygen injection. As exhibited in Fig. 4e, for both  SnS2 and 
 SnS2-xOx, the formation of HCOO* is further confirmed to 
be the rate-limiting step for formate, which is consistent with 
the results of Tafel slopes. For the  SnS2-xOx slab, the ΔG for 
HCOO* formation (ΔGHCOO*) was calculated to be 0.97 eV, 
which is much lower than that for pristine  SnS2 slab (1.31 eV), 
indicating surface oxygen injection enhanced the activation of 
 CO2 and correspondingly facilitated the formation of HCOO*. 
To gain an in-depth insight into the nature of surface oxygen 
doping enhancing the intrinsic activity of  SnS2, we calcu-
lated the projected density of state of HCOO* absorbed  SnS2 
and  SnS2-xOx (Fig. 4f). In the HCOO* PDOS, the dominant 
features are that HCOO* exhibits strong interaction with 
the valence band region of  SnS2 and  SnS2-xOx, which leads 
to strong chemical adsorption. Notably, the state density of 
HCOO* overlaps more with the orbital of Sn (5p) in  SnS2-xOx 
with regard to that in  SnS2, and the higher occupied state of 
HCOO* is near the Fermi level, indicating that HCOO* has 
a stronger interaction with  SnS2-xOx, which is consistent with 
the calculation result of ΔG HCOO*. Furthermore, the charge 
density differences calculations also show that more electrons 
gather around the adsorption site in  SnS2-xOx, indicating that 
the surface oxygen injection makes the  SnS2 edges exhibit a 
stronger affinity for HCOO* species (Fig. S23). The above 
results confirm that surface oxygen injection alters the local 
electronic structure of Sn atom with optimal ΔGHCOO* to 
effectively facilitate the production of formate over  CO2RR. 

(3)Step 3 ∶ HCOO∗ + HCO−

3
(aq) + e− → HCOOH (l) + CO2−

3
(Desorption process)

Particularly, the above theoretical calculation results are con-
sistent with the previous experimental results.

4  Conclusions

In conclusion, we developed  SnS2 nanosheets with surface 
oxygen modification for  CO2 electroreduction to formate 
and syngas (CO and  H2). The surface oxygen-injection 
engineering achieved exposure of Sn active site and opti-
mal Sn electronic states, thereby enhancing the adsorption 
and activation of  CO2. Surface oxygen injection on  SnS2 
nanosheets significantly improved electrocatalytic activity 
and selectivity of  CO2 reduction to formate and syngas (CO 
and  H2). Specifically, at −0.9 V vs RHE, the  SnS2-xOx/CC 
exhibits the highest FE of 91.6% for carbonaceous products, 
including the FE of 83.2% for formate production and the FE 
of 16.5% for syngas with the  H2/CO ratio of 1:1. Moreover, 
the as-prepared  SnS2-xOx/CC displays an excellent durability 
for 10-h potentiostatic test with less than 4% decay in cur-
rent density. Operando XAS unravels that the in situ surface 
oxygen doping into the matrix under working conditions 
effectively modulates the Sn local electronic state. Oper-
ando SR-FTIR and DFT calculations reveal that the surface 
oxygen doping enhanced the affinity for HCOO* species by 
manipulating the Sn electronic states and accelerated the 
 CO2 activation. This work opens a span-new door for the 
design of advanced catalysts for  CO2 electroreduction.
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