Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Aug 27;77(Pt 9):965–970. doi: 10.1107/S2056989021008756

Crystal structure and Hirshfeld surface analysis of (E)-1-[2,2-di­chloro-1-(4-methyl­phen­yl)ethen­yl]-2-(4-meth­oxy­phen­yl)diazene

Namiq Q Shikhaliyev a, Zeliha Atioğlu b, Mehmet Akkurt c, Ayten M Qacar a, Rizvan K Askerov a, Ajaya Bhattarai d,*
PMCID: PMC8423004  PMID: 34584771

Two similar mol­ecules make up the asymmetric unit of the title compound. The crystal structure features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals inter­actions.

Keywords: crystal structure, short C—H⋯Cl contacts, C—H⋯π inter­actions, van der Waals inter­actions, Hirshfeld surface analysis

Abstract

The asymmetric unit of the title compound, C16H14Cl2N2O, comprises two similar mol­ecules, A and B, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°, respectively. The crystal structure features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals inter­actions. The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5). The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H⋯H (38.2% for mol­ecule A; 36.0% for mol­ecule B), Cl⋯H/H⋯Cl (24.6% for mol­ecule A; 26.7% for mol­ecule B) and C⋯H/H⋯C (20.0% for mol­ecule A; 20.2% for mol­ecule B) inter­actions are the most important contributors to the crystal packing.

Chemical context  

Azo dyes have found a wide range of applications, including as ligands, sensors, optical data storage, liquid crystals, non-linear optical materials, color-changing materials, mol­ecular switches, and dye-sensitized solar cells (Maharramov et al., 2018; Mahmudov et al., 2016; Viswanathan et al., 2019). The functional properties of azo dyes are strongly dependent on the groups attached to the –N=N– synthon. Moreover, non-covalent bond donors or acceptors attached to N-donor azo/hydrazone ligands are of inter­est because of their high solubility in polar solvents, functional properties, photoactivity in the solid state, coordination ability, and high thermal and oxidative stability (Gurbanov et al., 2020a ,b ; Kopylovich et al., 2011; Mac Leod et al., 2012; Mahmoudi et al., 2017a ,b , 2018a ,b ). The functionalization of N-donor ligands with –COOH or –SO3H groups can improve the catalytic activity of the corresponding metal complexes in oxidation and C—C coupling reactions (Gurbanov et al., 2018; Ma et al., 2017a ,b , 2020, 2021; Mahmudov et al., 2013; Mizar et al., 2012; Shixaliyev et al., 2014). Thus, in the current work we have synthesized a new azo dye, (E)-1-[2,2-di­chloro-1-(4-methyl­phen­yl)ethen­yl]-2-(4-meth­oxy­phen­yl)diazene, which displays multiple inter­molecular non-covalent inter­actions.

Structural commentary  

There are two comparable mol­ecules A (with Cl1) and B (with Cl3) in the asymmetric unit of the title compound (Fig. 1). The dihedral angles between the two aromatic rings (C3–C8/C10–C15 and C19–C24/C26–C31) in mol­ecules A and B are 70.1 (3) and 73.2 (2)°, respectively. In mol­ecule A, the N2/N1/C2/C1/Cl1/Cl2 moiety is approximately planar, with a maximum deviation of 0.110 (2) Å, and makes dihedral angles of 1.2 (2) and 71.3 (2)°, respectively, with the C3–C8 and C10–C15 rings. In mol­ecule B, the N4/N3/C18/C17/Cl3/Cl4 moiety is approximately planar with a maximum deviation of 0.046 (6) Å, and makes dihedral angles of 9.57 (18) and 75.94 (19)°, respectively, with the C19–C24 and C26–C31 rings.graphic file with name e-77-00965-scheme1.jpg

Figure 1.

Figure 1

Mol­ecules A and B in the asymmetric unit with the atom-labeling scheme and ellipsoids drawn at the 30% probability level.

Supra­molecular features  

In the crystal, no classical hydrogen bonds are observed. The mol­ecules are self-assembled via C—H⋯Cl short contacts, yielding supra­molecular chains along the b-axis direction. Adjacent chains are linked by C—H⋯O contacts, generating a two-dimensional array parallel to the bc plane (Table 1, Fig. 2). In addition, mol­ecules are connected by C—H⋯π inter­actions [Table 2, Fig. 3; C5—H5ACg2i, C23—H23ACg4ii and C25—H25CCg3ii, where Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 in mol­ecule A, and C19–C24 and C26–C31 in mol­ecule B, respectively]. The mol­ecular packing is further stabilized by van der Waals inter­actions.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 (in mol­ecule A) and C19–C24 and C26–C31 (in mol­ecule B), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg2i 0.93 2.84 3.645 (8) 146
C23—H23ACg4ii 0.93 3.00 3.775 (5) 142
C25—H25CCg3iii 0.96 2.93 3.717 (7) 140

Symmetry codes: (i) -x, y+{\script{1\over 2}}, -z+1; (ii) -x+1, y+{\script{1\over 2}}, -z; (iii) x-1, y, z.

Figure 2.

Figure 2

The crystal packing of the title compound viewed along the b axis, showing the C—H⋯Cl and C—H⋯O inter­actions as dashed lines.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
Cl1⋯H16C 3.13 −1 − x, {1\over 2} + y, 1 − z
Cl1⋯H25B 3.06 x, −{1\over 2} + y, 1 − z
O1⋯H11A 2.88 1 − x, {1\over 2} + y, 1 − z
H14A⋯Cl3 3.09 x, −{1\over 2} + y, −z
Cl3⋯H32A 3.03 2 − x, {1\over 2} + y, −z
Cl4⋯H27A 2.88 1 + x, y, z

Figure 3.

Figure 3

A general view of the C—H⋯π inter­actions in the title compound. [Symmetry codes: (a) −1 + x, y, z; (b) −x, Inline graphic + y, 1 − z; (c) 1 − x, Inline graphic + y, −z].

Hirshfeld surface analysis  

To visualize the inter­molecular inter­actions in the title mol­ecule, CrystalExplorer17 (Turner et al., 2017) was used to generate Hirshfeld surfaces (McKinnon et al., 2007) and their corresponding two-dimensional fingerprint plots (Spackman & McKinnon, 2002). In the Hirshfeld surfaces mapped over d norm for mol­ecules A and B of the title compound (Fig. 4), the bright-red spots near atoms Cl1, Cl3, Cl4 and O1 indicate the short C—H⋯Cl and C—H⋯O contacts (Table 1). Other contacts are equal to or longer than the sum of van der Waals radii. The Hirshfeld surfaces for mol­ecules A and B mapped over electrostatic potential (Spackman et al., 2008) are shown in Fig. 5. The positive electrostatic potential (blue regions) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red regions).

Figure 4.

Figure 4

(a) Front and (b) back views of the Hirshfeld surface of mol­ecule A, and (c) front and (d) back views of the Hirshfeld surface of mol­ecule B plotted over d norm in the ranges −0.1125 to 1.3054 and −0.1000 to 1.2923 a.u., respectively, for mol­ecules A and B.

Figure 5.

Figure 5

Views of the three-dimensional Hirshfeld surfaces of (a) mol­ecule A and (b) mol­ecule B plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms corresponding to positive and negative potentials.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C contacts in mol­ecules A and B are illustrated in Fig. 6. The most important inter­action is H⋯H, contributing 38.2% for mol­ecule A and 36.0% for mol­ecule B to the overall crystal packing (Fig. 6 b). The Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with d e + d i = 2.70 Å and contribute 24.6% to the Hirshfeld surface for mol­ecule A, and with d e + d i = 2.70 Å and contribute 26.7% to the Hirshfeld surface for mol­ecule B (Fig. 6 c). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6 d; 20.0% contribution for mol­ecule A and 20.2% contribution for mol­ecule B) have the tips at d e + d i = 2.80 Å for mol­ecule A and at d e + d i = 2.85 Å for mol­ecule B. The remaining contributions for both mol­ecules A and B are from N⋯H/H⋯N, O⋯H/H⋯O, N⋯C/C⋯N, Cl⋯O/O⋯Cl, Cl⋯C/C⋯Cl, C⋯C, Cl⋯N/N⋯Cl, O⋯C/C⋯O and Cl⋯Cl contacts, which are less than 4.6% and have a negligible effect on the packing. The percentage contributions of all inter­actions are listed in Table 3. The fact that the same inter­actions make different contributions to the HS for mol­ecules A and B can be attributed to the different mol­ecular environments of the A and B mol­ecules in the crystal structure.

Figure 6.

Figure 6

The full two-dimensional fingerprint plots for both mol­ecules A and B showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl and (d) C⋯H/H⋯C inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces for the mol­ecules A and B of the title compound in the asymmetric unit.

Contact Percentage contribution
  mol­ecule A mol­ecule B
H⋯H 38.2 36.0
Cl⋯H/H⋯Cl 24.6 26.7
C⋯H/H⋯C 20.0 20.2
N⋯H/H⋯N 4.5 4.6
O⋯H/H⋯O 3.2 3.1
N⋯C/C⋯N 3.1 3.2
Cl⋯O/O⋯Cl 2.0 2.3
Cl⋯C/C⋯Cl 1.8 1.7
C⋯C 1.3 1.2
Cl⋯N/N⋯Cl 1.1 0.9
O⋯C/C⋯O 0.2 0.3
Cl⋯Cl 0.1 0.1

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene unit resulted in 27 hits. Eight compounds are closely related to the title compound, viz. 4-{2,2-di­chloro-1-[(3,5-di­methyl­phen­yl)diazen­yl]ethen­yl}-N,N-di­methyl­aniline (GUPHIL; Özkaraca et al., 2020a ), 4-{2,2-di­chloro-1-[(4-fluoro­phen­yl)di­azen­yl]ethen­yl}-N,N-di­methyl­aniline (DUL­TAI; Özkaraca et al., 2020b ), 1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (HONBOE; Akkurt et al., 2019), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]di­azene (HONBUK; Akkurt et al., 2019), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]di­azene (HODQAV; Shikhaliyev et al., 2019), 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (XIZ­REG; Atioğlu et al., 2019), 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­[(2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (LEQXIR; Shikhaliyev et al., 2018) and 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­{[2,2-di­chloro-1-(4-chloro­phen­yl)ethen­yl]diazene} (LEQXOX; Shikhaliyev et al., 2018).

In GUPHIL, the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, mol­ecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In DULTAI, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals inter­actions. In HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. In the crystals, mol­ecules are linked through weak XCl contacts (X = Br for HONBOE and Cl for HONBUK), C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. In HODQAV, the benzene rings make a dihedral angle of 56.13 (13)°. Mol­ecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In XIZREG, the benzene rings form a dihedral angle of 63.29 (8)° and the mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystals of LEQXIR and LEQXOX, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur and in LEQXOX, C—H⋯N and short Cl⋯Cl contacts are observed.

Synthesis and crystallization  

The title compound was synthesized according to a reported method (Mukhtarova et al., 2021; Shikhaliyev et al., 2018, 2019). A 20 mL screw-neck vial was charged with DMSO (10 mL), (Z)-1-(4-meth­oxy­phen­yl)-2-(4-methyl­benzyl­id­ene)hydrazine (240 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo by a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colorless solid (65%); m.p. 355 K. Analysis calculated for C16H14Cl2N2O: C 59.83, H 4.39, N 8.72; found: C 59.78, H 4.32, N 8.69%. 1H NMR (300 MHz, Chloro­form-d) δ 7.79 (d, J = 9.0Hz, 2H, Ar), 7.26 (d, J = 8.0Hz, 2H, Ar), 7.10 (d, J = 8.0Hz, 2H, Ar), 6.95 (d, J = 9.0Hz, 2H, Ar), 3.88 (s, 3H, OCH3), 2.42 (s, 3H, CH3). 13C NMR (75 MHz, Chloro­form-d) δ 162.48, 148.12, 147.82, 138.47, 129.90, 129.76, 129.41, 128.85, 125.23, 114.14, 55.58 and 21.48. ESI–MS: m/z: 322.14 [M + H]+.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.96 Å, and with U iso(H) = 1.2 or 1.5U eq(C). Owing to poor agreement between observed and calculated intensities, eight outliers (2 Inline graphic 16, 2 Inline graphic 15, Inline graphic 9 13, Inline graphic 5 5, 1 Inline graphic 2, Inline graphic Inline graphic 4, 4 Inline graphic 8 and 1 7 11) were omitted in the final cycles of refinement. The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5).

Table 4. Experimental details.

Crystal data
Chemical formula C16H14Cl2N2O
M r 321.19
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 5.5366 (3), 17.9208 (8), 16.2085 (8)
β (°) 99.173 (2)
V3) 1587.65 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.24 × 0.19 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.675, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 19301, 6444, 3820
R int 0.054
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.059, 0.145, 1.01
No. of reflections 6444
No. of parameters 288
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.32
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.11 (10)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXT2016/6 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021008756/zn2009sup1.cif

e-77-00965-sup1.cif (582.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021008756/zn2009Isup2.hkl

e-77-00965-Isup2.hkl (512.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008756/zn2009Isup3.cml

CCDC reference: 1984582

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AMQ; X-ray analysis, RKA, ZA and MA; writing (review and editing of the manuscript), NQS, AMQ and RKA; funding acquisition, NQS, AMQ and RKA; supervision, NQS, MA and AB.

supplementary crystallographic information

Crystal data

C16H14Cl2N2O F(000) = 664
Mr = 321.19 Dx = 1.344 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 5.5366 (3) Å Cell parameters from 3046 reflections
b = 17.9208 (8) Å θ = 2.6–23.3°
c = 16.2085 (8) Å µ = 0.41 mm1
β = 99.173 (2)° T = 296 K
V = 1587.65 (14) Å3 Prism, colourless
Z = 4 0.24 × 0.19 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 3820 reflections with I > 2σ(I)
φ and ω scans Rint = 0.054
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 26.4°, θmin = 1.7°
Tmin = 0.675, Tmax = 0.745 h = −6→6
19301 measured reflections k = −22→22
6444 independent reflections l = −20→20

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.5767P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.37 e Å3
6444 reflections Δρmin = −0.32 e Å3
288 parameters Absolute structure: Refined as an inversion twin
1 restraint Absolute structure parameter: 0.11 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.2542 (4) 0.43617 (11) 0.64439 (13) 0.0796 (7)
Cl2 −0.4487 (3) 0.28816 (11) 0.61549 (11) 0.0712 (6)
O1 0.6974 (9) 0.6350 (3) 0.3727 (3) 0.0697 (14)
N1 −0.0135 (10) 0.4111 (3) 0.5003 (4) 0.0535 (14)
N2 0.0904 (10) 0.4034 (3) 0.4371 (3) 0.0489 (13)
C1 −0.2741 (12) 0.3575 (4) 0.5831 (4) 0.0521 (16)
C2 −0.1609 (11) 0.3501 (4) 0.5159 (4) 0.0488 (16)
C3 0.2407 (11) 0.4641 (3) 0.4235 (4) 0.0467 (15)
C4 0.2717 (12) 0.5288 (4) 0.4712 (4) 0.0562 (18)
H4A 0.188500 0.534413 0.516384 0.067*
C5 0.4230 (14) 0.5841 (4) 0.4525 (4) 0.0620 (19)
H5A 0.441835 0.627135 0.484996 0.074*
C6 0.5504 (12) 0.5769 (3) 0.3849 (4) 0.0489 (16)
C7 0.5196 (12) 0.5138 (4) 0.3367 (4) 0.0530 (17)
H7A 0.602750 0.508512 0.291554 0.064*
C8 0.3636 (12) 0.4577 (4) 0.3556 (4) 0.0527 (17)
H8A 0.341397 0.415233 0.322199 0.063*
C9 0.8362 (14) 0.6303 (4) 0.3075 (5) 0.075 (2)
H9A 0.958880 0.668681 0.314241 0.113*
H9B 0.730904 0.636837 0.254871 0.113*
H9C 0.913688 0.582341 0.308698 0.113*
C10 −0.1948 (11) 0.2833 (3) 0.4611 (4) 0.0434 (14)
C11 −0.0071 (12) 0.2325 (4) 0.4599 (5) 0.064 (2)
H11A 0.141146 0.239262 0.495082 0.076*
C12 −0.0390 (14) 0.1719 (4) 0.4065 (5) 0.067 (2)
H12A 0.087072 0.137412 0.407601 0.080*
C13 −0.2533 (14) 0.1614 (4) 0.3519 (4) 0.0596 (19)
C14 −0.4408 (13) 0.2110 (4) 0.3547 (4) 0.0577 (18)
H14A −0.589706 0.203698 0.320052 0.069*
C15 −0.4119 (11) 0.2715 (3) 0.4082 (4) 0.0464 (15)
H15A −0.540900 0.304650 0.408564 0.056*
C16 −0.2854 (17) 0.0945 (5) 0.2927 (5) 0.091 (3)
H16A −0.140574 0.064261 0.302099 0.136*
H16B −0.312419 0.111859 0.235935 0.136*
H16C −0.423307 0.065509 0.302905 0.136*
Cl3 0.7604 (5) 0.70082 (12) −0.12906 (13) 0.0884 (8)
Cl4 0.9416 (4) 0.55116 (12) −0.10328 (12) 0.0782 (7)
O2 −0.2060 (9) 0.9018 (3) 0.1289 (3) 0.0741 (15)
N3 0.5200 (11) 0.6762 (3) 0.0147 (3) 0.0547 (14)
N4 0.4238 (10) 0.6706 (3) 0.0789 (3) 0.0548 (14)
C17 0.7780 (13) 0.6217 (4) −0.0682 (4) 0.0569 (18)
C18 0.6653 (12) 0.6147 (4) −0.0012 (4) 0.0514 (17)
C19 0.2694 (8) 0.7321 (2) 0.0907 (3) 0.0629 (6)
C20 0.1554 (8) 0.7291 (2) 0.1610 (3) 0.0629 (6)
H20A 0.186090 0.689285 0.198089 0.076*
C21 −0.0044 (8) 0.7855 (3) 0.1760 (2) 0.0629 (6)
H21A −0.080656 0.783412 0.223126 0.076*
C22 −0.0502 (8) 0.8449 (2) 0.1207 (3) 0.0629 (6)
C23 0.0638 (9) 0.8479 (2) 0.0503 (3) 0.0629 (6)
H23A 0.033133 0.887707 0.013237 0.076*
C24 0.2236 (8) 0.7915 (2) 0.0353 (2) 0.0629 (6)
H24A 0.299880 0.793580 −0.011802 0.076*
C25 −0.3465 (13) 0.9007 (4) 0.1949 (4) 0.0629 (6)
H25A −0.457475 0.942189 0.189000 0.094*
H25B −0.239456 0.904082 0.247500 0.094*
H25C −0.437714 0.854952 0.192725 0.094*
C26 0.6954 (9) 0.5466 (2) 0.0525 (3) 0.0629 (6)
C27 0.5076 (7) 0.4946 (2) 0.0485 (3) 0.0629 (6)
H27A 0.361256 0.502241 0.012536 0.076*
C28 0.5386 (7) 0.4311 (2) 0.0983 (3) 0.0629 (6)
H28A 0.412980 0.396257 0.095678 0.076*
C29 0.7573 (8) 0.4196 (2) 0.1521 (3) 0.0629 (6)
C30 0.9451 (7) 0.4716 (3) 0.1560 (3) 0.0629 (6)
H30A 1.091434 0.463884 0.192023 0.076*
C31 0.9141 (7) 0.5351 (2) 0.1062 (3) 0.0629 (6)
H31A 1.039714 0.569868 0.108882 0.076*
C32 0.7922 (16) 0.3491 (4) 0.2055 (5) 0.086 (3)
H32A 0.926377 0.320655 0.190966 0.129*
H32B 0.645678 0.319578 0.195512 0.129*
H32C 0.826528 0.362584 0.263450 0.129*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0944 (16) 0.0730 (15) 0.0764 (13) −0.0152 (12) 0.0289 (12) −0.0239 (11)
Cl2 0.0750 (13) 0.0808 (15) 0.0611 (11) −0.0262 (11) 0.0212 (10) −0.0003 (10)
O1 0.080 (4) 0.051 (3) 0.088 (4) −0.016 (3) 0.042 (3) −0.005 (3)
N1 0.056 (4) 0.044 (3) 0.062 (3) −0.005 (3) 0.013 (3) 0.000 (3)
N2 0.056 (3) 0.040 (3) 0.051 (3) 0.002 (3) 0.009 (3) 0.001 (2)
C1 0.051 (4) 0.053 (4) 0.052 (4) −0.007 (3) 0.008 (3) −0.003 (3)
C2 0.049 (4) 0.046 (4) 0.053 (4) −0.003 (3) 0.011 (3) 0.003 (3)
C3 0.058 (4) 0.034 (3) 0.050 (4) −0.008 (3) 0.016 (3) −0.001 (3)
C4 0.069 (5) 0.050 (4) 0.057 (4) −0.015 (4) 0.031 (4) −0.012 (3)
C5 0.084 (5) 0.048 (4) 0.060 (4) −0.014 (4) 0.031 (4) −0.018 (3)
C6 0.053 (4) 0.042 (4) 0.054 (4) 0.004 (3) 0.016 (3) 0.002 (3)
C7 0.060 (4) 0.051 (4) 0.053 (4) 0.001 (3) 0.024 (3) −0.005 (3)
C8 0.069 (4) 0.039 (4) 0.053 (4) −0.005 (3) 0.018 (3) −0.004 (3)
C9 0.083 (6) 0.072 (5) 0.080 (5) −0.010 (4) 0.041 (5) 0.015 (4)
C10 0.045 (3) 0.036 (3) 0.051 (3) −0.004 (3) 0.013 (3) 0.001 (3)
C11 0.042 (4) 0.054 (5) 0.094 (6) 0.003 (3) 0.007 (4) −0.002 (4)
C12 0.061 (5) 0.045 (4) 0.098 (6) 0.009 (4) 0.021 (4) −0.001 (4)
C13 0.073 (5) 0.049 (4) 0.062 (4) 0.002 (4) 0.027 (4) −0.002 (3)
C14 0.062 (5) 0.065 (5) 0.046 (4) −0.004 (4) 0.008 (3) −0.001 (3)
C15 0.043 (4) 0.047 (4) 0.049 (3) 0.008 (3) 0.007 (3) 0.005 (3)
C16 0.123 (8) 0.062 (5) 0.091 (6) −0.001 (5) 0.027 (6) −0.021 (5)
Cl3 0.125 (2) 0.0759 (16) 0.0683 (13) 0.0050 (13) 0.0272 (13) 0.0208 (11)
Cl4 0.0905 (17) 0.0858 (16) 0.0647 (12) 0.0200 (12) 0.0323 (11) 0.0026 (11)
O2 0.080 (4) 0.061 (3) 0.087 (4) 0.017 (3) 0.032 (3) 0.010 (3)
N3 0.065 (4) 0.048 (4) 0.054 (3) 0.004 (3) 0.019 (3) 0.005 (3)
N4 0.066 (4) 0.048 (3) 0.052 (3) 0.000 (3) 0.013 (3) −0.001 (3)
C17 0.063 (5) 0.057 (4) 0.052 (4) 0.005 (4) 0.011 (4) 0.001 (3)
C18 0.057 (4) 0.047 (4) 0.049 (4) 0.003 (3) 0.005 (3) −0.008 (3)
C19 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C20 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C21 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C22 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C23 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C24 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C25 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C26 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C27 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C28 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C29 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C30 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C31 0.0714 (16) 0.0556 (14) 0.0645 (13) 0.0030 (11) 0.0190 (11) 0.0027 (10)
C32 0.120 (8) 0.064 (6) 0.079 (6) 0.005 (5) 0.030 (5) 0.004 (4)

Geometric parameters (Å, º)

Cl1—C1 1.717 (7) Cl3—C17 1.721 (7)
Cl2—C1 1.708 (7) Cl4—C17 1.704 (7)
O1—C6 1.355 (7) O2—C22 1.356 (5)
O1—C9 1.406 (8) O2—C25 1.419 (8)
N1—N2 1.260 (7) N3—N4 1.247 (7)
N1—C2 1.411 (8) N3—C18 1.413 (8)
N2—C3 1.408 (7) N4—C19 1.426 (6)
C1—C2 1.347 (9) C17—C18 1.342 (9)
C2—C10 1.486 (8) C18—C26 1.493 (7)
C3—C8 1.388 (8) C19—C20 1.3900
C3—C4 1.390 (8) C19—C24 1.3900
C4—C5 1.363 (9) C20—C21 1.3900
C4—H4A 0.9300 C20—H20A 0.9300
C5—C6 1.401 (9) C21—C22 1.3900
C5—H5A 0.9300 C21—H21A 0.9300
C6—C7 1.369 (8) C22—C23 1.3900
C7—C8 1.391 (8) C23—C24 1.3900
C7—H7A 0.9300 C23—H23A 0.9300
C8—H8A 0.9300 C24—H24A 0.9300
C9—H9A 0.9600 C25—H25A 0.9600
C9—H9B 0.9600 C25—H25B 0.9600
C9—H9C 0.9600 C25—H25C 0.9600
C10—C15 1.376 (8) C26—C27 1.3900
C10—C11 1.384 (8) C26—C31 1.3900
C11—C12 1.383 (9) C27—C28 1.3900
C11—H11A 0.9300 C27—H27A 0.9300
C12—C13 1.375 (10) C28—C29 1.3900
C12—H12A 0.9300 C28—H28A 0.9300
C13—C14 1.373 (9) C29—C30 1.3900
C13—C16 1.527 (10) C29—C32 1.526 (8)
C14—C15 1.382 (8) C30—C31 1.3900
C14—H14A 0.9300 C30—H30A 0.9300
C15—H15A 0.9300 C31—H31A 0.9300
C16—H16A 0.9600 C32—H32A 0.9600
C16—H16B 0.9600 C32—H32B 0.9600
C16—H16C 0.9600 C32—H32C 0.9600
C6—O1—C9 118.5 (6) C22—O2—C25 119.8 (5)
N2—N1—C2 114.4 (5) N4—N3—C18 114.9 (5)
N1—N2—C3 113.6 (5) N3—N4—C19 113.2 (5)
C2—C1—Cl2 122.4 (5) C18—C17—Cl4 122.7 (6)
C2—C1—Cl1 123.6 (5) C18—C17—Cl3 123.4 (6)
Cl2—C1—Cl1 114.0 (4) Cl4—C17—Cl3 113.9 (4)
C1—C2—N1 115.2 (6) C17—C18—N3 115.2 (6)
C1—C2—C10 122.2 (6) C17—C18—C26 121.7 (6)
N1—C2—C10 122.6 (5) N3—C18—C26 123.1 (5)
C8—C3—C4 118.6 (6) C20—C19—C24 120.0
C8—C3—N2 115.9 (6) C20—C19—N4 116.1 (4)
C4—C3—N2 125.5 (5) C24—C19—N4 123.9 (4)
C5—C4—C3 120.5 (6) C19—C20—C21 120.0
C5—C4—H4A 119.7 C19—C20—H20A 120.0
C3—C4—H4A 119.7 C21—C20—H20A 120.0
C4—C5—C6 120.8 (6) C22—C21—C20 120.0
C4—C5—H5A 119.6 C22—C21—H21A 120.0
C6—C5—H5A 119.6 C20—C21—H21A 120.0
O1—C6—C7 125.1 (6) O2—C22—C21 124.5 (4)
O1—C6—C5 115.6 (6) O2—C22—C23 115.5 (4)
C7—C6—C5 119.3 (6) C21—C22—C23 120.0
C6—C7—C8 119.8 (6) C24—C23—C22 120.0
C6—C7—H7A 120.1 C24—C23—H23A 120.0
C8—C7—H7A 120.1 C22—C23—H23A 120.0
C3—C8—C7 120.9 (6) C23—C24—C19 120.0
C3—C8—H8A 119.5 C23—C24—H24A 120.0
C7—C8—H8A 119.5 C19—C24—H24A 120.0
O1—C9—H9A 109.5 O2—C25—H25A 109.5
O1—C9—H9B 109.5 O2—C25—H25B 109.5
H9A—C9—H9B 109.5 H25A—C25—H25B 109.5
O1—C9—H9C 109.5 O2—C25—H25C 109.5
H9A—C9—H9C 109.5 H25A—C25—H25C 109.5
H9B—C9—H9C 109.5 H25B—C25—H25C 109.5
C15—C10—C11 118.2 (6) C27—C26—C31 120.0
C15—C10—C2 120.7 (6) C27—C26—C18 120.5 (4)
C11—C10—C2 121.0 (6) C31—C26—C18 119.5 (4)
C12—C11—C10 120.3 (7) C28—C27—C26 120.0
C12—C11—H11A 119.9 C28—C27—H27A 120.0
C10—C11—H11A 119.9 C26—C27—H27A 120.0
C13—C12—C11 121.4 (7) C27—C28—C29 120.0
C13—C12—H12A 119.3 C27—C28—H28A 120.0
C11—C12—H12A 119.3 C29—C28—H28A 120.0
C14—C13—C12 118.0 (7) C30—C29—C28 120.0
C14—C13—C16 121.0 (7) C30—C29—C32 120.2 (5)
C12—C13—C16 120.9 (7) C28—C29—C32 119.8 (5)
C13—C14—C15 121.1 (7) C29—C30—C31 120.0
C13—C14—H14A 119.5 C29—C30—H30A 120.0
C15—C14—H14A 119.5 C31—C30—H30A 120.0
C10—C15—C14 120.9 (6) C30—C31—C26 120.0
C10—C15—H15A 119.6 C30—C31—H31A 120.0
C14—C15—H15A 119.6 C26—C31—H31A 120.0
C13—C16—H16A 109.5 C29—C32—H32A 109.5
C13—C16—H16B 109.5 C29—C32—H32B 109.5
H16A—C16—H16B 109.5 H32A—C32—H32B 109.5
C13—C16—H16C 109.5 C29—C32—H32C 109.5
H16A—C16—H16C 109.5 H32A—C32—H32C 109.5
H16B—C16—H16C 109.5 H32B—C32—H32C 109.5
C2—N1—N2—C3 −178.8 (5) C18—N3—N4—C19 −177.2 (5)
Cl2—C1—C2—N1 −176.8 (5) Cl4—C17—C18—N3 −174.6 (5)
Cl1—C1—C2—N1 2.5 (9) Cl3—C17—C18—N3 2.6 (9)
Cl2—C1—C2—C10 4.8 (9) Cl4—C17—C18—C26 6.0 (10)
Cl1—C1—C2—C10 −175.9 (5) Cl3—C17—C18—C26 −176.8 (5)
N2—N1—C2—C1 −179.8 (6) N4—N3—C18—C17 −177.2 (6)
N2—N1—C2—C10 −1.4 (9) N4—N3—C18—C26 2.2 (9)
N1—N2—C3—C8 178.7 (6) N3—N4—C19—C20 179.7 (4)
N1—N2—C3—C4 −2.2 (9) N3—N4—C19—C24 1.8 (7)
C8—C3—C4—C5 −1.1 (11) C24—C19—C20—C21 0.0
N2—C3—C4—C5 179.7 (7) N4—C19—C20—C21 −178.0 (5)
C3—C4—C5—C6 −0.1 (11) C19—C20—C21—C22 0.0
C9—O1—C6—C7 −2.0 (10) C25—O2—C22—C21 −4.0 (8)
C9—O1—C6—C5 178.1 (6) C25—O2—C22—C23 174.8 (5)
C4—C5—C6—O1 −179.3 (7) C20—C21—C22—O2 178.8 (5)
C4—C5—C6—C7 0.8 (11) C20—C21—C22—C23 0.0
O1—C6—C7—C8 179.9 (6) O2—C22—C23—C24 −178.9 (5)
C5—C6—C7—C8 −0.3 (10) C21—C22—C23—C24 0.0
C4—C3—C8—C7 1.6 (10) C22—C23—C24—C19 0.0
N2—C3—C8—C7 −179.2 (6) C20—C19—C24—C23 0.0
C6—C7—C8—C3 −0.9 (10) N4—C19—C24—C23 177.8 (5)
C1—C2—C10—C15 71.9 (8) C17—C18—C26—C27 −105.8 (6)
N1—C2—C10—C15 −106.4 (7) N3—C18—C26—C27 74.8 (7)
C1—C2—C10—C11 −110.1 (7) C17—C18—C26—C31 73.7 (7)
N1—C2—C10—C11 71.6 (8) N3—C18—C26—C31 −105.7 (6)
C15—C10—C11—C12 0.2 (10) C31—C26—C27—C28 0.0
C2—C10—C11—C12 −177.9 (6) C18—C26—C27—C28 179.5 (5)
C10—C11—C12—C13 1.9 (11) C26—C27—C28—C29 0.0
C11—C12—C13—C14 −3.4 (11) C27—C28—C29—C30 0.0
C11—C12—C13—C16 179.4 (7) C27—C28—C29—C32 −178.9 (5)
C12—C13—C14—C15 2.8 (10) C28—C29—C30—C31 0.0
C16—C13—C14—C15 180.0 (6) C32—C29—C30—C31 178.9 (5)
C11—C10—C15—C14 −0.7 (9) C29—C30—C31—C26 0.0
C2—C10—C15—C14 177.4 (5) C27—C26—C31—C30 0.0
C13—C14—C15—C10 −0.8 (10) C18—C26—C31—C30 −179.5 (5)

Hydrogen-bond geometry (Å, º)

Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 (in molecule A) and C19–C24 and C26–C31 (in molecule B), respectively.

D—H···A D—H H···A D···A D—H···A
C5—H5A···Cg2i 0.93 2.84 3.645 (8) 146
C23—H23A···Cg4ii 0.93 3.00 3.775 (5) 142
C25—H25C···Cg3iii 0.96 2.93 3.717 (7) 140

Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x+1, y+1/2, −z; (iii) x−1, y, z.

Funding Statement

This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan grant EIF-BGM-4- RFTF-1/2017–21/13/4).

References

  1. Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
  2. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
  3. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  7. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  8. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.
  9. Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
  12. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
  13. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  14. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
  15. Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.
  16. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  17. Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
  18. Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
  19. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
  20. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772.
  21. Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
  22. Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. [DOI] [PubMed]
  23. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  24. Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
  25. Mukhtarova, S. H. (2021). New Materials, Compounds and Applications, 5, 45–51.
  26. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. [DOI] [PMC free article] [PubMed]
  27. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. [DOI] [PMC free article] [PubMed]
  28. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  29. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  30. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  31. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  32. Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. [DOI] [PMC free article] [PubMed]
  33. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  34. Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
  35. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  36. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  37. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  38. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  39. Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021008756/zn2009sup1.cif

e-77-00965-sup1.cif (582.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021008756/zn2009Isup2.hkl

e-77-00965-Isup2.hkl (512.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008756/zn2009Isup3.cml

CCDC reference: 1984582

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES