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INTRODUCTION

Amidst contemporary shifts in the global “smart-tech” arena, there has been a parallel shift 
in the dynamics of technological integration in health care and its rapidly growing role in 
supplementing traditional methods of patient care.[36] An integral aspect of this global movement 
is the marriage of artificial intelligence (AI) with vast databases as a tool to assist physicians to 
not only diagnose but also subsequently manage the ever-growing burden of disease.

The realm of AI contains within itself machine learning (ML), as well as a further subset known 
as deep learning (DL). ML takes use of statistical models to enable these algorithms to improve 
as more data are introduced to them [Figure 1].[28] DL is also a process by which computers glean 
patterns from past experiences and large amounts of data to generate algorithms designed to 
make increasingly accurate predictions about future events.[3,5] What further specializes it from 
ML is the multilayered neural networks used to train on vast amounts of data. Neural networks 
much like the brain use nodes of information (neurons) that are arranged in layers. Each 
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neuron uses data from the training set (or previous neuronal 
connections) and calculates a new piece of datum using 
weightage and bias factors before communicating the new 
piece to neuron(s) in the next layer, eventually generating an 
outcome.[39]

DL algorithms may then function when provided sets of 
parameters to evaluate a plethora of aspects of clinical 
importance in medicine, including screening, diagnosis, 
and treatment efficacy. Each algorithm must first be assessed 
by the relevant performance metrics of the extracted 
patterns when extrapolating beyond the model dataset.[39] 
In practice, however, the presence of unknown confounders 
and imprecise measurements endows a random component 
to our estimates that varies from individual to individual 
and population to population.[5] As a result, the diversity 
of a training dataset will enable the DL algorithm to learn 
“better,” which, in turn, would allow for greater and more 
valid generalizability of predicted patterns on a wider range 
of populations.[5,39]

Consequently, this generalizability requires a revolution in 
data mining to generate large volumes of data from which 
this subset of AI technology can learn. This is vital to 
overcome the challenges of data sparsity, multicollinearity, 
and overfitting, and therefore, to effectively minimize 
internal bias in the model developed.[38]

Based on a subtle balance between use and limitations, DL 
promises to play a crucial role in healthcare, allowing us 
to find a niche between generalized practice guidelines 
and personalized patient-centric care. These algorithms 
have already shown a high level of diagnostic performance 
based on imaging data for conditions including diabetic 
retinopathy, skin cancer, and pneumonia.[36] Salim et al., 
for example, have recently commented on the rates of 
diagnostic capabilities of AI (92% area under the receiver 
operating curve [AUROC] for three different commercially 
available computer-aided detection [CADe] algorithms) in 
assessments of screening mammograms, with one algorithm 
demonstrating comparable sensitivity (81.9%) to those of 
first-reader (77.4%) and second-reader (80.1%) radiologists 
given that the AI and radiologists’ readings were equally 

probable to rule in the disease (at the same specificity).[30] 
Other applications include but are not limited to the ability to 
predict genomic features such as clinically relevant mutations, 
to predict and build models of regulatory and enhancing 
elements in the DNA replication and transcription, and to 
predict patterns of disease based on population statistics such 
as infectious disease epidemics and pandemics.[38]

Amidst these enhancements in health care across disciplines, 
the realm of prediction and management in oncology stands 
to benefit greatly from such technologies.[26] In 2014, Louis 
et al. published an update on behalf of the International 
Society of Neuropathology stating that non‐tissue‐based 
information (e.g.  clinical and radiological information), 
could be of clear utility to aid in reaching a diagnosis. This 
support from an international body has led neuroradiology 
to play an increasingly important role in the potential 
treatment of neuro-oncological patients, with promises of 
AI-enhanced readings further elevating the importance of 
neuroradiology.[24] As such, our paper, as summarized in 
[Figure 2], aims to assess the state of DL algorithms in their 
efficacy and precision of pre-, peri-, and post-operative 
decision-making in neuro-oncology, using gliomas as an 
oncologic model.

