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Abstract

Background and Objectives: Niemann-Pick disease type C (NPC) is a rare autosomal 

recessive lysosomal storage disease that is also associated with progressive neurodegeneration. 

NPC shares many pathological features with Alzheimer's disease including neurofibrillary tangles, 

axonal spheroids, β-amyloid deposition, and dystrophic neurites. Here, we examined if these 

pathological features could be detected in induced pluripotent stem cell (iPSC)-derived neurons 

from NPC patients.

Methods: Brain tissues from 8 NPC cases and 5 controls were analyzed for histopathological 
and biochemical markers of pathology. To model disease in culture, iPSCs from NPC patients and 

controls were differentiated into cortical neurons.

Results: We found hyperphosphorylated tau, altered processing of amyloid precursor protein 

and increased Aβ42 in NPC postmortem brains, and in iPSC-derived cortical neurons from NPC 

patients.

Conclusion: Our findings demonstrated that the main pathogenic phenotypes typically found in 

NPC brains were also observed in patient-derived neurons, providing a useful model for further 

mechanistic and therapeutic studies of NPC.
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Introduction

Niemann-Pick disease type C (NPC) is a rare autosomal-recessive storage disorder 

characterized by progressive neurological deterioration and premature death1. It is caused 

by mutations that lead to partial deficiency or complete loss of function of NPC1 (95% 

of NPC cases) or NPC2 (5%) that is believed to interact with NPC12. Both NPC1 and 

NPC2 are lysosomal proteins that facilitate intracellular cholesterol trafficking3. Thus, one 

of the hallmarks of the disease is the intracellular accumulation of unesterified cholesterol 

and glycosphingolipids in many tissues including the brain. This is accompanied by gliosis 

and loss of neurons in selected brain regions triggering widespread neurological deficits 

such as ataxia, dystonia, seizures and dementia, with onset typically in childhood, but may 

also have late onset in adulthood4. Interestingly, although NPC differs in many aspects 

from Alzheimer's disease (AD), both diseases also share pathologic features5. NPC is one 

of the very few disorders in which hallmark pathologies of AD including neurofibrillary 

tangles (NFTs) develop in the absence of tau mutations. NFTs contain aberrantly 

hyperphosphorylated tau as paired helical filaments that contain a similar composition with 

equal ratio of isoforms found in AD (3R/4R)6. In addition, AD patients exhibit abnormal 

amyloid precursor protein (APP) metabolism, and have amyloid plaques composed of the 

APP metabolite, the amyloid β-protein (Aβ)7. These pathological hallmarks of AD are also 

typical of NPC, especially in cases with a prolonged course of disease8.

Although much of our knowledge about NPC has been acquired using pharmacologically 

and genetically modified models, these systems do not accurately reproduce human 

pathology.9-12 The analysis of disease-specific human neurons could significantly advance 

our understanding of how the pathologies develop and lead to neuronal dysfunction and 

death. Cell culture neuronal models of NPC patients have been previously developed,13-16 

but the hallmark pathologies found in NPC brains have not been reported in patient-derived 

neuronal models.

In this study, we investigated NPC cortical neurons generated through iPSCs from patients’ 

somatic cells. We found pathological phenotypes, including tau and Aβ pathology as well 

as altered APP processing, resembling patient brain pathology. We therefore propose that 

NPC patient-derived cortical neurons may serve a valuable model for studying mechanisms 

of NPC pathogenesis and may prove beneficial for development of novel therapies.

Results

Tau pathology, abnormal APP processing and Aβ42 accumulation in NPC patient brains

Cortical and cerebellar tissue samples from 8 NPC patients and 5 healthy controls 

were analyzed for histopathological and biochemical abnormalities using thioflavin-S, 

Hematoxylin and eosin (H and E) staining and tau immunostaining. NFTs’ main constituent 

is hyperphosphorylated tau protein that can be visualized immunohistochemically using 

highly specific monoclonal antibodies such as RD3 (for 3R tau isoform), ET3 (for 4R tau 

isoform), and AT8 (for phospho-tau). Whereas in patients with prolonged disease course (4 

subjects, age range 17–32) major pathological abnormalities, including NFTs (thioflavin-S 

Burbulla et al. Page 2

Mov Disord. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



staining), tau pathology, ballooned neurons (H and E staining), and dystrophic neurites (Fig. 

1A), were detected, those features were absent in cortices from younger subjects (4 subjects, 

age range 2–11) (Supplementary Table S1).

Reduced amounts of soluble tau were detected in NPC patient cortical tissue (Fig. 1B), but 

increased insoluble total tau (red signal, Fig. 1C) and phosphorylated tau (green signal, Fig. 

1C) in 2 NPC cases with prolonged course of disease (arrows). Tau aggregation was not 

observed in the youngest NPC cases (asterisks, Fig. 1C). This heterogeneity, in particular 

when comparing older and younger NPC cases contributed to non-significant differences 

in ratios of phosphorylated and total tau. Among the fragments generated from APP 

processing, CTFs are of particular interest since they are direct precursors of Aβ peptides17, 

a major constituent of senile plaques seen in AD and NPC. We detected increased ratios of 

CTFs over APP full-length protein in NPC cases compared to controls (Fig. 1D). CTFs are 

further cleaved generating various forms of Aβ with different C-terminal lengths whereas 

the Aβ42 species is the most aggregation-prone and pathogenic species deposited in AD 

brains18. We therefore quantitatively analyzed Aβ40 and Aβ42 levels in soluble fractions 

of cortical tissue by ELISA and observed higher Aβ42/Aβ40 ratios in NPC compared to 

control samples (Fig. 1E).

Modeling NPC brain pathology using iPSC-derived cortical neurons from NPC patients

iPSCs were generated from monozygotic twins with NPC (T1, T2), their maternal NPC 

carrier (P), and from unrelated control (Ctrl) (Supplementary Table 2). Skin fibroblasts, 

iPSC-derived hepatic and neural cells from these NPC patients, were characterized for 

reduced NPC1 protein, cholesterol accumulation, and autophagy defects elsewhere.16,19,20. 

Here, we differentiated iPSCs into cortical glutamatergic neurons21 (Supplementary Figure 

1) and grew them in culture for 55 days. We found that neurons from NPC patients 

demonstrated lower levels of soluble tau protein (Fig. 2A) that inversely correlated with 

higher levels of insoluble phosphorylated tau (Fig. 2B). We further detected increased APP-

CTF fragments in NPC neurons but not in neurons from the unaffected carrier or control 

(Fig. 2C). Using ELISA, we also found increased Aβ42/Aβ40 ratios in neurons from NPC 

patients (Fig. 2D). These results demonstrated that iPSC-derived cortical neurons from NPC 

patients faithfully recapitulate a majority of features of NPC pathology observed in patient 

brains (compare Fig. 1).

Discussion

The ability to use iPSCs to model brain diseases is a powerful tool for unraveling 

mechanistic alterations22. Rodent models have advanced our understanding of brain 

pathology, but they do not always recapitulate the full spectrum of human neuropathology. 

For example, disease modeling using iPSCs has been most helpful in Parkinson's disease 

(PD) research, as currently available animal models do not fully recapitulate human 

pathology,23 and recent work has highlighted some fundamental differences between human 

and rodent midbrain neurons that at least in part explain the preferential vulnerability of 

human dopaminergic neurons in PD.24 Consistent with this notion and despite continued 

efforts, currently available NPC1 mouse models do not reflect the hallmark features of 
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the disease in their entirety.25-29 The recent emergence of iPSC technology therefore 

offers an opportunity to study pathogenic phenotypes in a patient-specific manner with the 

endogenous expression of disease-linked mutations.

The clinical spectrum of NPC is heterogeneous and can vary depending on the age of 

onset and rate of clinical progression. For example, NFTs composed of aggregates of 

hyperphosphorylated tau have been most consistently reported in late-onset patients with a 

progressive chronic disease course but inconsistently in younger patients.8,30-32 In line with 

these reports are our histopathological and immunocytochemical findings confirming NFTs 

and abnormal, phosphorylated tau only in older NPC cases (Figure 1C; Supplementary Table 

1). However, a reduction of soluble tau protein was observed for all patients compared to 

controls (Figure 1B).

In this study, we generated a patient-derived neuronal model of NPC to examine whether 

iPSC-derived neurons from patients recapitulate typical features of NPC brain pathology. 

Previous studies reported lysosomal cholesterol accumulation, alterations in autophagic 

pathways and reduced viability in NPC neuronal models.13-16 There is growing evidence 

that cholesterol accumulation contributes to the pathogenesis of AD by affecting APP 

processing and leading to increased amyloid plaque formation.33,34 The link between 

cholesterol, altered APP processing and Aβ has also been suggested in NPC,9-12 yet the 

functional significance of Aβ peptides in NPC pathology remains unclear.35 However, these 

in vitro studies were mainly based on pharmacologically and genetically induced NPC cell 

models and may therefore not recapitulate the whole spectrum of disease mechanisms. Our 

results demonstrate that cortical neurons from NPC patients recapitulated a majority of 

typical features of patient brain pathology, i.e. hyperphosphorylated tau, altered processing 

of APP, and increased aggregation-prone Aβ42 peptide.

Whereas animals are indispensable to study pharmacokinetics and pharmacodynamics in 

drug trials, human neuronal cultures may serve as more appropriate models for testing 

neuroprotective compounds, in particular during the early development of therapeutic 

interventions. This has also been shown in a study that used iPSC-derived midbrain 

dopamine neurons to test the efficacy of small-molecule modulators as a potential 

therapeutic approach for treating multiple forms of PD.36

Although current treatment can alleviate some symptoms of NPC, there is an 

immediate need to identify neuroprotective therapies for this progressively debilitating 

neurodegenerative disorder. Patient-derived neuronal models therefore provide a useful 

platform for understanding the disease mechanisms underlying NPC pathophysiology and 

may be used for testing of novel therapies.

MATERIALS AND METHODS

Human post-mortem brain collection

Human tissue samples from 8 patients with clinical diagnosis of NPC (age range 2–32 years) 

and 5 controls (age range 6–80 years) were obtained from National Institute of Child Health 

and Human Development (NICHD).
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Human iPSC cultures and differentiation into cortical neurons

Skin fibroblasts from monozygotic twins (T1, T2) carrying a 1 bp deletion in exon 

12 of the NPC1 gene (1920delG) and a missense mutation (IVS9-1009G>A), and 

one unaffected parent (P, heterozygous for 1920delG) were obtained from the NINDS 

Repository/Coriell Institute for Medical Research (T1, # GM22870; T2, #GM22871; P, 

#GM23151). Fibroblasts and a blood sample from an unrelated control were reprogrammed 

into iPSCs using Sendai Virus vectors and characterized for expression of pluripotency 

markers and genomic integrity as described previously.24

iPSCs were differentiated into cortical glutamatergic neurons using the NGN2 

overexpression protocol21 as previously described.37

Sequential biochemical extraction

Sequential biochemical extraction of proteins from iPSC-derived neurons has been 

previously described.24 Human brain extracts were prepared as described in Mc Donald 

et al.38 to yield three biochemical fractions (TBS (soluble), TBS-TX (Triton-soluble) and FA 

(formic-acid soluble)).

Antibodies

Primary antibodies used: tau (K9J8; Dako, Burlington, ON, Canada; cat. no. A002401-2, 

1:1000), phospho-tau (AT8; Thermo Fisher Scientific, Cleveland, OH, USA; cat no. 

MN1020, 1:1000), APP (clone 22C11; Millipore, Burlington, MA, USA; cat. no. MAB348, 

1:1000), vGlut1 (Synaptic Systems, Göttingen, Germany; cat. no. 135 303), β-III-tubulin 

(BioLegend, San Diego, CA, USA; cat. no. 801202, 1:5000) and Glyceraldehyde 3­

phosphate dehydrogenase (Millipore, Burlington, MA, USA; cat. no. MAB374, 1:5000).

ELISA

Brain tissue was homogenized in 1% Triton X-100 lysis buffer according to weight. Aβ40 

ELISA (Invitrogen, Carlsbad, CA, USA; cat. no. KHB3481) and Aβ42 ELISA (Invitrogen, 

Carlsbad, CA, USA; cat. no. KHB3544) were done according to manufacturer’s instructions.

Immunohistochemistry procedure for paraffin-embedded brain tissue sections

Immunohistochemical analysis and microscopy was performed in standard fashion as 

previously reported.39,40 Primary antibodies: RD3 antibody to 3R tau (Millipore, clone 

8E6/C11, 05-803), ET3 antibody to 4R tau (from Dr. Peter Davies) and phosphorylated tau 

(AT8, Thermo Scientific, MN1020).

Statistical Analysis

Student’s t-test analysis and one-way analysis of variance followed by Tukey’s post-hoc test 

were performed. P-values less than 0.05 were considered significant. All errors bars shown 

in the figures are standard error of the mean (SEM).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Biochemical characterization of NPC (Niemann-Pick disease type C) pathology from 
human brain tissue.
(A) Immunohistochemistry was conducted on sections of mid-frontal cortex of case 4237 

(see Supplementary Table 1). Hematoxylin and eosin staining shows numerous ballooned 

neurons, magnification 200x. Thioflavin-S staining shows thioflavin-S positive tangles, 

magnification 400x. Tau pathology including dystrophic neurites was detected using anti-tau 

antibodies ET3 and RD3 as well as phospho-tau antibody AT8, magnification 200x. Arrows 

indicate histopathological abnormalities. (B) Representative Western blot showing Triton­

soluble total tau in cortical brain tissue lysates from NPC patients (n = 3) and controls (n = 

3). Statistical analysis represent n = 5 controls and n = 8 NPC patients. (C) Representative 

Western blots showing formic acid-soluble total tau (red) in cortical brain tissue lysates from 

controls (n = 5) and NPC patients (n = 8) (left: 3 controls, 4 NPC patients; right: 2 controls, 

Burbulla et al. Page 9

Mov Disord. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 NPC patients) and corresponding phospho-tau (green). Arrows point to the most severe 

patients, 4237 (left) and M40002M (right). Asterisks mark the youngest patients, 4770 (left) 

and M4004M (right) (compare Supplementary Table S1). Equal volumes/tissue wet weight 

of each sample were loaded. Statistical analysis represent n = 5 controls and n = 8 NPC 

patients. (D) Representative Western blot showing Triton-soluble amyloid precursor protein 

(APP) in lysates of cerebellar tissue. APP-full length (APP-FL) protein and C-terminal 

fragments of APP (APP-CTF) protein are indicated. Statistical analysis represent n = 5 

controls and n = 6 NPC patients. (E) Aβ42 and Aβ40 levels were quantified using enzyme­

linked immunosorbent assay (ELISA) in Triton-soluble fractions from control (n=3) and 

NPC (n=5) cortical samples, and the Aβ42/40 ratio was determined. Error bars, mean ± 

standard error of the mean. *P < 0.05, Student's t test; n.s., not significant.
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Figure 2: Cortical neurons from NPC (Niemann-Pick disease type C) patients recapitulate NPC 
brain pathology.
(A) Immunoblot analysis of total tau in Triton-soluble lysates of iPSC-derived cortical 

neurons from NPC monozygotic twins (T1, T2), an unaffected parent (P) and a healthy 

control (Ctrl) at day 55 of differentiation. GAPDH was used as a loading control. Results 

are shown relative to the healthy control individual (N = 8 independent experiments). 

(B) Immunoblot analysis of total tau and phospho-tau in Triton-insoluble lysates of iPSC­

derived cortical neurons from NPC monozygotic twins (T1, T2), an unaffected parent (P), 

and a healthy control (Ctrl) at day 55 of differentiation. Results are shown relative to 

the healthy control (N = 3 independent experiments). (C) Immunoblot analysis of APP 

(amyloid precursor protein)-full length (APP-FL) and C-terminal fragments (APP-CTF) in 

Triton-soluble lysates of iPSC-derived cortical neurons from NPC monozygotic twins (T1, 

T2), an unaffected parent (P), and a healthy control (Ctrl) at day 55 of differentiation. 

GAPDH was used as a loading control. Results are shown relative to the healthy control (N 

= 3 independent experiments). (D) Aβ42 and Aβ40 levels were quantified by enzyme-linked 

immunosorbent assay in Triton-soluble lysates of iPSC-derived cortical neurons from NPC 

monozygotic twins (T1, T2), an unaffected parent (P), and a healthy control (Ctrl) at day 55 

of differentiation (N = 4 independent experiments). Error bars, mean ± standard error of the 

mean. *P < 0.05 and **P < 0.01, one-way analysis of variance with Tukey's post hoc test.

Burbulla et al. Page 11

Mov Disord. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Tau pathology, abnormal APP processing and Aβ42 accumulation in NPC patient brains
	Modeling NPC brain pathology using iPSC-derived cortical neurons from NPC patients

	Discussion
	MATERIALS AND METHODS
	Human post-mortem brain collection
	Human iPSC cultures and differentiation into cortical neurons
	Sequential biochemical extraction
	Antibodies
	ELISA
	Immunohistochemistry procedure for paraffin-embedded brain tissue sections
	Statistical Analysis

	References
	Figure 1:
	Figure 2:

