Skip to main content
. 2021 Aug;9(16):1307. doi: 10.21037/atm-21-3457

Table 3. The performance of different features.

Methods Precision Recall F1
GF + Bayesian 79.39% 61.83% 0.6952±0.14
GF + Decision Tree 77.17% 67.32% 0.7191±0.07
GF + SVM 77.42% 81.31% 0.7931±0.03
GF + Random Forest 77.06% 89.61% 0.8286±0.06
TF + Bayesian 94.16% 66.95% 0.7826±0.14
TF + Decision Tree 84.63% 86.47% 0.8554±0.02
TF + Random Forest 88.51% 95.79% 0.9200±0.00
TF + SVM 96.11% 92.87% 0.9446±0.01
FF + Bayesian 99.95% 62.32% 0.7677±0.14
FF + Decision Tree 99.79% 81.07% 0.8946±0.01
FF + Random Forest 99.82% 100.00% 0.9991±0.02
FF + SVM 99.94% 100.00% 0.9997±0.00

GF, geometric features; SVM, support vector machine; TF, texture features; FF; fusion features.