DIAGNOSIS, GRADING, AND CLASSIFICATION 
OF GLIOMAS

The clinical course of a neoplasm is dependent on the 
efficacy of several stages of medical intervention including 
the recognition of clinical manifestations, initial screening 
of the lesion (employing imaging or laboratory testing), the 
decision to observe or treat, postscreening histopathological 
assessment/gold standard confirmation, and predicting 
morbidity and mortality outcomes. ML can be used to aid 
this paradigm of medical intervention at several of these 
levels [Figure 3].[28]

As mentioned before, the strength of ML as a tool to evaluate 
radiological screening independently or augmentatively 
is yielding promising results, with this excitement not only 
limited to mammography but also in the realms of lung 
cancer, prostate cancer, and brain metastases with the use 
of CADe and computer-aided diagnoses techniques.[2,7,35] 
Prospectively, ML may be able to correlate radiological 
imaging detailing the extent of disease with genomic data 
of the lesion such as mutations and gene expressions and 
histopathological findings to establish an accurate diagnosis 
in an emerging field known as imaging genomics.[4]

The promise of ML in the field of oncology in addition 
to the growing recognition of an integrated approach to 
neuropathology lends optimism to the treatment of a subset 
of neuro-oncological entities known as gliomas. These 
tumors are difficult to render an exact judgment on, due to 

Figure 1: The subsets of artificial intelligence.



Khan, et al.: Deep learning applications in neuro-oncology

Surgical Neurology International • 2021 • 12(435)  |  3

standard for the diagnosis of gliomas, the very notion of a 
biopsy raises a few concerns. There are many inherent risks 
with this method of diagnosis, with inevitable errors due to 
inadequate sampling and time inefficiency.[43] Thus, the need 
for elimination of subjectivity and improvement of sensitivity 
and timeliness of histopathological diagnosis as well as 
the growing logistical feasibility of ML imparts a growing 
confidence in the use of such technology in the diagnosis of 
gliomas.

Broadly, ML techniques can be divided into those that learn 
to predict outcomes based on input-output paired training, 
termed supervised learning, or those that find patterns 
within input data itself without preset outcomes, termed 
unsupervised learning. Supervised learning itself can be 
achieved through several techniques such as support vector 
matrixes (SVMs) which aim to delineate a function that 
separates two sets of data.[33]

Previously, studies have demonstrated that gliomas can be 
classified according to their clinical grade using linear SVMs 
which were trained on descriptive features such as amount of 
mass effect of blood supply. The limitation of these studies, 
such as one by Li et al., is that these quantitative features 
were estimated by domain experts and the definition of 
these features was limited to expert opinion and hence not 
reproducible.[23] Two other studies subsequently used other 
parametric features to improve accuracy; Devos et al. used 
MR intensities with spectroscopy using linear discriminant 

Figure 2: The take-home message.

similarity of cellular structures among lower grade lesions; 
with estimations varying due to inter-reader variability 
depending on the professional experience of histopathologists 
and radiologists, introducing an element of subjectivity.[37] 
Although the simple grading of these tumors is not a principle 
bottleneck in their treatment paradigm, some difficulties 
remain in the presence of standardization efforts, such as the 
use of objective classification criteria, the most prevalent of 
which is the WHO classification.[34] Furthermore, although 
histopathological and molecular analysis remains the gold 

Figure  3: Levels of entry for deep learning applications in  
neuro-oncology.
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analysis, linear and nonlinear least squares SVMs (AUROC of 
0.94 in distinguishing low-grade vs. high-grade gliomas),[11] 
whereas Rajendran made use of association rule mining 
(specifically pruned association rule), a technique in ML that 
aims to predict certain characteristics of a set based on other 
characteristics, to categorize CT scan brain images as simply 
either normal, benign, or malignant with a 96% sensitivity 
and 93% accuracy.[29]

It stands to reason from this discussion that the beginnings 
of ML in neuropathology must be the generation of a dataset 
from which newly developed AI can learn. For gliomas, 
radiological evidence in addition to matched clinical, genetic, 
and pathological data collections reside in the Cancer 
Imaging Archive and Genomics Data Commons Data Portal 
respectively, as a joint effort between the National Cancer 
Institute and the National Human Genome Research Institute 
from 2006 onward.[13] Since 2012, ML and DL techniques 
applied to carefully selected data subsets from these archives 
have already generated numerous algorithms related to 
tumor segmentation (delineating the location and extension 
of a lesion from surrounding tissue) under the brain tumor 
segmentation challenge.

