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In response to the coronavirus disease 2019 (COVID‐19) pandemic, governments have encouraged and ordered
citizens to practice social distancing, particularly by working and studying at home. Intuitively, only a subset of
people have the ability to practice remote work. However, there has been little research on the disparity of
mobility adaptation across different income groups in US cities during the pandemic. The authors worked to
fill this gap by quantifying the impacts of the pandemic on human mobility by income in Greater Houston,
Texas. We determined human mobility using pseudonymized, spatially disaggregated cell phone location data.
A longitudinal study across estimated income groups was conducted by measuring the total travel distance,
radius of gyration, number of visited locations, and per‐trip distance in April 2020 compared to the data in
a baseline. An apparent disparity in mobility was found across estimated income groups. In particular, there
was a strong negative correlation (ρ = −0.90) between a traveler’s estimated income and travel distance in
April. Disparities in mobility adaptability were further shown since those in higher income brackets experi-
enced larger percentage drops in the radius of gyration and the number of distinct visited locations than did
those in lower income brackets. The findings of this study suggest a need to understand the reasons behind
the mobility inflexibility among low‐income populations during the pandemic. The study illuminates an equity
issue which may be of interest to policy makers and researchers alike in the wake of an epidemic.
1. Introduction

The pandemic of coronavirus disease 2019 (COVID‐19) has had a
significant worldwide impact in terms of health and economy (Acter
et al., 2020; Torales et al., 2020). As of January 30, 2021, the total
number of confirmed cases has surpassed 100 million globally and
25 million in the United States alone. The death toll by this same date
reached over 2.1 million globally and 429,000 in the United States
(World Health Organization, 2021).

In the absence of effective pharmaceutical treatments, one of the
practices believed to be effective at limiting the spread of COVID‐19
was reducing the degree of physical contact with others and minimiz-
ing exposure to the virus. Governments have aimed to “flatten the
curve” of infections by introducing measures to decrease physical con-
tact between individuals, including implementing travel restrictions,
enforcing border closures, and encouraging social distancing (Block
et al., 2020; Chinazzi et al., 2020; de Haas et al., 2020; Hsiang et al.,
2020; Phan and Narayan, 2020; Ruktanonchai et al., 2020). In 2020,
the United States federal government implemented travel restrictions
and travel warnings for heavily‐infected regions beginning in late Jan-
uary and early February, and state and local governments issued “stay‐
at‐home” and social distancing orders by mid‐March (Peirlinck et al.,
2020). As a result, American travel behaviors have dramatically chan-
ged in terms of origins, destinations, modes, and travel frequency due
to COVID‐19 and the associated health and government mobility
orders (Barbieri et al., 2020; De Vos, 2020).

While these temporary restrictions on human mobility have nega-
tively affected short‐term economic and employment growth (Nicola
et al., 2020), they showed some positive disease‐containment effects
in May and June 2020; during these two months, newly confirmed
COVID‐19 cases and fatalities dropped in many regions (Block et al.,
2020; Courtemanche et al., 2020; Thu et al., 2020). Improvements
were assumed to be at least partially due to the public’s observance
of the executive orders. However, different groups of the population
may have engaged in different degrees of change in behaviors as
shown by travel distance, frequency, modal shift, work schedules,
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and remote working (Kramer and Kramer, 2020). In fact, medical
records suggest that individuals within urban areas have faced differ-
ent hospitalization rates and fatality rates per capita depending on
their economic status (Raifman and Raifman, 2020). In addition, a lon-
gitudinal survey in the United States indicates a smaller proportion of
lower‐income respondents shifted to remote work by July than did
higher‐income respondents (Circella, 2020). The different changes in
behavior within different groups are worthy of a special study in order
for policy makers to make effective policies and maintain social equity
in future decision making.
2. Literature review

The literature reviewed for this study is organized according to sev-
eral areas as follows.

2.1. Human mobility and location characteristics

As mobile communication devices have integrated into society over
the past two decades, researchers have gained insights through the
location data provided by these devices. Nowadays, it has been known
that travelers’ mobility is well characterized by variables such as the
travel distance, approximate spatial range of travel, and the frequency
of uniquely visited locations. González et al. (2008) defined an approx-
imate range of activity space as the “radius of gyration” (the average
distance to observed locations from the center of mass of all sets of
observations for an individual traveler). Based on estimated mobile
phone user trajectories within Voronoi cells, the researchers found that
the trip distance distributions can be modeled with great accuracy as a
function of the radius of gyration, which is a function of the measure-
ment period. Additional literature reports that individual human
mobility follows highly repetitive, predictable patterns (e.g., home‐
office and home‐school) on a daily basis (Schneider et al., 2013;
Song et al., 2010). Therefore, it is possible to estimate one’s socioeco-
nomic variables based on data obtained from mobile devices (Frias‐
Martinez et al., 2010; Soto et al., 2011), though the estimation accu-
racy depends on urban structures. As Prestby et al. (2020) found in
Milwaukee, Wisconsin, individual human mobility patterns seem to
have clear differences among different socioeconomic groups espe-
cially where practical residential segregation exists.

2.2. COVID-19 and travelers’ mobility

In the hope of revealing the effects of mobility change on the
spread of this infectious disease, scholars have investigated cell phone
location data to report overall reductions in human mobility measures
during the COVID‐19 pandemic. In Italy, Pepe et al. (2020) analyzed
anonymized cell phone location data from Cuebiq, Inc. aggregated
by province and found a reduction greater than 30 percent in total
trips and in the radius of gyration during the country’s first lockdown
compared to baselines before the COVID‐19 outbreak. Bonaccorsi et al.
(2020) investigated proprietary mobility data from Facebook, Inc.
aggregated by Italian municipalities and reported larger mobility
reductions in municipalities with higher fiscal capacity.

In Tokyo, Japan, Yabe et al. (2020) analyzed cell phone location
data provided by Yahoo! Japan Corporation and reported a negative
correlation between assumed taxable income per household and the
reduction in mobility during the country’s state of emergency. They
also mention the scarcity of research on how human mobility, strati-
fied by different economic statuses, has been affected by the pandemic.

Multiple mobility studies have been conducted in the United States.
Weill et al. (2020) performed a panel regression analysis on aggre-
gated mobility metrics by census tract and county across the United
States. Based on four mobility metrics (i.e., “Completely at Home”
(SafeGraph, Inc.), Median Distance Traveled (SafeGraph, Inc.), Device
2

Exposure (PlaceIQ, Inc.), and “Retail and Recreation” (Google, LLC))
by aggregated income quantiles, they concluded high‐income areas
had larger reductions in mobility than low‐income areas. Their model
considered the effect of federal policies which applied to all counties.
Jay et al. (2020) compared SafeGraph mobility metrics across US cen-
sus block groups by aggregated income quintile. Using January and
February 2020 as the baseline, a difference‐in‐differences linear
regression revealed that in April, people in high‐income neighbor-
hoods spent more time at home compared to those who lived in
low‐income neighborhoods. At a regional level, Apple, Inc. (2020)
and Google, LLC (2020) reported an approximate 60 percent reduction
in the number of routing requests within map services in Houston, Tex-
as, in April 2020 from their assumed baselines.

2.3. Research gaps and contribution

Most existing human mobility research on COVID‐19 uses nation-
wide aggregated zonal mobility statistics at either state or county
levels. As of early 2021, few longitudinal studies have been conducted
on COVID‐19‐related mobility using spatially disaggregated cell phone
location data. It is hard to conclude at a nationwide level that the
observed differences in mobility patterns were due to inequity rather
than to actions based on enacted policies or personal beliefs. In fact,
observed mobility patterns also varied across states that imposed dif-
ferent degrees of travel restrictions (Abouk and Heydari, 2021). The
linkage between human mobility patterns during the pandemic and
economic status are especially worth studying within a region under
a uniform policy. It also should be noted that most existing research
in this topic relies on proprietary mobility metrics, so fundamental
variables characterizing human mobility (e.g., radius of gyration) have
rarely been reported. If records correctly suggest that the dispropor-
tionality in COVID‐19 fatalities is correlated with disparity among
income groups of the population and their different levels of mobility,
it would naturally allude to a possible correlation between economic
status and change in mobility during the pandemic.

This effort aims to fill the research gap by investigating the impact
of COVID‐19 and the associated containment policies on the mobility
of individual travelers with varying income levels through spatially
disaggregated mobility data from one metropolitan area: Greater
Houston (Houston‐The Woodlands‐Sugar Land). The authors approach
this objective through observing multiple mobility measures (i.e., total
trip distance, radius of gyration, number of distinct visited locations,
and per‐trip distance) in April 2020, during which an executive order
to restrict “non‐essential” travels was in effect throughout Texas.

To the author’s knowledge, this study appears to be one of the first
longitudinal studies using spatially disaggregated travel data to reveal
mobility change from the income perspective in the United States.
Results regarding mobility changes across income brackets would
allow policy makers to make informed decisions regarding economic
viability and social equity.

Parallelling existing literature, our hypothesis is that higher income
is associated with larger absolute and relative mobility reductions in
April 2020 compared to the baseline of January and February 2020.

The following subsection includes a brief description of the Texas
COVID‐19 timeline through April 2020, with a focus on the Greater
Houston area, to provide context for the analysis presented in this
study. Readers familiar with the COVID‐19 situation in Texas may skip
to the following section that describes the methodology.

2.4. COVID-19 timeline in Texas

The first confirmed‐positive case of COVID‐19 in Texas was
reported in Fort Bend County on March 4, 2020, with about a dozen
more cases quickly following (Texas Department of State Health
Services, 2020a). The first confirmed death caused by COVID‐19 in
Texas was reported in Matagorda County on March 14 (Texas
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Department of State Health Services, 2020b). The Governor of Texas
declared a state of disaster on March 13 for all counties in Texas
(Office of the Texas Governor, 2020). Over the next few days,
metropolitan areas including Houston ordered the closure of restau-
rants and bars and imposed stricter guidelines on the size of social
gatherings.

The governor instituted GA‐14 at the end of March which mini-
mized social gathering and encouraged social distancing from April
2 through April 30, 2020 (Abbott, 2020). Additionally, the Harris
County judge implemented a “Stay Home, Stay Safe” order fromMarch
24 through April 24, making it one of 51 counties in Texas to enact
“stay‐at‐home” orders by the end of March (Harris County, 2020;
Wilson, 2020). As of April 30, Texas had over 28,000 confirmed cases
and 780 confirmed fatalities (Centers for Disease Control and
Prevention, 2020; Johns Hopkins University & Medicine Coronavirus
Research Center, 2020).

The effects of the stay‐at‐home orders on human mobility were
apparent in Harris County. According to the Bureau of Transportation
Statistics (BTS), the percentage of people not traveling from home in
Harris County, Texas, was reported as approximately 16.9 percent,
or approximately 794,800 people, in January (Bureau of
Transportation Statistics, 2020); these people are assumed to stay
home for reasons other than the global COVID‐19 pandemic. In March
and April, this percentage increased to 20 percent (945,300 people)
and 23.6 percent (1,107,800 people), respectively; in May and June,
it dropped back toward the baseline with 19.3 percent (906,600 peo-
ple) and 19.7 percent (925,200 people), respectively. Within Harris
County, BTS used anonymized mobile phone data to record the aver-
age number of daily trips as approximately 15,952,000 and
16,736,000 trips in January and February. As people began to work
from home, the average number of daily trips dropped to about
14,593,000 and 12,028,000 trips in March and April, respectively.
3. Methods

The authors used Microsoft Office 365 ProPlus, PostGIS 3.0, QGIS
3.14, and Julia 1.4.1 (Bezanson et al., 2017) to investigate spatiotem-
poral changes in human mobility through smartphone location data
along with projected income.
3.1. Mobility data and samples

Pseudonymized iOS mobility data in January, February, and April
2020 were provided by SAFE2SAVE, LLC, a Texas‐based company
operating a smartphone application (app). The data contained
89,928,723 data points on roadways, and each data point contained
a pseudonymized user identification number (random integers), geo-
graphical coordinates, and a timestamp. The data contain no personal
information such as name, income, or age.

In order to examine the changes in mobility patterns during the glo-
bal COVID‐19 pandemic, mobility data in April 2020 were compared
to the average data in January and February 2020 (baseline). April
2020 included the entire duration of GA‐14 (0:00:01 a.m. on April 2,
2020, through 11:59:59 p.m. on April 30, 2020), the executive order
which encouraged residents to stay home except for essential travels.
March 2020 was not included in the study due to the varying imple-
mentation dates of stay‐at‐home orders in different jurisdictions.

To ensure the April data points were comparable to the baseline,
analyses included only data of those who recorded (i) at least one data
point in April and (ii) at least one data point per week over the eight
consecutive weeks between January 5 and February 29. The second fil-
tering intended to filter out people who quit using the app or non‐
regular app users since comparisons cannot be drawn over time when
one deletes the app during the study period. Unlike spatially aggre-
3

gated data, this is an apparent tradeoff a spatially disaggregated longi-
tudinal study inherits. Although this sample reduction might have
affected the results, the effect was assumed to be negligible or rather
suitable than the do‐nothing alternative with respect to the study
objective.

After this procedure, 46,047,382 data points from 26,059 people
were kept for analysis. These data points correspond to approximately
6.6 million person trips.

3.2. Variables

As an independent variable, per‐capita income in the 2018 Ameri-
can Community Survey (ACS) (United States Census Bureau, 2020)
was used. In the United States, one census tract represents a commu-
nity that represents a somewhat‐homogeneous cluster of approxi-
mately 4,000 residents. The ACS was overlaid at the resolution of
United States census tracts using a circular area with 0.5‐mi diameter
around each traveler’s median latitude and longitude of the first and
last records of each day during the study periods. When the circular
cordon overlapped multiple census tracts, the weighted average of
the census incomes was considered to be that person’s most probable
income. While each observation was collected on a roadway, it is rea-
sonable to assume each observation was geographically in or near
users’ residential neighborhood when the data were aggregated
(Chen et al., 2014). This geographical assumption is a methodological
limitation of our research. However, a reasonable level of accuracy
was expected because Houston is known as one of the most residen-
tially segregated metropolises in the United States (Fry and Taylor,
2012). Overlaying income typically commits an ecological fallacy to
some extent; however, the segregated nature of Houston neighbor-
hoods lessens this fallacy, and the projected income in this paper are
conceptually similar to the likely degree of financial appanage. The
procedure narrowed down our samples to 10,398 individuals who
were presumed to reside within Greater Houston (Fig. 1).

The authors were interested in how long, how often, and within
what distance range people traveled during the COVID‐19 pandemic
compared to the baseline. To answer these questions, the monthly total
travel distance, radius of gyration, number of distinct visited locations,
and per‐trip distance were computed.

3.2.1. Total travel distance
Monthly total travel distances were calculated as the sum of Eucli-

dean travel distances in a series of geographical coordinates recorded
every 1.84 min on average. Because map matching was not used, the
computed values are expected to be smaller than travel distances on
roadways. Nevertheless, this calculation (Equation 1) was considered
a reasonable means to observe mobility changes within subjects.

LaðtÞ ¼ ∑
nac

i¼2
d
r
*a
i�1 ; r

*a
i

ð1Þ

where:

t = time period
La(t) = total travel distance of user a in time period t
dj,k = Euclidean travel distances between the jth position and kth
position

r
*a
i = the ith position recorded for user a

nac = the number of positions recorded for user a

3.2.2. Radius of gyration
The radii of gyration for each user were calculated as follows

(Equations 2 and 3):

r
*a
cm ¼ 1

nac ðtÞ
∑
nac

i¼1
r
*a
i ð2Þ



Fig. 1. Per-capita income by census tract in the Greater Houston Area.
Note. White areas indicate the lack of income data.
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rag ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nacðtÞ
∑
nac

i¼1
r*
a

i � r*
a

cm

� �2
s

ð3Þ

where:

r
*a

cm = the center of mass of the trajectory (geographic coordinate)
ragðtÞ = radius of gyration as a function of time period t
Pa(t) = per‐trip distance of user a in time period t

3.2.3. Number of distinct visited locations
The temporally closest records of more than 400 s apart were con-

sidered as destinations and origins of consecutive trips. All locations
were aggregated with a regular hexagonal mesh of 3 km2 (1.16 mi2)
(c.f. Song et al. (2010)). The number of distinct visited locations (S)
was calculated using the first and last recorded locations of each trip.
This operation resulted in the averages of 3.39 trips per day per person
in January and 3.54 trips per day per person in February, which are
close to the statewide estimates by the Bureau of Transportation
Statistics (2020). Overlapping visits were not counted even when
one mesh had recorded multiple visits by one user.
4

3.2.4. Per-trip distance
Per‐trip distances were derived as the arithmetic mean of the travel

distance of trips made by a user (Equation 4).

PaðtÞ ¼ 1
ma

c ðtÞ
∑
nac

i¼2
d
r
*a
i�1 ; r

*a
i

ð4Þ

where:

Pa(t) = per‐trip distance of user a in time period t
ma

c = the number of trips recorded for user a

Fig. 2 illustrates the flow of computing variables. All dependent
variables were computed on a monthly basis (t = one month).
3.3. Statistical analysis

We hypothesized that there would be negative correlations
between travelers’ mobility measures and estimated economic status.
Because the income variable was an estimate, the individuals were
grouped by projected per‐capita income bracket with a 10,000‐dollar



Fig. 2. Flowchart of data processing.
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interval. Income brackets that had fewer than 100 people were
included with the nearest bracket. This approach resulted in a smaller
class interval than that of Jay et al. (2020) or Weill et al. (2020).

The distribution of trip distance, or the total distance traveled over
the duration of a trip, is known to have a long tail, meaning a small
percentage of travelers disproportionately influence the mean and
standard deviations of aggregated mobility variables (González
et al., 2008). Because the analysis of interest was mobility trends by
income groups, each dataset’s median was used as average for further
comparisons. Spearman’s rank correlation was used on medians to
examine the hypothesis because the linearity of the variables over
income was not necessarily assumed.
4. Findings

Descriptive statistics of total travel distance, radius of gyration, and
number of distinct visited locations are summarized in Table 1. The
data revealed April experienced 54.7 percent, 73.6 percent, 48.1 per-
cent, and 4.3 percent reductions in mean total trip distances, mean
radius of gyration, mean number of distinct visited locations, and
per‐trip length, respectively, from the baselines. The similar overall
percent reduction in the total travel distances (61.46 percent) was con-
sistent with Apple, Inc. (2020) and Google, LLC (2020) as they report
an approximately 60 percent reduction in the number of routing
requests in April compared to January.

Fig. 3 shows median total travel distance, radius of gyration, num-
ber of distinct visited locations, and per‐trip distance by projected per‐
capita income bracket.
5

Except for the per‐trip distance, the values were lower in April than
in the baselines, indicating the overall reduction in mobility. Because
this study does not necessarily assume a linear relationship between
per‐capita income and the mobility variables, the Spearman’s rank cor-
relation coefficient, ρ, was used to examine the rank correlations
among the income group. The total travel distance had almost no cor-
relation (ρ = −0.05) with the projected income bracket in the base-
line, but it showed a strong negative correlation (ρ = −0.90) with
the income bracket in April. The estimated income bracket had a
strong positive correlation with the radius of gyration in the baseline
condition (ρ = 0.93). However, the correlation turned out to be
strongly negative in April (ρ = −0.83). The number of distinct visited
locations had strong negative correlations with the income level both
in the baseline (ρ = −0.97) and in April (ρ = −0.98). Unlike the
other variables, median mean per‐trip distance was increased in April.
While per‐trip distance had a strong negative correlation with the
income bracket in the baseline (ρ = −0.90) and in April (ρ = −0.7
6), the differences did not seem as evident as the other variables.

Figs. 4–7 present cumulative distribution functions of total travel
distance, radius of gyration, number of distinct visited locations, and
per‐trip distance by projected income bracket, respectively. It is evi-
dent that people with higher projected income brackets had larger
mobility reductions in total travel distance, radius of gyration, and
number of distinct visited locations. For instance, median total travel
distance was reduced by 81.0 percent for individuals with a projected
income group of $80,000 or larger, but it was reduced by only 62.0
percent for individuals with a projected income bracket of $20,000
or less, compared to baseline travel distances. There was a strong neg-
ative correlation (ρ = −0.90) between income and total travel dis-



Table 1
Descriptive statistics of dependent variables.

Sample size Total travel length (mi) Radius of gyration (mi) Number of distinct
visited locations

Per-trip length (mi)

n M SD M SD M SD M SD

$0–$20,000 895
Baseline 1,224.64 923.11 27.77 105.18 65.15 33.65 6.68 8.90
April 624.82 768.84 9.25 24.44 38.59 33.94 6.70 4.85

$20,000–$30,000 2,525
Baseline 1,199.49 879.80 28.31 76.02 61.49 33.07 7.20 10.00
April 553.89 645.34 10.57 32.47 34.35 29.71 6.84 5.08

$30,000–$40,000 2,953
Baseline 1,199.08 948.64 38.03 129.51 55.83 28.72 7.35 10.54
April 477.13 607.56 10.10 27.84 29.33 27.72 6.97 5.96

$40,000–$50,000 2,290
Baseline 1,200.23 1,054.40 39.33 140.13 54.40 26.22 7.17 10.40
April 441.56 623.12 11.24 33.46 27.19 25.18 7.20 6.38

$50,000–$60,000 1,794
Baseline 1,247.15 1,151.32 51.36 175.07 52.08 25.84 7.18 10.72
April 370.85 606.07 11.37 86.27 23.59 21.89 6.48 5.72

$60,000–$70,000 477
Baseline 1,330.57 1,405.74 65.39 219.35 49.25 24.39 6.87 10.72
April 345.54 454.35 10.94 30.24 22.74 21.35 6.47 8.60

$70,000–$80,000 249
Baseline 1,362.35 1,292.92 78.90 204.47 49.69 24.34 6.76 10.55
April 327.46 449.69 8.13 14.74 22.90 21.57 6.62 5.31

$80,000–$150,000 215
Baseline 1,379.97 1,742.41 84.50 260.40 50.26 28.25 6.92 11.24
April 356.94 551.27 15.85 65.83 22.57 24.44 6.68 5.89

All 11,398
Baseline 1,221.46 1,039.68 40.35 140.04 56.42 29.32 7.16 4.80
April 470.81 628.65 10.67 44.75 29.29 27.38 6.85 5.84

Note. M = mean; SD = standard deviation.

Fig. 3. Median total travel distance (top left), radius of gyration (top right), number of distinct visited locations (bottom left), and per-trip distance (bottom right)
by projected per-capita income bracket.
Note. See Table 1 for the sample size in each income bracket. See Figs. 4–7 for the interquartile range.
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Fig. 4. Cumulative density functions of the total travel distance by projected per-capita income group.
Note. Parentheses indicate the sample size in each income bracket. Dashed lines indicate the baseline (average of January 2020 and February 2020) whereas solid
lines represent April 2020.

Fig. 5. Cumulative density functions of the radius of gyration by projected per-capita income group.
Note. Parentheses indicate the sample size in each income bracket. Dashed lines indicate the baseline (average of January 2020 and February 2020) whereas solid
lines represent April 2020.
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tance when comparing April values to baseline values. There was a
strong negative correlation (ρ = −0.93) between income and radius
of gyration when comparing April values to baseline values. Median
radius of gyration was reduced by 72.4 percent for individuals with
a projected income bracket of $80,000 or larger, but it was reduced
by only 32.0 percent for individuals with a projected income bracket
of $20,000 or less, compared to the baseline. Above the 70th per-
centile, all income groups showed somewhat similar radii of gyration
during April, meaning their restricted activities happened within sim-
ilar sizes of areas while they all observed the stay‐at‐home and social
distancing orders. There was a strong negative correlation (ρ = −0.
86) between income and number of distinct visited locations when
comparing April values to baseline values. The number of distinct vis-
ited locations was reduced by 59.6 percent for individuals with a pro-
jected income bracket of $80,000 or larger, but it was reduced by only
47.5 percent for individuals with a projected income bracket of
$20,000 or less, compared to baseline travel distances. The figure also
7

suggests smaller changes in mobility among different economic brack-
ets past $50,000 a year, as supported by all the three aforementioned
measures. In median per‐trip distance, there was a moderate negative
rank correlation between per‐capita income and the change in April
from the baseline (ρ = −0.48). The drop in the radius of gyration
for the higher‐income groups can be partially explained in the context
of larger baseline radii of gyrations in baselines (January and
February).
5. Discussion and conclusions

This study used pseudonymized smartphone location data to inves-
tigate the effects of the COVID‐19 pandemic on individual human
mobility from Greater Houston. This is part of an ongoing effort to
understand mobility change during the COVID‐19 pandemic in a
greater detail. Our attempt was unique in that it implemented a longi-



Fig. 6. Cumulative density functions of the number of distinct visited locations by projected per-capita income group.
Note. Parentheses indicate the sample size in each income bracket. Dashed lines indicate the baseline (average of January 2020 and February 2020) whereas solid
lines represent April 2020.

Fig. 7. Cumulative density functions of per-trip distance by projected per-capita income group.
Note. Parentheses indicate the sample size in each income bracket. Dashed lines indicate the baseline (average of January 2020 and February 2020) whereas solid
lines represent April 2020.
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tudinal study design on (i) spatially disaggregated mobility data along
with (ii) information from census tracts to capture mobility change
(iii) in a single metropolitan statistical area with statewide executive
orders to stay at home. This study investigated human mobility from
four measures: total trip distance, radius of gyration, number of dis-
tinct visited locations, and per‐trip distance.

5.1. Key findings

Overall, our analyses revealed mobility adaptation disparity by
income. The data indicated that human mobility in the Greater Hous-
ton area dropped significantly in April 2020 compared to the baseline
(January and February 2020). We found that individuals from census
tracts with a higher per‐capita income had larger mobility reductions
than people from tracts with lower per‐capita income while the de
facto stay‐at‐home orders were in effect.

In particular, the mobility disparity among income brackets was
evident in total travel distances.
8

Before the travel restriction, individuals tended to have similar tra-
vel distances regardless of estimated income brackets. However,
higher‐income groups saw a larger decrease in travel distances than
lower‐income groups in April. In April, the median travel distance
was 387.23 mi for those whose estimated per‐capita income was under
$20,000 and 185.82 mi for those with estimated income was $80,000
and over.

Individuals from higher‐income tracts had larger average radii of
gyration before the pandemic; these individuals had slightly smaller
radii of gyration during the executive orders than lower‐income indi-
viduals, indicating that higher‐income individuals reduced their radii
of gyration more than lower‐income individuals did. With the result
of the travel distance alone, one might think the observed difference
was largely due to the fact that tracts with higher income are located
in the western center of Houston and thus enabled the residents to tra-
vel shorter distances during the executive orders. However, the smaller
disparities in the radius of gyration and per‐trip distance implies that
people in higher‐income tracts likely made fewer numbers of trips than
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those in lower‐income tracts. The number of distinct visited locations
followed a pattern similar to the total travel distance.

There was no clear disparity across income brackets in the per‐trip
distance. Interestingly, per‐trip distance increased in April over the
majority of percentiles regardless of the income brackets. In median,
per‐trip distances increased by less than a mile in all the estimated
income groups. In general, trip distance distribution shifts towards
zero when the radius of gyration becomes smaller (González et al.,
2008). While the data do not tell the reason behind the observed
increase, it is likely that there was a fundamental change in people’s
trip choice in the midst of the executive orders. Therefore, caution
should be exercised when one tries to apply conventional travel choice
models to data collected during travel restrictions. It is possible that
people made fewer pass‐by stops at attractions, such as restaurants
and coffee shops, in April than they did in the baseline period. How-
ever, further research would be needed to identify the reasons behind
the observed increase in per‐trip distance.

Financial status was a likely factor of the compliance or feasibility
of stay‐at‐home orders. Considering that an individual’s “essential”
fixed expenses to maintain the reasonable minimum standards of liv-
ing (e.g., food, water, and electricity) do not differ vastly, it is intuitive
that the disparity in mobility reduction seemed to be smaller among
higher‐income brackets than lower‐income brackets (Fig. 3).

5.2. Implications of the findings

The findings have meaningful social implications. It is likely that
people in lower income brackets did not or could not reduce as much
mobility as higher‐income groups did during the executive orders in
the midst of the COVID‐19 pandemic. In total travel distance, radii
of gyration, and the number of distinct visited locations, cumulative
density functions revealed consistently lower mobility reductions for
individuals in lower income brackets throughout most percentile
ranges. While media and other articles have speculated that the dispro-
portionality of COVID‐19 impacts by different financial status, this is
one of the first articles reporting the mobility adaptation disparity in
the United States at the census tract level. If combined with further
studies, the findings can be valuable for macroscopic and mesoscopic
COVID‐19 epidemiological model development and calibration as well
as policy evaluations hereafter.

Our findings are consistent with Circella (2020), who reported dif-
ficulties in mobility adaptation among lower‐income populations dur-
ing the COVID‐19 pandemic. Furthermore, the analyses supported
what some nationwide studies in the United States (Jay et al., 2020;
Weill et al., 2020) and abroad (Pepe et al., 2020) have also claimed:
higher income is associated with larger mobility reductions. Since
those preceding nationwide studies used aggregated location data to
compare mobility across a nation, it is noteworthy that the disparity
in mobility adaptation was observed among different income groups
within a metropolitan statistical area where uniform executive orders
were enforced. The results were in line with media speculations, which
might explain a reason behind the disproportionate impacts of COVID‐
19: people with low income did not have a practical choice to stay at
home. Because research indicates that racial residential segregation in
Houston had already been associated with poor‐self reported health
before the COVID‐19 outbreak (Anderson and Oncken, 2020), it was
likely that the pandemic had amplified inequity in the society.

5.3. Limitations and future research directions

Our research had some limitations. One limitation of the present
study, as well as existing literature, was that the mobile travel data
may exhibit a systematic error. In other words, pseudonymized indi-
viduals may not represent each demographic group without bias.
The authors still maintain reasonable confidence due to the fact that
the sample sizes are all fairly large across the groups. In future studies,
9

this limitation can be addressed if sample data can be stratified based
on demographics information directly tied to mobility data.

Another limitation was that the authors did not overlay any other
socioeconomic variables (e.g., gender or household size) associated
with each census tract. This was mainly because we preferred to avoid
stacking ecological fallacies. However, it has been known that age is a
major covariate of income as income tends to show an inverted U‐
shape with age (Sturman, 2003). Although it is difficult to eliminate
the effects of confounders completely, it would be ideal to control
the variable if the data availability and a research design allows.
Researchers would get results closer to the “ground truth” if the true
demographics of pseudonymized mobility data were available. For
example, essential businesses, such as grocery stores and gas stations,
remained open during the executive orders, but there is little research
that took such factors into account because such mobility data are
rarely available to the public. When it comes to economic status, dis-
posable income, current assets, and net assets could be better indica-
tors of financial leeway than pre‐tax income if such variables are
available in future research.

While this study showed an apparent disparity in travelers’ mobil-
ity patterns during the pandemic, this study could not distinguish the
trip purposes or the movements of specific types of workers. To reveal
the reasons behind mobility pattern change, more qualitative research
would be worth conducting. For instance, surveys about typical travel
purposes before and during the pandemic may reveal the reasons
behind the shift in travelers’mobility (e.g., increased per‐trip distance)
by controlling covariance.

This study demonstrated the potential of the use of spatially disag-
gregated data on mobility research. Similar regional research in differ-
ent states and countries would further reveal comparative impacts and
generalizability of the associations between financial status and mobil-
ity disparity during travel restrictions. In the near future, it would be
beneficial to conduct meta‐analyses to integrate insights about mobil-
ity changes related to the COVID‐19 pandemic.
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