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Abstract
Inflammation plays an important role in the pathological process of ischemic 
stroke, and systemic inflammation affects patient prognosis. As resident immune 
cells in the brain, microglia are significantly involved in immune defense and 
tissue repair under various pathological conditions, including cerebral ischemia. 
Although the differentiation of M1 and M2 microglia is certainly oversimplified, 
changing the activation state of microglia appears to be an intriguing therapeutic 
strategy for cerebral ischemia. Recent evidence indicates that both mesenchymal 
stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) regulate inflam-
mation and modify tissue repair under preclinical stroke conditions. However, the 
precise mechanisms of these signaling pathways, especially in the context of the 
mutual interaction between MSCs or MSC-derived EVs and resident microglia, 
have not been sufficiently unveiled. Hence, this review summarizes the state-of-
the-art knowledge on MSC- and MSC-EV-mediated regulation of microglial 
activity under ischemic stroke conditions with respect to various signaling 
pathways, including cytokines, neurotrophic factors, transcription factors, and 
microRNAs.
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Core Tip: Upon stroke induction, M1 microglia participate in the proinflammatory 
tissue response, whereas M2 microglia promote brain repair by secreting anti-inflam-
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matory cytokines and neurotrophic factors. This review summarizes the effects of 
mesenchymal stem cells (MSCs) and MSC-extracellular vesicles on regulating 
microglial activity under ischemic stroke conditions through various signaling 
pathways, such as cytokines, neurotrophic factors, transcription factors, and 
microRNAs.
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INTRODUCTION
Inflammation plays an important role in the pathophysiology of ischemic stroke, and 
systemic inflammation worsens the outcome of stroke patients[1-3]. Preclinical models 
of focal cerebral ischemia are associated with the activation of inflammatory cells, 
including neutrophils, T cells, and resident microglia. The latter cells contribute to 
both immune defense and brain tissue repair[4]. Under physiological conditions, 
microglia are resting and maintain a balance with regard to the inflammatory status of 
the brain[5]. Ischemic stroke immediately activates microglia, prompting an inflam-
matory response in brain tissue[5]. Consequently, microglia migrate toward the 
location of the lesion and exacerbate brain damage by secreting inflammatory 
cytokines. On the other hand, microglia can remove debris and secrete anti-inflam-
matory cytokines, supporting endogenous brain repair[4,6]. These opposing roles of 
microglia under ischemic conditions correlate with distinct phenotypes, as indicated 
by the proinflammatory M1 type and the anti-inflammatory M2 type[7,8]. M1-type 
microglia exacerbate brain damage by secreting interleukin (IL)-6, IL-1β, nitric oxide 
(NO), tumor necrosis factor (TNF)-α, and other factors, whereas M2-type microglia 
promote brain repair by secreting IL-4, IL-10, and transforming growth factor (TGF)-β
[9,10]. Changing the activation state of microglia might therefore be an intriguing 
approach for stroke therapy.

Regulating poststroke immune responses offers novel therapeutic strategies even 
for patients who qualify for neither systemic thrombolysis nor endovascular 
thrombectomy[11,12]. Hence, modulating poststroke immune responses and 
stimulating endogenous repair mechanisms through the transplantation of adult stem 
cells, such as mesenchymal stem cells (MSCs), has gained increasing interest in recent 
years. In fact, preclinical work, as well as clinical trials, revealed the efficacy and 
tolerance of grafted MSCs in stroke settings[13-15]. However, MSCs do not typically 
integrate into residing neural networks within the ischemic hemisphere but rather act 
indirectly. Such paracrine effects are mediated, at least in part, by extracellular vesicles 
(EVs). EVs are small vesicles in the range of 30 nm to 1000 nm that are secreted by 
virtually all eukaryotic cells and contain a plethora of proteins, noncoding RNAs, and 
DNA[16,17]. MSCs and MSC-EVs affect a great number of intracellular and 
extracellular signaling pathways, among which are immunoregulatory cascades.

Despite the aforementioned data on the effects of MSCs and EVs on poststroke 
inflammation, the precise mechanisms underlying such a therapeutic approach are 
unknown. Although some evidence suggests that bone marrow-derived MSCs and 
MSC-EVs may inhibit microglial activation and improve neurological function under 
pathological conditions, including stroke[18-21], data on the interaction between MSCs 
or MSC-EVs and microglia are limited. In this review, we summarize the therapeutic 
effects of MSCs and MSC-derived EVs both in preclinical studies and in clinical stroke 
trials. We also summarize the mutual interactions between MSCs or MSC-EVs and 
activated microglia under such stroke conditions.

https://www.wjgnet.com/1948-0210/full/v13/i8/1030.htm
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THE ROLE OF MICROGLIA IN ISCHEMIC STROKE
Microglial activation in ischemic stroke
Under physiological conditions, microglia display a ramified structure characterized 
by a small soma and fine processes to maintain homeostasis within the extracellular 
milieu[22,23]. Stroke results in microglial activation, which represents the first step in 
an inflammatory response that is followed by the activation of other immune cells, 
such as T cells, neutrophils, and natural killer cells[24,25]. When activated after stroke, 
microglial cells undergo four distinct phenotypes: ramified, intermediate, amoeboid, 
and round[26]. Ramified microglia indicate the resting state, whereas intermediate 
microglia have larger cell bodies and shorter bumps. The amoeboid microglial cell 
body, on the contrary, is larger and displays shorter bumps or even no bumps at all, 
similar to round microglia, which are found in the lesion center[26]. Based on these 
morphological characteristics and their secretion patterns, microglia are characterized 
as M1 or M2.

Correlation between morphological phenotypes and microglial function in cerebral 
ischemia
Modifying microglial morphology changes cellular functions such as the production of 
cytokines[27]. The immediate activation of microglia due to cerebral ischemia results 
in a change in cell size, as well as in different migration and secretory properties[28]. 
Classic (M1 type) and alternatively (M2 type) activated microglia are most commonly 
reported after ischemic insult[28]. M1 microglia participate in the proinflammatory 
tissue response and are able to present antigens, whereas M2 microglia remove 
necrotic tissue and stimulate tissue repair, thus maintaining homeostasis by producing 
anti-inflammatory substances. Phenotypic shifts between the M1 and M2 types, 
therefore, has practical implications, and promoting an M2 phenotype would assist 
tissue repair by decreasing inflammatory factors.

Phenotypic shifts between M1 and M2 microglia involve a plethora of characteristics 
for which not only the aforementioned phenotype but also the secretion patterns of 
these cells are important. Hence, proinflammatory M1 microglia typically secrete 
factors such as IL-1β, interferon (IFN)-α, IL-6, cyclooxygenase-2 (COX-2), motif 
chemokine ligand (CXCL10), and inducible NO synthase (iNOS)[29-32]. In contrast, 
anti-inflammatory M2 microglia have the capacity to produce and secrete IL-10, IL-13, 
IL-4, insulin-like growth factor (IGF)-1, and IFN-β[33,34]. Of note, based on the current 
knowledge on M2-polarized microglia in the central nervous system, the M2 
phenotype is further categorized as M2a, M2b, or M2c based on cellular function[35,
36]. M2a microglia are strongly associated with IL-13 and IL-4 and exert strong anti-
inflammatory effects. These cells also produce significant amounts of arginase-1, Ym-1, 
CD206, and Fizz1[36], while the M2b phenotype does not have the capacity to produce 
the latter[35,37]. The M2c phenotype, also known as deactivated microglia, is 
associated with promoting tissue regeneration at a later stage of disease when inflam-
mation is declining[38,39].

Mechanisms and role of M2 microglial activation in ischemic stroke
A large number of studies have been performed to identify the main pathways and 
mediators that modulate M2 microglial activation. Two primary transcription factors, 
c-AMP response element-binding protein (CREB) and nuclear factor-κB (NF-κB), are 
strongly associated with signaling pathways for M2 microglial polarization. Activated 
microglia, for instance, display reduced expression of COX-2 by suppressing the 
activation of NF-κB[40,41]. In addition to the aforementioned signaling cascades, other 
pathways, such as Toll-like receptor 4 (TLR4)[30], CD8[42], and mitogen-activated 
protein kinase (MAPK), are also involved in promoting the polarization of the M2 
phenotype, as indicated by preclinical stroke studies[43]. Typically, the pathways and 
mediators responsible for M2 microglial activation interact with each other to some 
extent, and they tend to work synergistically rather than independently to achieve the 
maximum anti-inflammatory effect. Some of the signaling pathways associated with 
the polarization of the M2 phenotype are summarized in Figure 1.

Blood-brain barrier (BBB) disruption is significantly involved in the pathology of 
ischemic stroke[44,45]. BBB disruption allows extracerebral substances to reach the 
brain parenchyma in an unregulated way, worsening brain tissue damage and 
inducing brain edema. The early stage of BBB disrupture occurs at 12-24 h after stroke 
exposure, followed by a second delayed phase at approximately 48-72 h poststroke, 
during which microglia are activated, which, in turn, also affects BBB integrity. 
Microglia initially protect BBB integrity by promoting the levels of the tight junction 
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Figure 1 Signaling pathways describing the process of polarization of the M2 phenotype. Damaged neurons induced by ischemic stroke activate 
resting microglia by producing damage-associated molecular pattern molecules. M1 phenotype microglia participate in the proinflammatory tissue response, whereas 
M2 microglia produce antiinflammatory substances. DAMPs: Damage-associated molecular pattern molecules; PPAR: Peroxisome proliferator-activated receptor; 
CREB: c-AMP response element binding protein; NF-κB: Nuclear factor-κB; YM1: Chitinase-3 Like protein; CD: Cluster of differentiation; STAT: Signal transducer and 
activator of transcription; ROS: Reactive oxygen species; Arg-1: Arginase-1; TNF: Tumor necrosis factor; iNOS: Inducible nitric oxide synthase; TLR: Toll-like 
receptor; IGF-1: Insulin-like growth factor-1; IL: Interleukin; IFN: Interferon; FIZZI: Found in inflammatory zone 1; TGF: Transforming growth factors; MAPK: Mitogen-
activated protein kinase.

protein claudin-5. During sustained inflammation, however, activated M1 microglia 
are able to phagocytose astrocytic end-feet and destroy BBB integrity by secreting 
various vascular proteins[30,46]. Of note, M1 microglia induce endothelial necroptosis 
and impair BBB integrity by expressing TNF-α as a primary mediator of these effects
[47].