At present, algorithms generated by ML have shown promise 
in accurate recognition of characteristics used to define 
gliomas. Noninvasive neuroimaging tools for glioma grading 
using a multitude of quantitative parameters obtained from 
advanced magnetic resonance imaging (MRI) techniques, 
such as dynamic contrast-enhanced MRI, arterial spin 
labeling, and diffusion-weighted imaging, are currently being 
utilized in many ML/DL models.[40] Skogen et al. were able 
to discriminate high-grade gliomas from low-grade gliomas 
using MRI texture analysis with a fine texture scale resulting 
in a sensitivity and specificity of 93% and 81%, out of a total 
of 95 glioma patients, but fared worse at differentiating 
within those grades.[32]

The emerging field of radiogenomics breaks the restrictions of 
applying AI technology to segmentation only. Advancement 
in our understanding of key molecular differences in tumor 
cells in comparison to normal cells and how these differences 
drive changes in the microenvironment of the lesions now 
lends itself to radiological patterns that can more accurately 
identify a tumor. For example, certain glioma varieties 
exhibit differences in isocitrate dehydrogenase (IDH), a 
key enzyme in the Krebs cycle. Gliomas that potentiate 
the activity of certain genotypes can drive the production 
of 2-hydroxyglutaric acid, vascular endothelial growth 
factor, and hypoxia-induced factor-1α. The activity of these 
molecules may, in turn, produce characteristic radiological 
findings such as alterations in histogram analysis.[21]

In fact, the current literature supports the idea of using 
radiological imaging to predict the presence of such 
biomolecular differences. Specifically in the context of 

gliomas, studies have been conducted on IDH mutations, 
O6-methylguanine methyltransferase (MGMT) 
hypermethylation, epidermal growth factor receptors 
(EGFRs), and 1p/19q chromosomal codeletions.

Zhang et al. were able to generate a predictive model for 
IDH genotypes (of which genotypes 1 and 2 predict good 
response to therapy) within high-grade glioma lesions based 
on clinical data and radiological features obtained through 
conventional MRI with an AUROC of 0.9231 in a validation 
cohort.[41] The radiological features considered included 
anatomical location, texture, and shape, among others. An 
analogous non-AI-assisted study conducted by Zhou et al. 
was also able to generate a similar algorithm to predict IDH1 
mutation (AUROC 0.86 ± 0.01), 1p/19q codeletion status 
(conferring increased survival) (AUROC of 0.96 ± 0.01), and 
histological grade (AUROC 0.86 ± 0.01).[42] In contrast, a 
convolution neural network (CNN), a form of DL especially 
suited to image recognition, developed by Chang et al. 
demonstrated a high degree of accuracy in predicting IDH 
genotypes from MRI features in Grade  II–IV gliomas in a 
validation test (AUROC 0.95).[8] Chang et al. also developed 
a neural network predictive of several factors, of which its 
accuracy in predicting IDH1 mutation status was 94%.[9]

Similarly to IDH, MGMT hypermethylation is an important 
identifying marker due that also happens to predict higher 
response to treatment with combination temozolomide and 
radiation.[17] Korfiatis et al. evaluated three residual deep 
neural network architectures in their ability to predict the 
MGMT methylation status. The three 18, 34, and 50 layered 
architectures were able to achieve an accuracy of 76.75% 
(±20.67%), 80.72% (±13.61%), and 94.90% (±3.92%), 
respectively, lending credibility to higher-order processing 
providing better results.[22] Similarly, Han and Kamdar obtained 
a 67% accuracy on their validation set exploring MGMT 
methylation status from MRI scans obtained from glioblastoma 
multiforme (GBM) (Stage IV glioma) patients in the TCIA/
TCGA archives.[16] Chang et al. developed a neural network 
from data for 259  patients from the TCIA/TCGA archives, 
showing 83% accuracy in predicting methylation status.[9]

Other studies have also shown the ability of ML to detect 
1p19q chromosomal codeletion (recognized as predictor 
of chemotherapeutic response in gliomas), and EGFR 
amplification status, another avenue for targeted therapy. 
The aforementioned neural network developed by Chang 
et al. manages to predict 1p19q codeletion status at an 
accuracy of 92%.[9] A multiscale CNN developed by Akkus 
et al. similarly predicts the codeletion at an 87.7% accuracy.[1] 
Kickingereder et al. set out to use ML techniques to identify 
a myriad of molecular characteristics including MGMT 
hypermethylation and hallmark copy number variations. Of 
these, they managed to develop a model that predicted EGFR 
with a 63% accuracy.[21]
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With such exciting advancements, comparable outputs to 
traditional methods of algorithmic generation, and a yet 
unmet ceiling for improvement, it is thought that in the 
near future, with the increasing availability of high-quality 
data, CNNs will be the mainstay in both diagnosing and 
prognosticating cancer, using widely available imaging 
modalities.

PROGNOSIS PREDICTION

While ML can be useful in predicting prognosis based just 
on imaging characteristics before surgery, we have more 
information after surgical resection of the tumor that can 
be incorporated in making extensive ML algorithms. Along 
with imaging characteristics, the cumulative biopsy and 
clinical data such as tumor markers can help generate ML 
algorithms for estimating prognosis, complications, and other 
outcomes. It can also overcome challenges such as the correct 
recognition of tumor progression versus pseudoprogression, 
a transient MRI finding mimicking progression with eventual 
improvement. One such study aiming to delineate the two 
conducted by Jang et al. developed a CNN model with an 
AUROC of 83% that was trained on 59 individuals and tested 
on 19 (Seoul National University Hospital dataset).[19] Repeat 
model development by Jang et al. on the Korean Radiation 
Oncology Data (n = 182) yielded a model with an AUROC 
of 86%.[20] The necessity to develop a second model shall be 
discussed in the section on ML and challenges.

Conventionally, prognosticating for GBM involves 
accounting for a multitude of independent risk factors 
impacting overall survival (OS) such as male gender, age 
>60  years), poor preoperative Karnofsky scores of <70, 
Caucasian ethnicity, advanced tumor with partial resection, 
and surgery without adjuvant chemoradiation.[35] Using 
several of these factors, Gittleman et al. developed an 
independently validated nomogram with a concordance 
index (equivalent to AUROC for the censored data used 
in the study) of 0.657.[14] Notably, however, this study was 
conducted on a Caucasian majority sample and utilizes 
only MGMT hypermethylation as a prognostic factor of the 
molecular characteristics seen in gliomas.

A study by Nie et al. demonstrated that through a 3D CNN, 
they were able to train a support vector machine to predict a 
long or short OS time. Their experimental results were able to 
achieve 89.9% accuracy through their methods.[27] They were 
able to feed single-channel (T1 MRI) multi-channel (fMRI 
and DTI) data through a binary classifier (e.g.  SVM) to 
produce a framework for high-level brain tumor prognosis. 
The study elucidates the incredible potential application 
that a neural network possesses in prognosticating neuro-
oncological patients based on just imaging alone. Similarly, 
a study by Sanghani et al. was able to produce comparable 
results on GBM patients based on routinely acquired MR 

images alone. MR image derived texture features, tumor 
shape, and volumetric features, and patient age was obtained 
for 163 patients, which after put through a similar SVM, was 
capable of producing 2-class and 3-class OS group prediction 
accuracy of 98.7% and 88.95%, respectively.[31]

Another study by Zhou et al. utilized nonquantitative spatial-
correlated features from MRI defined tumor subregions 
(termed habitats) in developing a computational framework. 
This framework was able to use intratumoral grouping and 
spatial mapping to identify GBM tumor subregions and 
yield habitat-based features. After separating data sets into 
those that underwent resection with GBM (32 patients), and 
those that did not (22  patients), they were able to achieve 
87.50% and 86.36% accuracies for survival group prediction, 
respectively.[44]

The role of computational networks in prognosticating 
overall long-  and short-term survival is one that has been 
evaluated through dozens of studies in low-  to mid-grade 
tumors, yielding similar results when applied to high-grade 
tumors as well.[14,19,20,27,31,35,44] These networks are capable of 
functioning on routinely acquired data, as demonstrated by 
Sanghani et al., but also provide considerable information 
to both the health-care provider and the patient. Eventually, 
these systems are thought to be able to augment a neuro-
oncologist’s decision-making ability, however, it would not 
be long before they are potentially able to surpass human 
performance in terms of prognostication.

CHALLENGES AND LIMITATIONS

Ethical considerations

ML, like any early adopted technology, is not without its 
potential drawbacks in terms of ethical dilemmas.[10] ML 
applied in other fields has already shown some biases, with 
the problem stemming from the fact that algorithms may 
mirror human biases. These biases may be introduced into 
a medical setting where patients receive notably different 
treatment regimes leading to an unoptimized approach and 
potential harm.

There is an incredibly urgent need for ethical guidelines for 
medical practitioners to use these advancing AI and machine 
learning technologies. Time-constrained consultants are 
expected to understand the inner workings of these insular 
programs, as without knowing the data sets they are built 
on, the technology can progress into a black box leading to 
ethically gray outcomes. The lack of transparency inherent 
with these systems may lead to physicians doubt either the 
algorithm, or themselves, when their decision is conflicting 
with one made by a machine.

It is also important to recall that the foundation of the 
current medical system in many nations was based on a 



Khan, et al.: Deep learning applications in neuro-oncology

Surgical Neurology International • 2021 • 12(435)  |  6

patient-doctor relationship, not a patient-health-care system 
relationship. Many doctors (and patients) feel uneasy at 
the growing rate at which we are adopting these machines 
into our health-care decisions. One study showed that over 
63% of adults in the United  Kingdom felt uncomfortable 
with AI replacing the conventional decision-making 
process.[12] Their lack of acceptance of AI is, to some degree, 
warranted. In many fields, such as engineering, AI and ML 
represent efficiency and will play an important role in the 
future. However, one of the basic ethical tenets of medicine 
is autonomy, which requires physicians to have a deeper 
understanding of the clinical validation of ML in studies. 
Health-care professionals operate on their own basis of 
expertise and clinical acumen. When their decision-making 
skills are infringed upon, by blindly accepting a prognosis, 
diagnosis, or route of treatment provided by an AI or 
algorithm, they could be seen as violating their Hippocratic 
oath: primum non nocere (“first, do no harm”).[10] It is this 
lack of transparency and explainability that is vital in the 
role of medicine that limits its use when compared to its role 
in business or engineering. Autonomy and nonmaleficence 
are ethical principles grounded in “consequentialist” 
ethical theory, which holds that the moral quality of an 
action depends on its consequences. If the consequences of 
choosing an AI favored diagnosis over a physician diagnosis, 
whether for a high- or low-grade tumor, have the possibility 
(however minute as shown by the accurate results of ML) of 
resulting in an increased mortality – should we still use this 
technology?[12]

Finally, the laws and rules of ethics are a worldwide debate 
but enforced by national laws. Ethical laws on the potential of 
AI and ML in medicine have been hotly contentious but are 
virtually absent in low- and middle-income countries.[15] This 
is not based on a lack of acceptance of AI/ML, as most health-
care professionals are in favor of their use (despite ethical 
dilemmas), rather it is contingent on lack of infrastructure, 
high cost, and lack of training in the region.[18]

Another reason for the impediment in widespread 
adoption, and perhaps the most important one, is a lack 
of accountability.[12] Allocation and grounds for liability 
for adverse events related to the ML tools used with actual 
patients need to be clarified by a national/international 
ethical body. There is currently no conceivable method 
to predict how these tools, along with other ML models in 
medicine, will expose hospitals, physicians, and patients to 
liability.

Other logistical drawbacks to the use of AI in medicine 
include the scale of computational power required to develop 
useful algorithms and prioritization of resource allocation 
toward more pragmatic algorithms to maximize their effects.

Specifically in the field of radiological AI interpretations, 
a major drawback in considering findings and pattern 

recognition in any image modality is a lack of consensus 
on which features would add most value to a preoperative 
diagnosis, whether from a histogram parameters or image 
texture attributes.[6] Attribute selection is a concept that 
aims to remedy this challenge. It revolves around choosing a 
division with the chosen least number of variables providing 
the highest accuracy, alongside the most informative 
attributes. The rigorous selection process searches through 
possible combinations of attributes to find a particular 
subset that can reliably predict outcomes, resulting in an 
algorithm that is characterized by the method used to define 
the predictive value of each subset of attributes (feature 
evaluator) and the method determining the search over the 
attributes (search method).[40]

A prospective trial on glioma patients, using a previously 
trained CNN based on an accurate model, to help 
prognosticate or diagnose a patient is sorely needed. Until, 
we overcome challenges in implementation and their exact 
use in clinical decision-making processes becomes apparent, 
they will remain promising research ventures.

CONCLUSION

The use of AI to augment the clinical judgment and practice 
of a physician is an exciting prospect, specifically in the 
field of neuro-oncology where neuroradiology and neuro-
radiogenomics are prime candidates for the use of the 
algorithmic learning in order. In a noninvasive manner, these 
tools can predict the presence of several factors that can be 
helpful in the diagnosis and prognostication of gliomas. 
Current literature already demonstrates a high sensitivity and 
accuracy of individual learning techniques in determining 
genetic markers and radiological features. The challenge lies 
in creating algorithms that are applicable on much larger 
scale, with greater amounts of learning and practice sets for 
AI learning techniques to be tested on, while still remaining 
logistically feasible to be run within the strict timeframes 
within which health-care systems operate. In addition, there 
are ethical considerations to be made regarding the use of AI 
within the clinical realm and their impact on a physician’s 
decision-making.
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