Based on current studies, M2 microglia may attenuate BBB disruption by producing 
progranulin, which is helpful in preventing brain edema[48]. To date, studies 
revealing a direct interaction between microglial activation and BBB disruption have 
been scarce. In this context, the stroke-associated release of reactive oxygen species 
(ROS) also activates microglia, which further worsens the integrity of the BBB[49]. 
Likewise, the postischemic upregulation of NF-κB in microglia stimulates the these 
cells to secrete matrix metalloproteinases, which play key roles in the disruption of the 
BBB[50].

MSCS AND EVS FOR THE TREATMENT OF ISCHEMIC STROKE
The biological concept of MSCs and EVs
In the 1960s and 1970s, Friedenstein et al[51] first revealed that ectopic transplantation 
of rodent bone marrow cells into the kidney capsule has osteogenic effects. It was not 
until 1991, however, when Caplan et al recommended the term “mesenchymal stem 
cells” due to the capacity of these cells to differentiate into various cell lineages[52]. 
Interestingly, researchers were able to establish other tissue sources of MSCs, 
including adipose tissue[53,54]. In 2006, the International Society for Cellular Therapy 
proposed specific MSC criteria due to some controversy about the characteristics of 
MSCs[55]. These criteria include adhesion to the substrate in question, the ability to 
express the surface antigens CD73, CD90, and CD105, the absence of proteins such as 
CD14, CD34, CD79a, CD11b, CD45, and human leukocyte antigen-11 and the potential 
to differentiate into adipocytes, osteoblasts, and chondroblasts[55,56]. To date, MSCs 
have been widely studied in various preclinical models and clinical settings alike, and 
these studies have focused on cell migration patterns and immunosuppressive 
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functions[57-62].
MSCs, however, act in an indirect way, which is supported by the fact that 

transplanted MSCs rarely reach the ischemic lesion site after intracerebral injection 
and even less so after systemic transplantation[63,64]. Rather, the majority of MSCs are 
trapped in peripheral organs such as the lung after systemic transplantation. In 
addition, neural differentiation, synaptogenesis, and reconstruction of neural network 
systems are time-consuming processes, but MSC transplantation is known to also yield 
quick therapeutic results within days[65]. Current evidence suggests that grafted 
MSCs are not integrated into residing neural networks but act in an indirect paracrine 
way, including the secretion of trophic factors such as brain-derived neurotrophic 
factor (BDNF), IGF, and vascular endothelial growth factor (VEGF)[66]. In addition to 
these soluble factors, however, recent evidence suggests that EVs secreted from MSCs 
might significantly contribute to exerting their biological effects in vitro and in vivo.

EVs are secreted by virtually all cells into the extracellular matrix, which is regarded 
as a novel mechanism of intercellular communication. EVs are a heterogeneous group 
of vesicular structures ranging in size from approximately 40 nm to 1000 nm, among 
which are endosome-derived exosomes[16,67]. EVs carry highly active biological cargo 
such as transmembrane proteins, RNA, and various lipids[68]. This mix of cargo is 
thought to mediate the biological properties of EVs and indirectly of MSCs under both 
physiological and pathological conditions.

Application of MSCs or MSC-EVs results in tissue regeneration upon the induction 
of ischemic stroke
Although the focus of the present review is on poststroke inflammation and the 
mutual interaction between MSCs/MSC-EVs and microglia, it stands to reason that 
both MSCs and MSC-EVs increase neurological recovery though mechanisms that are 
partly independent of MSCs. In this context, the modulation of poststroke 
neurogenesis, angiogenesis, and axonal plasticity is of importance.

MSCs are able to improve neurological function by promoting astrocyte-derived 
IGF-1, epidermal growth factor (EGF), VEGF, and basic fibroblast growth factor 
(bFGF)[69]. Indeed, many preclinical stroke studies have demonstrated the positive 
effects of MSCs on both neurogenesis and angiogenesis[19,70]. Increased tissue 
regeneration after MSC transplantation is at least partially a consequence of secreted 
factors such as VEGF and Ang-1[69,71]. Under conditions of hypoxia, neurons that 
synthesize γ-secretase increase the production of Hes-1 and activate the Notch-1 
signaling pathway after MSC administration, which in turn may promote the 
production of hypoxia inducible factor (HIF)-1α and VEGF[69]. Hes-1 can further 
stimulate this effect by inducing a positive feedback loop with VEGF by reducing 
phosphatase and tension homolog levels[72]. Consistent with this, Ang-1 helps 
stabilize new vessels induced by VEGF expression[71].

Not only neurons but also oligodendrocytes are responsive to MSC treatment. 
Oligodendrocytes are also sensitive to ischemic cell injury and play an important role 
in the neural network. However, these cells have long been a neglected target in 
current stroke research[73]. Some data, however, indicate that stimulating the 
production of myelin sheaths by mature oligodendrocytes through MSC 
transplantation may result in increased axonal plasticity after stroke[74]. These 
neurorestorative effects are mediated by inhibiting the production of both reticulin 
and neurocan. The aforementioned mechanisms and signaling pathways associated 
with poststroke tissue regeneration have to be regarded as prominent examples only. 
Other factors, such as hepatocyte growth factor, platelet-derived growth factor, BDNF, 
IGF-1, fibroblast growth factor-2, and neutrophil-activating protein 2 (NAP-2), are also 
involved[75,76]. An overview of how MSCs promote neurogenesis and neurological 
recovery is shown in Figure 2.

As previously described, stem cell-derived EVs (MSC-EVs) and other factors induce 
tissue regeneration after ischemia in various organs, including the heart, kidney, and 
brain. Under such conditions, EVs not only reduce cell injury but also promote 
angiogenesis and neurogenesis. Some of these observations are related to regulating 
inflammation[77-79]. In fact, previous work from our group suggests that EVs from 
different stem cell sources, such as MSCs and neural progenitor cells, are not inferior 
to their host cells with regard to their therapeutic potential in a mouse stroke model
[80,81]. Various preclinical stroke studies report positive effects of MSC-derived EVs 
on infarct volume and tissue recovery. To date, a series of preclinical studies[20,21,80,
82-103] have assessed the effect of MSC-derived EVs on treating cerebral ischemia. The 
characteristics and primary outcomes of some of these studies are summarized in 
Table 1 and demonstrate that MSC-EVs are immunologically active and promote 
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Table 1 Therapeutic application of mesenchymal stem cell-derived extracellular vesicles in preclinical disease models associated with 
cerebral ischemia

Ref. Country Species Ischemia model Cell 
source Key outcomes

Geng et al[84], 2019 China Rats MCAO Adipose Improve tissue recovery, neurogenesis, angiogenesis; Reduce 
Inflammation

Xin et al[93], 2013 America Rats MCAO Adipose Improve brain recovery, angiogenesis; Reduce infarct volume, 
inflammation

Chen et al[82], 2016 Taiwan Rats MCAO BM Improve tissue recovery, neurogenesis, angiogenesis, neuronal 
plasticity

Tian et al[91], 2018 China Mice MCAO BM Inhibit inflammatory response and apoptosis

Xin et al[92], 2017 America Rats MCAO BM Improve tissue recovery, neurogenesis, neuronal and neurite 
plasticity

Jiang et al[85], 2018 China Rats MCAO Adipose Reduce infarct volume and inflammation

Yang et al[94], 2018 China Mice Photothrombosis BM Promote angiogenesis

Zhang et al[95], 2019 China Mice MCAO BM Promote angiogenesis

Liu et al[87], 2019 China Rat MCAO BM Improved brain neuron density and neurological score

Deng et al[83], 2019 China Mice MCAO BM Reduce infarct volume and inflammation

Nalamolu et al[88], 2019 America Rats MCAO UC Improve brain recovery; Reduce infarct volume

Nalamolu et al[89], 2019 America Rats MCAO UC Improve brain recovery; Reduce infarct volume

Li et al[86], 2020 China Mice MCAO UC Reduce infarct volume; Inhibit inflammatory response and 
apoptosis

Zhao et al[20], 2020 China Rats MCAO BM Reduce infarct volume and inflammation; Improve neurological 
deficits

Zhao et al[21], 2020 China Rats MCAO BM Improve motor, learning and memory abilities; Reduce 
inflammation

Safakheil and Safakheil[90], 
2020

Iran Rats MCAO BM Improve functional recovery; Reduce infarct volume and 
inflammation

Otero-Ortega et al[100], 2020 Spain Rats Endothelin-1 Adipose Improve functional recovery and cells proliferation, Reduce 
infarct volume

Otero-Ortega et al[103], 2017 Spain Rats Endothelin-1 Adipose Improve functional recovery and neurogenesis, Reduce infarct 
volume

Moon et al[101], 2019 South 
Korea

Rats MCAO Cord blood Promote angiogenesis and neurogenesis

Doeppner et al[80], 2015 Germany Mice MCAO BM Improve tissue recovery, neurogenesis, and angiogenesis

Dabrowska et al[99], 2019 Poland Rats Ouabain BM Reduce inflammation

Haupt et al[98], 2021 Germany Mice MCAO BM Increased neurological recovery and neurogenesis

Xia et al[97], 2020 China Rats MCAO BM Reduce infarct volume neurological deficits, Enhance 
angiogenesis

Wang et al[102], 2020 Germany Mice Stroke BM Immunosuppression and neuroprotection

Kuang et al[96], 2020 Germany Mice MCAO Adipose Reduced neuronal death and infarct size, Increased neurological 
recovery

BM: Bone Marrow; UC: Umbilical cord; MCAO: Middle cerebral artery occlusion; MSCs: Mesenchymal stem cells.

tissue repair and neurogenesis[104-107].

MSCs and MSC-EVs suppress microglial activation and promote M2 microglial 
polarization in cerebral ischemia
PubMed, the Cochrane Library (last searched in November 2020), and relevant 
websites, such as Web of Science and EMBASE (1990 to November 2020), were 
searched to identify all studies on the effect of MSCs and MSC-derived EVs, including 
MSC-derived exosomes, on microglial activation in the treatment of brain ischemia. 
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Figure 2 An overview as to how mesenchymal stem cells promote neurogenesis and neurological recovery. Mesenchymal stem cells (MSCs) 
are isolated and identified from various tissue sources. These MSCs produce different angiogenic and neurotrophic factors by paracrine mechanisms in order to act 
on astrocytes, microglia, oligodendrocytes, and angiogenesis, promoting neurological recovery and neurogenesis. IGF-1: Insulin-like growth factor 1; BDNF: Brain-
derived neurotrophic factors; VEGF: Vascular endothelial growth factors; HGF: Hepatocyte growth factor; NAP-2: Neutrophil activating protein 2; PDGF: Platelet-
derived growth factor; Ang-1: Angiopoietin-1; MSC: Mesenchymal stem cell.

The following keywords in combination with Boolean logic were used: “mesenchymal 
stem cell”, “extracellular vehicles” or “exosomes” together with “ischemia”, “stroke”, 
“microglia”, “middle cerebral artery occlusion”, or “MCAO”. Beyond this, the 
reference list was manually checked to determine other potentially qualified trials. The 
process was iterated until no more publications were obtained. A total of 25 public-
ations were found in this section from the United Kingdom, Japan, China, United 
States, France, Germany, Poland, and South Korea, which were performed between 
2013 and 2020[19-21,84-87,91,99,102,108-122]. The most common species and animal 
model used were rats and the middle cerebral artery occlusion model, respectively. 
The most common source of cells and administration route were bone marrow and 
intravenous delivery, respectively. Cunningham et al[109] was the only group that 
used subcutaneous injection. Concerning the dose and delivery time, the studies used 
heterogeneous experimental paradigms to meet their own applied study purposes. 
Additional details are shown in Table 2.

The immediate activation of brain-resident immune cells, mainly microglia, is the 
primary characteristic of inflammatory reactions after ischemic stroke[4,23]. Activated 
microglia produce neurotoxic substances that accelerate acute brain damage, and some 
of these neurotoxic substances reciprocally promote further microglial activation. 
Attenuating microglial activation with MSCs or MSC-EVs offers great therapeutic 
potential. The transplantation of MSCs (2 × 106) into rats 3 h after focal cerebral 
ischemia, for instance, yielded a significant reduction in macrophages at day 3 after 
treatment[119]. Likewise, the expression of OX-42+ or Iba-1+ microglia was significantly 
reduced after the administration of MSCs during the acute and subacute stages of the 
disease[19]. Increased neurological recovery after stroke induction due to MSC 
transplantation, which had repeatedly been observed before, — is partly a conse-
quence of an increase in the ratio of M2/M1 microglia[121]. This finding is consistent 
with similar reports on MSC-EVs, in which tissue restoration was enhanced due to the 
suppression of M1 microglial polarization after MSC-EV treatment[20,21,85,86]. Of 
note, the aforementioned effects of MSCs or MSC-EVs are not always sustained; the 
positive effects of treatment are sometimes only observed during the acute or subacute 
phase of the disease[109,115] Thus, the ability of MSCs to suppress microglial 
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Table 2 Preclinical stroke studies assessing the effect of mesenchymal stem cells and mesenchymal stem cell-derived extracellular 
vesicles on the activation of microglia

Cell Delivery Microglia Microglia Signal Ischemic
Ref. Country Species Cell 

type Dosage Route
Source Timing Marker Activation Pathway Model

Cunningham 
et al[109], 
2020

United 
Kingdom

Mice MSCs 1.4 × 106 Sub BM 1 h and 24 h Iba1 No effect IL-1α MCAO

Narantuya et 
al[115], 2010

Japan Rats MSCs NA IV BM NA ED1/Iba1 Inhibit NA BCAO

Ishizaka et al
[111], 2013

Japan Rats MSCs 1 × 106 IA NA 1, 4 or 7 d ED1 Inhibit NA MCAO

Yamaguchi 
et al[120], 
2018

Japan Rats MSCs 1 × 106 IA Blood 24 h Iba1 Inhibit NA MCAO

Wang et al
[119], 2014

China Rats MSCs 2 × 106 IV BM 3 h CD45/CD11b Inhibit NA dMCAO

Wei et al
[19], 2012

America Rats MSCs 1 × 106 IV BM 24 h Iba1/OX-42 Inhibit NA MCAO

Nakajima et 
al[114], 2017

Japan Rats MSCs 1 × 106 IV BM 0 or 3 h Iba1/TNF-α
/IL6/IL-1β

Inhibit IL-10 MCAO

McGuckin et 
al[113], 2013

France Rats MSCs NA Stereotaxis UC NA ED1/Iba1 Inhibit CD200/STAT3 Ouabain 
injection

Li et al[112], 
2018

China Rats MSCs 1 × 106 IV BM 1 h CD68/Iba1 Inhibit IGF-1/BDNF dMCAO

Lv et al[108], 
2016

China Cells MSCs NA NA BM NA TNF-α/IL6/IL-1β Inhibit TNF-α
/MSCs/GDNF

OGD

Wang et al
[102], 2020

Germany Mice EVs 2 × 106 IV BM Immediately CD45/CD11b Inhibit NA MCAO

Dabrowska 
et al[99], 2019

Poland Rats EVs 5 × 105 IA BM 48 h ED1 Inhibit NA Ouabain 
injection

Geng et al
[84], 2019

China Rats EVs NA NA Adipose NA Iba1, TNF-α, IL-1β Inhibit miRNA-126 MCAO

Liu et al[87], 
2019

China Rats EVs 5 × 105 IV BM 2 h Iba1 Inhibit NA MCAO

Tian et al
[91], 2018

China Mice EVs NA IV BM 12 h Iba1 Inhibit NA MCAO

Sheikh et al
[117], 2019

Japan Rats MSCs 3 × 106 IV BM 24 h ED1/Iba1 Inhibit IL-1β/HIF-1α 
and VEGF

MCAO

Wang et al
[118], 2013

Japan Rats MSCs 3 × 106 IV BM 24 h ED1/Iba1/IL-1β
/TNF-α/iNOS, 
MCP-1

Inhibit TLR2/CD40/NF-
kB

MCAO

Yoo et al
[122], 2013

South 
Korea

Rats MSCs 5 × 105 Stereotaxis BM 3 days CD68/Iba1/MCP-
1; TNF-α
/iNOS/IL-1β

Inhibit TGF-β1/MCP-1 MCAO

Sheikh et al
[116], 2011

Japan Rats MSCs 3 × 106 IV BM 24 h Iba1/iNOS/Cox-
2/IL8/MCP-1

Inhibit IL5 and 
Fractalkine

MCAO

Feng et al
[110], 2020

China Mice MSCs 1 × 106

/20 g
IV UC 2 weeks M1: CD16/32, 

Iba1; M2: CD206
Polarization H3 methylation LPS

Yang et al
[121], 2020

China Rats MSCs 1 × 106 IV BM 24 h before M1: iNOS/Iba1; 
M2: Arg 1

Polarization miR-30a* MCAO

Jiang et al
[85], 2018

China Rats EVs NA IV Adipose NA M1: TNF-α/IL-
6/iNOS; M2: IL-
4/CD206/IL-10

Polarization miR-30d-5p MCAO

Li et al[86], 
2020

China Mice EVs NA IV UC NA M1: iNOS/CD38/ 
IL-6/TNF-α
/CCL-2; M2: Arg 
1/CD206

Polarization miR-26b-5p MCAO
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Zhao et al
[20], 2020

China Rats EVs 200 μL IV BM 1 or 14 d M1: CD16-32/IL-
6/IL-1β; M2: 
CD206/ IL-10

Polarization miR-223-3p/ 
CysLT2R

MCAO

Zhao et al
[21], 2020

China Rats EVs 200 μL IV BM 2 h M1: CD86 
NOS/IL-12/TNF-
α; M2: CD206 
/TGF-β/BDNF

Polarization CysLT2R and 
ERK1/2

MCAO

NA: Not available; IA: Intraarterial; IV: Intravenous; Sub: Subcutaneous; BM: Bone marrow; UC: Umbilical cord; OGD: Oxygen-glucose deprivation; HIF-1α: 
Hypoxia inducible factor-1α; dMCAO: Distal middle cerebral artery occlusion; MSCs: Mesenchymal stem cell; EVs: Extracellular vehicles; LPS: 
Lipopolysaccharide; BCAO: Bilateral carotid artery occlusion; c(RGDyK): Cyclo (Arg-Gly-Asp-D-Tyr-Lys); MCP-1: Monocyte chemoattractant protein-1; iNOS: 
Inducible nitric oxide; IL: Interleukin; NF-κB: Nuclear factor-κB; TLR: Toll-like receptor; VEGF: Vascular endothelial growth factor; TGF: Transforming growth 
factor; IGF: Insulin-like growth factor; BDNF: Brain-derived neurotrophic factor; TNF: Tumor necrosis factor; GDNF: Glial-derived neurotrophic factor; COX-
2: Cyclooxygenase-2; CysLT2R: Cysteinyl leukotrienes receptor; ERK: Extracellular regulated protein kinase.

activation appears to be limited over time, and additional and reliable data are 
urgently needed.

The role of neurotrophic factors and cytokines in regulating microglial activity after 
MSC or MSC-EV treatment in ischemic stroke
Systemic or intrathecal injection of growth factors such as BDNF and IGF-1 promotes 
angiogenesis and reduces infarct volume in ischemic stroke[123]. However, these 
proteins do not cross the BBB and are prone to rapid degradation, preventing long-
term effects in the ischemic milieu. MSC transplantation might therefore overcome 
some of these limitations. Indeed, rats that received MSC transplantation displayed 
increased levels of IGF-1 and BDNF in the ischemic cortex[112]. Increased secretion of 
these factors is likely to be a consequence of microglial activity, which was found to be 
increased in the ischemic core site. Likewise, ischemic stroke itself increases the 
expression of monocyte chemoattractant protein-1 (MCP-1) and activates CD68-
positive microglia to cross the damaged BBB. Consistent with this finding, Yoo et al
[122] observed that TGF-β is key to the ability of MSCs to effectively reduce the infilt-
ration of CD68-positive microglia into the ischemic zone by downregulating MCP-1.

The amount of cytokines and growth factors that are secreted directly by MSCs or 
that are modulated in microglia due to stem cell transplantation is vast and cannot be 
discussed in full detail here. Thus, other evidence provides insights into MSC 
production of neurotrophic cytokines such as IL-5 and fractalkine, which in turn 
suppress the production of proinflammatory factors, including iNOS and TNF-α[116]. 
In a mutual interaction between MSCs and activated microglia, the latter secrete TNF-
α to stimulate the production of glial cell-derived neurotrophic factor in MSCs, which 
in turn prevents neuronal damage and contributes to tissue repair[108]. Changes in the 
extracellular milieu due to MSC transplantation are well known and suggest increases 
in HIF-1α, VEGF, IL-1β, and TGFβ protein levels, all of which are highly expressed in 
microglia[108,114]. Thus, MSC transplantation also promotes poststroke angiogenesis 
by regulating HIF-1α and VEGF secretion by microglia, and IL-1β might play an 
important role[117].

IL-1, IL-6, and TGF-β are proinflammatory factors associated with the immune 
response after ischemic stroke. It has been reported that the levels of IL-1 are increased 
within a few hours after ischemic damage. Increased IL-1 Levels, in turn, stimulate the 
secretion of other cytokines, chemokines, and cell adhesion molecules that contribute 
to the disruption of the BBB[124]. Recent literature indicates that the transplantation of 
MSC-EVs reduces IL-1 secretion by microglia due to direct inhibition and modification 
of T helper cells, which drive microglia into an anti-inflammatory state[99,125]. 
Dabrowska et al[99] revealed that the transplantation of MSC-EVs significantly 
reduced the levels of IL-6 and TGF-β in the focally injured rat brain through the 
inhibitory effect of EVs on local immunologically effective cells, such as microglia and 
macrophages. Other work describes that CH25H, a hydroxylating enzyme that alters 
cholesterol into its 25-hydroxycholesterol form, is activated by proinflammatory 
cytokines such as IL-1β, TNF-α, and IL-6[126]. CH25H, in turn, exacerbates cerebral 
inflammation and significantly activates Iba-1-positive microglia[127]. MSC-EVs might 
therefore contribute to suppressing microglial activation by inhibiting IL-1β, TNF-α, 
and IL-6, further reducing CH25H activation. Information regarding this phenomenon, 
however, is scarce.
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The role of transcription factors, ligands and surface receptors in regulating 
microglial activity after MSC or MSC-EV treatment in ischemic stroke
The effects of TLR4 on worsening ischemic injury have been discussed for over a 
decade[128]. Reduced TLR4 inhibit the NF-κB signaling pathway and decrease the 
expression of iNOS and COX-2[129]. NF-κB is known to promote various proinflam-
matory mediators, and the inhibition of NF-κB signaling has beneficial effects on 
cerebral ischemia[130]. Wang et al[118] showed that MSC transplantation suppressed 
the NF-κB signaling pathway in microglia during stroke due to soluble factors such as 
TNF-α and prostaglandin E2 produced by MSCs. In addition, TLR2 and CD40 have 
important roles in modulating NF-kB pathways activation, and the expression levels of 
these factors are lower after MSC treatment, as described in the same scientific report. 
Previously, it was reported that spontaneous microglial activation occurs in mice with 
CD200 knockout[113]. Neurons have been shown to produce CD200, which in turn 
suppresses the activity of microglia that produce CD200R. McGuckin et al[113] found 
that IL-4 induced MSCs to produce CD200 when cocultured with activated glia, which 
suppressed the expression of IL-6 and IL-1β in glial cells. Furthermore, the ability to 
modulate CD200 expression was successfully reversed by anti-IL-4 and anti-CD200 
antibodies. Inflammation in ischemic stroke is also related to STAT3 signaling 
pathway activation in microglia, which is affected by MSCs in cerebral ischemia[113].

With regard to the administration of MSC-EVs significantly inhibits stroke-induced 
inflammation and M1 microglial polarization, increases the expression of anti-inflam-
matory factors and enhances the polarization of M2 microglia. Finally, MSC-EVs 
regulate the expression of phosphorylated ERK 1/2 and CysLT2R, which were 
downregulated in vitro and in vivo[20].

MicroRNAs are key players in regulating microglial activity
MicroRNAs (miRNAs), a family of noncoding RNAs containing 20-25 nucleotides, 
play key roles in the remodeling process under stroke conditions[131]. Current 
evidence has revealed that miRNAs are effective treatment candidates due to their 
capacity to promote angiogenesis and neuronal recovery in ischemic diseases. Studies 
have demonstrated the anti-inflammatory effects of specific miRNAs that are highly 
expressed in MSCs and MSC-EVs.

MSCs carrying miR-30a and EVs carrying miRNA-126, miR-30d-5p, miR-26b-5p, or 
miR-223-3p modulate microglial activation and anti-inflammatory abilities[21,84-86,
121]. EVs exert a regulatory effect by delivering prewrapped miRNAs to recipient 
cells. As discussed previously, CysLT2R is involved in the regulation of microglial 
activation. EV-derived miR-223-3p increases functional recovery after cerebral 
ischemia by promoting microglial M2 polarization because of its inhibitory effect on 
CysLT2R[21]. Similarly, miR-26b-5p promotes microglial M2 polarization by 
regulating CH25H to repress the TLR pathway and reduce tissue injury[86]. Both 
stroke patients and rats exhibited significantly reduced levels of miRNA-126, and EVs 
containing miRNA-126 could suppress microglial activation and increase neurogenesis 
and angiogenesis[84]. In addition, some EVs that carry miR-30d-5p have increased 
potential to suppress neuronal damage by inhibiting autophagy-mediated M1 
microglial polarization[85]. Similarly, miR-30a* (known as miR-30a-3p) also 
participates in several pathways to drive M2 polarization[121]. Hence, a plethora of 
miRNAs are found in MSCs and their corresponding EVs, but the precise signaling 
cascades that are regulated under stroke conditions are not yet fully known.

MSCs and MSC-EVs in clinical stroke trials
Taking into account the numerous preclinical reports on MSCs and stroke, as well as 
the easy access to these cells via the bone marrow or adipose tissue[132-134], MSCs are 
important in the novel adjuvant treatment paradigm against stroke. In fact, MSC 
transplantation is considered to be safe. Apart from transient febrile reactions, no 
research has reported signs of intoxication, thrombogenesis, central nervous system 
deterioration, or increased mortality after MSC transplantation in humans[135,136].

Rigorous evaluation of the literature available on the effects of MSCs on stroke 
patients published in electronic databases (PubMed, Cochrane Library, and EMBASE) 
until January 31, 2021 yielded a total of 18 studies including 631 participants[14,137-
153]. Of these 631 patients with ischemic stroke, 323 patients were treated with MSCs, 
and 308 were assigned to the control group. Prasad et al[144] organized a clinical 
stroke trial on MSCs with the primary endpoint as the modified Rankin scale (mRS) 
and Barthel Index (BI) score that includes the highest number of patients enrolled to 
date: a total of 120 patients with ischemic stroke were equally assigned to either the 
MSC group (n = 60) or the control group (n = 60)[144]. MSCs were intravenously 
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Table 3 The key parameter of clinical trials using transplantation of mesenchymal stem cells in treating ischemic stroke

MSCs source Sample size 
(cases) Dose How 

long
Follow-
up

Ref. Country Design Type Route
Auto or allo MSCs Control (Mean)    

  (Mean) (Mean)

Savitz et al[137], 
2011

America Non-RCT Acute IV BM/Auto 10 NA 100 × 106 1-3 d 0.5 yr

Lee et al[138], 
2010

South 
Korea

RCT Acute IV PIC/Auto 16 36 50 × 106 1 wk 5 yr

Bhasin et al[151], 
2011

India Non-RCT Chronic IV BM/Auto 4 5 50-60 × 106 8 wk 24 wk

Bhasin et al[139], 
2012

India Non-RCT Chronic IV PIC/Auto 12 12 50-60 × 106 3-24 mo 0.5 yr

Bhasin et al[140], 
2016

India Non-RCT Chronic IV PIC/Auto 20 20 50-60 × 106 3-24 mo 0.5 yr

Chen et al[141], 
2014

China RCT Chronic Stereotactic PB/Auto 15 15 3-8 × 106 0.5-5 yr 1 yr

Jiang et al[149], 
2013

China Non-RCT NA Catheterization UC/Allo 3 NA 20 × 106 11-22 d 0.5 yr

Laskowitz et al
[14], 2018

America RCT Acute IV UC/Allo 10 10 3.34 × 106 3-9 d 1 yr

Levy et al[142], 
2019

America Non-RCT Chronic IV NA/Allo 15 and 
20

NA NA NA 1 yr

Moniche et al
[143], 2012

Spain RCT Subacute IA PIC/Auto 10 10 159 × 106 5-9 d 0.5 yr

Prasad et al[144], 
2014

India RCT Subacute IV PIC/Auto 60 60 280.5 × 106 1-4 mo 0.5 yr

Suárez-
Monteagudo et al
[150], 2009

Cuba Non-RCT NA IV BM/Auto 3 NA NA NA 3 M

Vahidy et al[145], 
2019

America RCT Acute IV BM/Auto 25 30 NA 1-3 d 2 yr

Zhang et al[146], 
2019

China Non-RCT NA Stereotactic FSC/Allo 9 NA NA 494 d 2 yr

Díez-Tejedor et al
[148], 2014

Spain RCT Acute IV Adipose/Allo 20 20 NA 0.5 mo 2 yr

Feng et al[147], 
2014

China NA Subacute Stereotactic UC/Allo 50 50 100 × 106 0.5-1 mo 0.25 yr

Jaillard et al[153], 
2020

France RCT Subacute IV BM/Allo 16 15 100-300 × 106 3 wk 24 mo

De Keyser[152], 
2005

South 
Korea

Non-RCT Acute IV BM/Allo 5 25 50 × 106 4-9 wk 12 mo

NA: Not available; MSCs: Mesenchymal stem cells; Auto: Autologous; Allo: Allogenicr; PIC: Posterior iliac crest; IV: Intravenous; IA: Intraarterial; RCT: 
Randomized controlled trial; UC: Umbilical cord; BM: Bone marrow; FSC: Fetal spinal cord; PB: Peripheral blood.

administered at a dose of 280.5×106 cells at a median of 18.5 d after stroke onset. 
Patients who received MSC treatment displayed better outcomes according to the BI 
and the National Institute of Health Stroke Scale (NIHSS) score at a one-year follow-
up. Similarly, Savitz et al[137] found that intravenous autologous transplantation of 
bone marrow mononuclear cells (8.5 × 107) significantly improved the BI, mRS, and 
NIHSS scores without any side effects. Although long-term observations are still rare, 
some data indicate that MSC treatment is associated with a lower rate of mortality 
compared to that of the control group during a 5-year observation period[144]. The 
data showed that MSC treatment can increase neurological recovery in stroke patients, 
even though additional data are urgently needed. Table 3 summarizes recent clinical 
trials on stroke and MSC transplantation. Although MSC-EVs have been shown to be 
as effective as MSCs in improving functional outcomes in preclinical stroke studies
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[154], to date, no article has reported the use of EVs under clinical stroke conditions. 
Therefore, more evidence-based information is needed in this respect.

CONCLUSION
The application of MSCs and MSC-EVs offers a great opportunity for adjuvant stroke 
treatment, and inflammation is an excellent target. The differentiation of M1 and M2 
microglia has practical implications, and promoting the M2 phenotype enhances tissue 
repair by decreasing inflammatory factors. Currently, the application of MSCs and 
MSC-EVs appears to inhibit microglial activation and promote M2 polarization, which 
results in the modification of various signaling pathways, such as cytokines, 
neurotrophic factors, transcription factors, and miRNAs.
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