Two similar molecules make up the asymmetric unit of the title compound. The crystal structure features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals interactions.
Keywords: crystal structure, short C—H⋯Cl contacts, C—H⋯π interactions, van der Waals interactions, Hirshfeld surface analysis
Abstract
The asymmetric unit of the title compound, C16H14Cl2N2O, comprises two similar molecules, A and B, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°, respectively. The crystal structure features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals interactions. The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5). The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H⋯H (38.2% for molecule A; 36.0% for molecule B), Cl⋯H/H⋯Cl (24.6% for molecule A; 26.7% for molecule B) and C⋯H/H⋯C (20.0% for molecule A; 20.2% for molecule B) interactions are the most important contributors to the crystal packing.
Chemical context
Azo dyes have found a wide range of applications, including as ligands, sensors, optical data storage, liquid crystals, non-linear optical materials, color-changing materials, molecular switches, and dye-sensitized solar cells (Maharramov et al., 2018 ▸; Mahmudov et al., 2016 ▸; Viswanathan et al., 2019 ▸). The functional properties of azo dyes are strongly dependent on the groups attached to the –N=N– synthon. Moreover, non-covalent bond donors or acceptors attached to N-donor azo/hydrazone ligands are of interest because of their high solubility in polar solvents, functional properties, photoactivity in the solid state, coordination ability, and high thermal and oxidative stability (Gurbanov et al., 2020a ▸,b ▸; Kopylovich et al., 2011 ▸; Mac Leod et al., 2012 ▸; Mahmoudi et al., 2017a ▸,b ▸, 2018a ▸,b ▸). The functionalization of N-donor ligands with –COOH or –SO3H groups can improve the catalytic activity of the corresponding metal complexes in oxidation and C—C coupling reactions (Gurbanov et al., 2018 ▸; Ma et al., 2017a ▸,b ▸, 2020 ▸, 2021 ▸; Mahmudov et al., 2013 ▸; Mizar et al., 2012 ▸; Shixaliyev et al., 2014 ▸). Thus, in the current work we have synthesized a new azo dye, (E)-1-[2,2-dichloro-1-(4-methylphenyl)ethenyl]-2-(4-methoxyphenyl)diazene, which displays multiple intermolecular non-covalent interactions.
Structural commentary
There are two comparable molecules A (with Cl1) and B (with Cl3) in the asymmetric unit of the title compound (Fig. 1 ▸). The dihedral angles between the two aromatic rings (C3–C8/C10–C15 and C19–C24/C26–C31) in molecules A and B are 70.1 (3) and 73.2 (2)°, respectively. In molecule A, the N2/N1/C2/C1/Cl1/Cl2 moiety is approximately planar, with a maximum deviation of 0.110 (2) Å, and makes dihedral angles of 1.2 (2) and 71.3 (2)°, respectively, with the C3–C8 and C10–C15 rings. In molecule B, the N4/N3/C18/C17/Cl3/Cl4 moiety is approximately planar with a maximum deviation of 0.046 (6) Å, and makes dihedral angles of 9.57 (18) and 75.94 (19)°, respectively, with the C19–C24 and C26–C31 rings.
Figure 1.
Molecules A and B in the asymmetric unit with the atom-labeling scheme and ellipsoids drawn at the 30% probability level.
Supramolecular features
In the crystal, no classical hydrogen bonds are observed. The molecules are self-assembled via C—H⋯Cl short contacts, yielding supramolecular chains along the b-axis direction. Adjacent chains are linked by C—H⋯O contacts, generating a two-dimensional array parallel to the bc plane (Table 1 ▸, Fig. 2 ▸). In addition, molecules are connected by C—H⋯π interactions [Table 2 ▸, Fig. 3 ▸; C5—H5A⋯Cg2i, C23—H23A⋯Cg4ii and C25—H25C⋯Cg3ii, where Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 in molecule A, and C19–C24 and C26–C31 in molecule B, respectively]. The molecular packing is further stabilized by van der Waals interactions.
Table 1. Hydrogen-bond geometry (Å, °).
Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 (in molecule A) and C19–C24 and C26–C31 (in molecule B), respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C5—H5A⋯Cg2i | 0.93 | 2.84 | 3.645 (8) | 146 |
| C23—H23A⋯Cg4ii | 0.93 | 3.00 | 3.775 (5) | 142 |
| C25—H25C⋯Cg3iii | 0.96 | 2.93 | 3.717 (7) | 140 |
Symmetry codes: (i) -x, y+{\script{1\over 2}}, -z+1; (ii) -x+1, y+{\script{1\over 2}}, -z; (iii) x-1, y, z.
Figure 2.
The crystal packing of the title compound viewed along the b axis, showing the C—H⋯Cl and C—H⋯O interactions as dashed lines.
Table 2. Summary of short interatomic contacts (Å) in the title compound.
| Contact | Distance | Symmetry operation |
|---|---|---|
| Cl1⋯H16C | 3.13 | −1 − x, {1\over 2} + y, 1 − z |
| Cl1⋯H25B | 3.06 | −x, −{1\over 2} + y, 1 − z |
| O1⋯H11A | 2.88 | 1 − x, {1\over 2} + y, 1 − z |
| H14A⋯Cl3 | 3.09 | −x, −{1\over 2} + y, −z |
| Cl3⋯H32A | 3.03 | 2 − x, {1\over 2} + y, −z |
| Cl4⋯H27A | 2.88 | 1 + x, y, z |
Figure 3.
A general view of the C—H⋯π interactions in the title compound. [Symmetry codes: (a) −1 + x, y, z; (b) −x,
+ y, 1 − z; (c) 1 − x,
+ y, −z].
Hirshfeld surface analysis
To visualize the intermolecular interactions in the title molecule, CrystalExplorer17 (Turner et al., 2017 ▸) was used to generate Hirshfeld surfaces (McKinnon et al., 2007 ▸) and their corresponding two-dimensional fingerprint plots (Spackman & McKinnon, 2002 ▸). In the Hirshfeld surfaces mapped over d norm for molecules A and B of the title compound (Fig. 4 ▸), the bright-red spots near atoms Cl1, Cl3, Cl4 and O1 indicate the short C—H⋯Cl and C—H⋯O contacts (Table 1 ▸). Other contacts are equal to or longer than the sum of van der Waals radii. The Hirshfeld surfaces for molecules A and B mapped over electrostatic potential (Spackman et al., 2008 ▸) are shown in Fig. 5 ▸. The positive electrostatic potential (blue regions) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red regions).
Figure 4.
(a) Front and (b) back views of the Hirshfeld surface of molecule A, and (c) front and (d) back views of the Hirshfeld surface of molecule B plotted over d norm in the ranges −0.1125 to 1.3054 and −0.1000 to 1.2923 a.u., respectively, for molecules A and B.
Figure 5.
Views of the three-dimensional Hirshfeld surfaces of (a) molecule A and (b) molecule B plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms corresponding to positive and negative potentials.
The overall two-dimensional fingerprint plot and those delineated into H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C contacts in molecules A and B are illustrated in Fig. 6 ▸. The most important interaction is H⋯H, contributing 38.2% for molecule A and 36.0% for molecule B to the overall crystal packing (Fig. 6 ▸ b). The Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with d e + d i = 2.70 Å and contribute 24.6% to the Hirshfeld surface for molecule A, and with d e + d i = 2.70 Å and contribute 26.7% to the Hirshfeld surface for molecule B (Fig. 6 ▸ c). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6 ▸ d; 20.0% contribution for molecule A and 20.2% contribution for molecule B) have the tips at d e + d i = 2.80 Å for molecule A and at d e + d i = 2.85 Å for molecule B. The remaining contributions for both molecules A and B are from N⋯H/H⋯N, O⋯H/H⋯O, N⋯C/C⋯N, Cl⋯O/O⋯Cl, Cl⋯C/C⋯Cl, C⋯C, Cl⋯N/N⋯Cl, O⋯C/C⋯O and Cl⋯Cl contacts, which are less than 4.6% and have a negligible effect on the packing. The percentage contributions of all interactions are listed in Table 3 ▸. The fact that the same interactions make different contributions to the HS for molecules A and B can be attributed to the different molecular environments of the A and B molecules in the crystal structure.
Figure 6.

The full two-dimensional fingerprint plots for both molecules A and B showing (a) all interactions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl and (d) C⋯H/H⋯C interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surfaces for the molecules A and B of the title compound in the asymmetric unit.
| Contact | Percentage contribution | |
|---|---|---|
| molecule A | molecule B | |
| H⋯H | 38.2 | 36.0 |
| Cl⋯H/H⋯Cl | 24.6 | 26.7 |
| C⋯H/H⋯C | 20.0 | 20.2 |
| N⋯H/H⋯N | 4.5 | 4.6 |
| O⋯H/H⋯O | 3.2 | 3.1 |
| N⋯C/C⋯N | 3.1 | 3.2 |
| Cl⋯O/O⋯Cl | 2.0 | 2.3 |
| Cl⋯C/C⋯Cl | 1.8 | 1.7 |
| C⋯C | 1.3 | 1.2 |
| Cl⋯N/N⋯Cl | 1.1 | 0.9 |
| O⋯C/C⋯O | 0.2 | 0.3 |
| Cl⋯Cl | 0.1 | 0.1 |
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016 ▸) for the (E)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene unit resulted in 27 hits. Eight compounds are closely related to the title compound, viz. 4-{2,2-dichloro-1-[(3,5-dimethylphenyl)diazenyl]ethenyl}-N,N-dimethylaniline (GUPHIL; Özkaraca et al., 2020a ▸), 4-{2,2-dichloro-1-[(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline (DULTAI; Özkaraca et al., 2020b ▸), 1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (HONBOE; Akkurt et al., 2019 ▸), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (HONBUK; Akkurt et al., 2019 ▸), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene (HODQAV; Shikhaliyev et al., 2019 ▸), 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (XIZREG; Atioğlu et al., 2019 ▸), 1,1-[methylenebis(4,1-phenylene)]bis[(2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (LEQXIR; Shikhaliyev et al., 2018 ▸) and 1,1-[methylenebis(4,1-phenylene)]bis{[2,2-dichloro-1-(4-chlorophenyl)ethenyl]diazene} (LEQXOX; Shikhaliyev et al., 2018 ▸).
In GUPHIL, the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, molecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In DULTAI, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals interactions. In HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. In the crystals, molecules are linked through weak X⋯Cl contacts (X = Br for HONBOE and Cl for HONBUK), C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. Additional van der Waals interactions consolidate the three-dimensional packing. In HODQAV, the benzene rings make a dihedral angle of 56.13 (13)°. Molecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In XIZREG, the benzene rings form a dihedral angle of 63.29 (8)° and the molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In the crystals of LEQXIR and LEQXOX, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur and in LEQXOX, C—H⋯N and short Cl⋯Cl contacts are observed.
Synthesis and crystallization
The title compound was synthesized according to a reported method (Mukhtarova et al., 2021 ▸; Shikhaliyev et al., 2018 ▸, 2019 ▸). A 20 mL screw-neck vial was charged with DMSO (10 mL), (Z)-1-(4-methoxyphenyl)-2-(4-methylbenzylidene)hydrazine (240 mg, 1 mmol), tetramethylethylenediamine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo by a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colorless solid (65%); m.p. 355 K. Analysis calculated for C16H14Cl2N2O: C 59.83, H 4.39, N 8.72; found: C 59.78, H 4.32, N 8.69%. 1H NMR (300 MHz, Chloroform-d) δ 7.79 (d, J = 9.0Hz, 2H, Ar), 7.26 (d, J = 8.0Hz, 2H, Ar), 7.10 (d, J = 8.0Hz, 2H, Ar), 6.95 (d, J = 9.0Hz, 2H, Ar), 3.88 (s, 3H, OCH3), 2.42 (s, 3H, CH3). 13C NMR (75 MHz, Chloroform-d) δ 162.48, 148.12, 147.82, 138.47, 129.90, 129.76, 129.41, 128.85, 125.23, 114.14, 55.58 and 21.48. ESI–MS: m/z: 322.14 [M + H]+.
Refinement details
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.96 Å, and with U
iso(H) = 1.2 or 1.5U
eq(C). Owing to poor agreement between observed and calculated intensities, eight outliers (2
16, 2
15,
9 13,
5 5, 1
2,
4, 4
8 and 1 7 11) were omitted in the final cycles of refinement. The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5).
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C16H14Cl2N2O |
| M r | 321.19 |
| Crystal system, space group | Monoclinic, P21 |
| Temperature (K) | 296 |
| a, b, c (Å) | 5.5366 (3), 17.9208 (8), 16.2085 (8) |
| β (°) | 99.173 (2) |
| V (Å3) | 1587.65 (14) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.41 |
| Crystal size (mm) | 0.24 × 0.19 × 0.10 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| Tmin, Tmax | 0.675, 0.745 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 19301, 6444, 3820 |
| R int | 0.054 |
| (sin θ/λ)max (Å−1) | 0.624 |
| Refinement | |
| R[F2 > 2σ(F 2)], wR(F 2), S | 0.059, 0.145, 1.01 |
| No. of reflections | 6444 |
| No. of parameters | 288 |
| No. of restraints | 1 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.37, −0.32 |
| Absolute structure | Refined as an inversion twin |
| Absolute structure parameter | 0.11 (10) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021008756/zn2009sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021008756/zn2009Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021008756/zn2009Isup3.cml
CCDC reference: 1984582
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors’ contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AMQ; X-ray analysis, RKA, ZA and MA; writing (review and editing of the manuscript), NQS, AMQ and RKA; funding acquisition, NQS, AMQ and RKA; supervision, NQS, MA and AB.
supplementary crystallographic information
Crystal data
| C16H14Cl2N2O | F(000) = 664 |
| Mr = 321.19 | Dx = 1.344 Mg m−3 |
| Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
| a = 5.5366 (3) Å | Cell parameters from 3046 reflections |
| b = 17.9208 (8) Å | θ = 2.6–23.3° |
| c = 16.2085 (8) Å | µ = 0.41 mm−1 |
| β = 99.173 (2)° | T = 296 K |
| V = 1587.65 (14) Å3 | Prism, colourless |
| Z = 4 | 0.24 × 0.19 × 0.10 mm |
Data collection
| Bruker APEXII CCD diffractometer | 3820 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.054 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 1.7° |
| Tmin = 0.675, Tmax = 0.745 | h = −6→6 |
| 19301 measured reflections | k = −22→22 |
| 6444 independent reflections | l = −20→20 |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.059 | w = 1/[σ2(Fo2) + (0.0481P)2 + 0.5767P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.145 | (Δ/σ)max < 0.001 |
| S = 1.01 | Δρmax = 0.37 e Å−3 |
| 6444 reflections | Δρmin = −0.32 e Å−3 |
| 288 parameters | Absolute structure: Refined as an inversion twin |
| 1 restraint | Absolute structure parameter: 0.11 (10) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refined as a 2-component inversion twin. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | −0.2542 (4) | 0.43617 (11) | 0.64439 (13) | 0.0796 (7) | |
| Cl2 | −0.4487 (3) | 0.28816 (11) | 0.61549 (11) | 0.0712 (6) | |
| O1 | 0.6974 (9) | 0.6350 (3) | 0.3727 (3) | 0.0697 (14) | |
| N1 | −0.0135 (10) | 0.4111 (3) | 0.5003 (4) | 0.0535 (14) | |
| N2 | 0.0904 (10) | 0.4034 (3) | 0.4371 (3) | 0.0489 (13) | |
| C1 | −0.2741 (12) | 0.3575 (4) | 0.5831 (4) | 0.0521 (16) | |
| C2 | −0.1609 (11) | 0.3501 (4) | 0.5159 (4) | 0.0488 (16) | |
| C3 | 0.2407 (11) | 0.4641 (3) | 0.4235 (4) | 0.0467 (15) | |
| C4 | 0.2717 (12) | 0.5288 (4) | 0.4712 (4) | 0.0562 (18) | |
| H4A | 0.188500 | 0.534413 | 0.516384 | 0.067* | |
| C5 | 0.4230 (14) | 0.5841 (4) | 0.4525 (4) | 0.0620 (19) | |
| H5A | 0.441835 | 0.627135 | 0.484996 | 0.074* | |
| C6 | 0.5504 (12) | 0.5769 (3) | 0.3849 (4) | 0.0489 (16) | |
| C7 | 0.5196 (12) | 0.5138 (4) | 0.3367 (4) | 0.0530 (17) | |
| H7A | 0.602750 | 0.508512 | 0.291554 | 0.064* | |
| C8 | 0.3636 (12) | 0.4577 (4) | 0.3556 (4) | 0.0527 (17) | |
| H8A | 0.341397 | 0.415233 | 0.322199 | 0.063* | |
| C9 | 0.8362 (14) | 0.6303 (4) | 0.3075 (5) | 0.075 (2) | |
| H9A | 0.958880 | 0.668681 | 0.314241 | 0.113* | |
| H9B | 0.730904 | 0.636837 | 0.254871 | 0.113* | |
| H9C | 0.913688 | 0.582341 | 0.308698 | 0.113* | |
| C10 | −0.1948 (11) | 0.2833 (3) | 0.4611 (4) | 0.0434 (14) | |
| C11 | −0.0071 (12) | 0.2325 (4) | 0.4599 (5) | 0.064 (2) | |
| H11A | 0.141146 | 0.239262 | 0.495082 | 0.076* | |
| C12 | −0.0390 (14) | 0.1719 (4) | 0.4065 (5) | 0.067 (2) | |
| H12A | 0.087072 | 0.137412 | 0.407601 | 0.080* | |
| C13 | −0.2533 (14) | 0.1614 (4) | 0.3519 (4) | 0.0596 (19) | |
| C14 | −0.4408 (13) | 0.2110 (4) | 0.3547 (4) | 0.0577 (18) | |
| H14A | −0.589706 | 0.203698 | 0.320052 | 0.069* | |
| C15 | −0.4119 (11) | 0.2715 (3) | 0.4082 (4) | 0.0464 (15) | |
| H15A | −0.540900 | 0.304650 | 0.408564 | 0.056* | |
| C16 | −0.2854 (17) | 0.0945 (5) | 0.2927 (5) | 0.091 (3) | |
| H16A | −0.140574 | 0.064261 | 0.302099 | 0.136* | |
| H16B | −0.312419 | 0.111859 | 0.235935 | 0.136* | |
| H16C | −0.423307 | 0.065509 | 0.302905 | 0.136* | |
| Cl3 | 0.7604 (5) | 0.70082 (12) | −0.12906 (13) | 0.0884 (8) | |
| Cl4 | 0.9416 (4) | 0.55116 (12) | −0.10328 (12) | 0.0782 (7) | |
| O2 | −0.2060 (9) | 0.9018 (3) | 0.1289 (3) | 0.0741 (15) | |
| N3 | 0.5200 (11) | 0.6762 (3) | 0.0147 (3) | 0.0547 (14) | |
| N4 | 0.4238 (10) | 0.6706 (3) | 0.0789 (3) | 0.0548 (14) | |
| C17 | 0.7780 (13) | 0.6217 (4) | −0.0682 (4) | 0.0569 (18) | |
| C18 | 0.6653 (12) | 0.6147 (4) | −0.0012 (4) | 0.0514 (17) | |
| C19 | 0.2694 (8) | 0.7321 (2) | 0.0907 (3) | 0.0629 (6) | |
| C20 | 0.1554 (8) | 0.7291 (2) | 0.1610 (3) | 0.0629 (6) | |
| H20A | 0.186090 | 0.689285 | 0.198089 | 0.076* | |
| C21 | −0.0044 (8) | 0.7855 (3) | 0.1760 (2) | 0.0629 (6) | |
| H21A | −0.080656 | 0.783412 | 0.223126 | 0.076* | |
| C22 | −0.0502 (8) | 0.8449 (2) | 0.1207 (3) | 0.0629 (6) | |
| C23 | 0.0638 (9) | 0.8479 (2) | 0.0503 (3) | 0.0629 (6) | |
| H23A | 0.033133 | 0.887707 | 0.013237 | 0.076* | |
| C24 | 0.2236 (8) | 0.7915 (2) | 0.0353 (2) | 0.0629 (6) | |
| H24A | 0.299880 | 0.793580 | −0.011802 | 0.076* | |
| C25 | −0.3465 (13) | 0.9007 (4) | 0.1949 (4) | 0.0629 (6) | |
| H25A | −0.457475 | 0.942189 | 0.189000 | 0.094* | |
| H25B | −0.239456 | 0.904082 | 0.247500 | 0.094* | |
| H25C | −0.437714 | 0.854952 | 0.192725 | 0.094* | |
| C26 | 0.6954 (9) | 0.5466 (2) | 0.0525 (3) | 0.0629 (6) | |
| C27 | 0.5076 (7) | 0.4946 (2) | 0.0485 (3) | 0.0629 (6) | |
| H27A | 0.361256 | 0.502241 | 0.012536 | 0.076* | |
| C28 | 0.5386 (7) | 0.4311 (2) | 0.0983 (3) | 0.0629 (6) | |
| H28A | 0.412980 | 0.396257 | 0.095678 | 0.076* | |
| C29 | 0.7573 (8) | 0.4196 (2) | 0.1521 (3) | 0.0629 (6) | |
| C30 | 0.9451 (7) | 0.4716 (3) | 0.1560 (3) | 0.0629 (6) | |
| H30A | 1.091434 | 0.463884 | 0.192023 | 0.076* | |
| C31 | 0.9141 (7) | 0.5351 (2) | 0.1062 (3) | 0.0629 (6) | |
| H31A | 1.039714 | 0.569868 | 0.108882 | 0.076* | |
| C32 | 0.7922 (16) | 0.3491 (4) | 0.2055 (5) | 0.086 (3) | |
| H32A | 0.926377 | 0.320655 | 0.190966 | 0.129* | |
| H32B | 0.645678 | 0.319578 | 0.195512 | 0.129* | |
| H32C | 0.826528 | 0.362584 | 0.263450 | 0.129* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0944 (16) | 0.0730 (15) | 0.0764 (13) | −0.0152 (12) | 0.0289 (12) | −0.0239 (11) |
| Cl2 | 0.0750 (13) | 0.0808 (15) | 0.0611 (11) | −0.0262 (11) | 0.0212 (10) | −0.0003 (10) |
| O1 | 0.080 (4) | 0.051 (3) | 0.088 (4) | −0.016 (3) | 0.042 (3) | −0.005 (3) |
| N1 | 0.056 (4) | 0.044 (3) | 0.062 (3) | −0.005 (3) | 0.013 (3) | 0.000 (3) |
| N2 | 0.056 (3) | 0.040 (3) | 0.051 (3) | 0.002 (3) | 0.009 (3) | 0.001 (2) |
| C1 | 0.051 (4) | 0.053 (4) | 0.052 (4) | −0.007 (3) | 0.008 (3) | −0.003 (3) |
| C2 | 0.049 (4) | 0.046 (4) | 0.053 (4) | −0.003 (3) | 0.011 (3) | 0.003 (3) |
| C3 | 0.058 (4) | 0.034 (3) | 0.050 (4) | −0.008 (3) | 0.016 (3) | −0.001 (3) |
| C4 | 0.069 (5) | 0.050 (4) | 0.057 (4) | −0.015 (4) | 0.031 (4) | −0.012 (3) |
| C5 | 0.084 (5) | 0.048 (4) | 0.060 (4) | −0.014 (4) | 0.031 (4) | −0.018 (3) |
| C6 | 0.053 (4) | 0.042 (4) | 0.054 (4) | 0.004 (3) | 0.016 (3) | 0.002 (3) |
| C7 | 0.060 (4) | 0.051 (4) | 0.053 (4) | 0.001 (3) | 0.024 (3) | −0.005 (3) |
| C8 | 0.069 (4) | 0.039 (4) | 0.053 (4) | −0.005 (3) | 0.018 (3) | −0.004 (3) |
| C9 | 0.083 (6) | 0.072 (5) | 0.080 (5) | −0.010 (4) | 0.041 (5) | 0.015 (4) |
| C10 | 0.045 (3) | 0.036 (3) | 0.051 (3) | −0.004 (3) | 0.013 (3) | 0.001 (3) |
| C11 | 0.042 (4) | 0.054 (5) | 0.094 (6) | 0.003 (3) | 0.007 (4) | −0.002 (4) |
| C12 | 0.061 (5) | 0.045 (4) | 0.098 (6) | 0.009 (4) | 0.021 (4) | −0.001 (4) |
| C13 | 0.073 (5) | 0.049 (4) | 0.062 (4) | 0.002 (4) | 0.027 (4) | −0.002 (3) |
| C14 | 0.062 (5) | 0.065 (5) | 0.046 (4) | −0.004 (4) | 0.008 (3) | −0.001 (3) |
| C15 | 0.043 (4) | 0.047 (4) | 0.049 (3) | 0.008 (3) | 0.007 (3) | 0.005 (3) |
| C16 | 0.123 (8) | 0.062 (5) | 0.091 (6) | −0.001 (5) | 0.027 (6) | −0.021 (5) |
| Cl3 | 0.125 (2) | 0.0759 (16) | 0.0683 (13) | 0.0050 (13) | 0.0272 (13) | 0.0208 (11) |
| Cl4 | 0.0905 (17) | 0.0858 (16) | 0.0647 (12) | 0.0200 (12) | 0.0323 (11) | 0.0026 (11) |
| O2 | 0.080 (4) | 0.061 (3) | 0.087 (4) | 0.017 (3) | 0.032 (3) | 0.010 (3) |
| N3 | 0.065 (4) | 0.048 (4) | 0.054 (3) | 0.004 (3) | 0.019 (3) | 0.005 (3) |
| N4 | 0.066 (4) | 0.048 (3) | 0.052 (3) | 0.000 (3) | 0.013 (3) | −0.001 (3) |
| C17 | 0.063 (5) | 0.057 (4) | 0.052 (4) | 0.005 (4) | 0.011 (4) | 0.001 (3) |
| C18 | 0.057 (4) | 0.047 (4) | 0.049 (4) | 0.003 (3) | 0.005 (3) | −0.008 (3) |
| C19 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C20 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C21 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C22 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C23 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C24 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C25 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C26 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C27 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C28 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C29 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C30 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C31 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
| C32 | 0.120 (8) | 0.064 (6) | 0.079 (6) | 0.005 (5) | 0.030 (5) | 0.004 (4) |
Geometric parameters (Å, º)
| Cl1—C1 | 1.717 (7) | Cl3—C17 | 1.721 (7) |
| Cl2—C1 | 1.708 (7) | Cl4—C17 | 1.704 (7) |
| O1—C6 | 1.355 (7) | O2—C22 | 1.356 (5) |
| O1—C9 | 1.406 (8) | O2—C25 | 1.419 (8) |
| N1—N2 | 1.260 (7) | N3—N4 | 1.247 (7) |
| N1—C2 | 1.411 (8) | N3—C18 | 1.413 (8) |
| N2—C3 | 1.408 (7) | N4—C19 | 1.426 (6) |
| C1—C2 | 1.347 (9) | C17—C18 | 1.342 (9) |
| C2—C10 | 1.486 (8) | C18—C26 | 1.493 (7) |
| C3—C8 | 1.388 (8) | C19—C20 | 1.3900 |
| C3—C4 | 1.390 (8) | C19—C24 | 1.3900 |
| C4—C5 | 1.363 (9) | C20—C21 | 1.3900 |
| C4—H4A | 0.9300 | C20—H20A | 0.9300 |
| C5—C6 | 1.401 (9) | C21—C22 | 1.3900 |
| C5—H5A | 0.9300 | C21—H21A | 0.9300 |
| C6—C7 | 1.369 (8) | C22—C23 | 1.3900 |
| C7—C8 | 1.391 (8) | C23—C24 | 1.3900 |
| C7—H7A | 0.9300 | C23—H23A | 0.9300 |
| C8—H8A | 0.9300 | C24—H24A | 0.9300 |
| C9—H9A | 0.9600 | C25—H25A | 0.9600 |
| C9—H9B | 0.9600 | C25—H25B | 0.9600 |
| C9—H9C | 0.9600 | C25—H25C | 0.9600 |
| C10—C15 | 1.376 (8) | C26—C27 | 1.3900 |
| C10—C11 | 1.384 (8) | C26—C31 | 1.3900 |
| C11—C12 | 1.383 (9) | C27—C28 | 1.3900 |
| C11—H11A | 0.9300 | C27—H27A | 0.9300 |
| C12—C13 | 1.375 (10) | C28—C29 | 1.3900 |
| C12—H12A | 0.9300 | C28—H28A | 0.9300 |
| C13—C14 | 1.373 (9) | C29—C30 | 1.3900 |
| C13—C16 | 1.527 (10) | C29—C32 | 1.526 (8) |
| C14—C15 | 1.382 (8) | C30—C31 | 1.3900 |
| C14—H14A | 0.9300 | C30—H30A | 0.9300 |
| C15—H15A | 0.9300 | C31—H31A | 0.9300 |
| C16—H16A | 0.9600 | C32—H32A | 0.9600 |
| C16—H16B | 0.9600 | C32—H32B | 0.9600 |
| C16—H16C | 0.9600 | C32—H32C | 0.9600 |
| C6—O1—C9 | 118.5 (6) | C22—O2—C25 | 119.8 (5) |
| N2—N1—C2 | 114.4 (5) | N4—N3—C18 | 114.9 (5) |
| N1—N2—C3 | 113.6 (5) | N3—N4—C19 | 113.2 (5) |
| C2—C1—Cl2 | 122.4 (5) | C18—C17—Cl4 | 122.7 (6) |
| C2—C1—Cl1 | 123.6 (5) | C18—C17—Cl3 | 123.4 (6) |
| Cl2—C1—Cl1 | 114.0 (4) | Cl4—C17—Cl3 | 113.9 (4) |
| C1—C2—N1 | 115.2 (6) | C17—C18—N3 | 115.2 (6) |
| C1—C2—C10 | 122.2 (6) | C17—C18—C26 | 121.7 (6) |
| N1—C2—C10 | 122.6 (5) | N3—C18—C26 | 123.1 (5) |
| C8—C3—C4 | 118.6 (6) | C20—C19—C24 | 120.0 |
| C8—C3—N2 | 115.9 (6) | C20—C19—N4 | 116.1 (4) |
| C4—C3—N2 | 125.5 (5) | C24—C19—N4 | 123.9 (4) |
| C5—C4—C3 | 120.5 (6) | C19—C20—C21 | 120.0 |
| C5—C4—H4A | 119.7 | C19—C20—H20A | 120.0 |
| C3—C4—H4A | 119.7 | C21—C20—H20A | 120.0 |
| C4—C5—C6 | 120.8 (6) | C22—C21—C20 | 120.0 |
| C4—C5—H5A | 119.6 | C22—C21—H21A | 120.0 |
| C6—C5—H5A | 119.6 | C20—C21—H21A | 120.0 |
| O1—C6—C7 | 125.1 (6) | O2—C22—C21 | 124.5 (4) |
| O1—C6—C5 | 115.6 (6) | O2—C22—C23 | 115.5 (4) |
| C7—C6—C5 | 119.3 (6) | C21—C22—C23 | 120.0 |
| C6—C7—C8 | 119.8 (6) | C24—C23—C22 | 120.0 |
| C6—C7—H7A | 120.1 | C24—C23—H23A | 120.0 |
| C8—C7—H7A | 120.1 | C22—C23—H23A | 120.0 |
| C3—C8—C7 | 120.9 (6) | C23—C24—C19 | 120.0 |
| C3—C8—H8A | 119.5 | C23—C24—H24A | 120.0 |
| C7—C8—H8A | 119.5 | C19—C24—H24A | 120.0 |
| O1—C9—H9A | 109.5 | O2—C25—H25A | 109.5 |
| O1—C9—H9B | 109.5 | O2—C25—H25B | 109.5 |
| H9A—C9—H9B | 109.5 | H25A—C25—H25B | 109.5 |
| O1—C9—H9C | 109.5 | O2—C25—H25C | 109.5 |
| H9A—C9—H9C | 109.5 | H25A—C25—H25C | 109.5 |
| H9B—C9—H9C | 109.5 | H25B—C25—H25C | 109.5 |
| C15—C10—C11 | 118.2 (6) | C27—C26—C31 | 120.0 |
| C15—C10—C2 | 120.7 (6) | C27—C26—C18 | 120.5 (4) |
| C11—C10—C2 | 121.0 (6) | C31—C26—C18 | 119.5 (4) |
| C12—C11—C10 | 120.3 (7) | C28—C27—C26 | 120.0 |
| C12—C11—H11A | 119.9 | C28—C27—H27A | 120.0 |
| C10—C11—H11A | 119.9 | C26—C27—H27A | 120.0 |
| C13—C12—C11 | 121.4 (7) | C27—C28—C29 | 120.0 |
| C13—C12—H12A | 119.3 | C27—C28—H28A | 120.0 |
| C11—C12—H12A | 119.3 | C29—C28—H28A | 120.0 |
| C14—C13—C12 | 118.0 (7) | C30—C29—C28 | 120.0 |
| C14—C13—C16 | 121.0 (7) | C30—C29—C32 | 120.2 (5) |
| C12—C13—C16 | 120.9 (7) | C28—C29—C32 | 119.8 (5) |
| C13—C14—C15 | 121.1 (7) | C29—C30—C31 | 120.0 |
| C13—C14—H14A | 119.5 | C29—C30—H30A | 120.0 |
| C15—C14—H14A | 119.5 | C31—C30—H30A | 120.0 |
| C10—C15—C14 | 120.9 (6) | C30—C31—C26 | 120.0 |
| C10—C15—H15A | 119.6 | C30—C31—H31A | 120.0 |
| C14—C15—H15A | 119.6 | C26—C31—H31A | 120.0 |
| C13—C16—H16A | 109.5 | C29—C32—H32A | 109.5 |
| C13—C16—H16B | 109.5 | C29—C32—H32B | 109.5 |
| H16A—C16—H16B | 109.5 | H32A—C32—H32B | 109.5 |
| C13—C16—H16C | 109.5 | C29—C32—H32C | 109.5 |
| H16A—C16—H16C | 109.5 | H32A—C32—H32C | 109.5 |
| H16B—C16—H16C | 109.5 | H32B—C32—H32C | 109.5 |
| C2—N1—N2—C3 | −178.8 (5) | C18—N3—N4—C19 | −177.2 (5) |
| Cl2—C1—C2—N1 | −176.8 (5) | Cl4—C17—C18—N3 | −174.6 (5) |
| Cl1—C1—C2—N1 | 2.5 (9) | Cl3—C17—C18—N3 | 2.6 (9) |
| Cl2—C1—C2—C10 | 4.8 (9) | Cl4—C17—C18—C26 | 6.0 (10) |
| Cl1—C1—C2—C10 | −175.9 (5) | Cl3—C17—C18—C26 | −176.8 (5) |
| N2—N1—C2—C1 | −179.8 (6) | N4—N3—C18—C17 | −177.2 (6) |
| N2—N1—C2—C10 | −1.4 (9) | N4—N3—C18—C26 | 2.2 (9) |
| N1—N2—C3—C8 | 178.7 (6) | N3—N4—C19—C20 | 179.7 (4) |
| N1—N2—C3—C4 | −2.2 (9) | N3—N4—C19—C24 | 1.8 (7) |
| C8—C3—C4—C5 | −1.1 (11) | C24—C19—C20—C21 | 0.0 |
| N2—C3—C4—C5 | 179.7 (7) | N4—C19—C20—C21 | −178.0 (5) |
| C3—C4—C5—C6 | −0.1 (11) | C19—C20—C21—C22 | 0.0 |
| C9—O1—C6—C7 | −2.0 (10) | C25—O2—C22—C21 | −4.0 (8) |
| C9—O1—C6—C5 | 178.1 (6) | C25—O2—C22—C23 | 174.8 (5) |
| C4—C5—C6—O1 | −179.3 (7) | C20—C21—C22—O2 | 178.8 (5) |
| C4—C5—C6—C7 | 0.8 (11) | C20—C21—C22—C23 | 0.0 |
| O1—C6—C7—C8 | 179.9 (6) | O2—C22—C23—C24 | −178.9 (5) |
| C5—C6—C7—C8 | −0.3 (10) | C21—C22—C23—C24 | 0.0 |
| C4—C3—C8—C7 | 1.6 (10) | C22—C23—C24—C19 | 0.0 |
| N2—C3—C8—C7 | −179.2 (6) | C20—C19—C24—C23 | 0.0 |
| C6—C7—C8—C3 | −0.9 (10) | N4—C19—C24—C23 | 177.8 (5) |
| C1—C2—C10—C15 | 71.9 (8) | C17—C18—C26—C27 | −105.8 (6) |
| N1—C2—C10—C15 | −106.4 (7) | N3—C18—C26—C27 | 74.8 (7) |
| C1—C2—C10—C11 | −110.1 (7) | C17—C18—C26—C31 | 73.7 (7) |
| N1—C2—C10—C11 | 71.6 (8) | N3—C18—C26—C31 | −105.7 (6) |
| C15—C10—C11—C12 | 0.2 (10) | C31—C26—C27—C28 | 0.0 |
| C2—C10—C11—C12 | −177.9 (6) | C18—C26—C27—C28 | 179.5 (5) |
| C10—C11—C12—C13 | 1.9 (11) | C26—C27—C28—C29 | 0.0 |
| C11—C12—C13—C14 | −3.4 (11) | C27—C28—C29—C30 | 0.0 |
| C11—C12—C13—C16 | 179.4 (7) | C27—C28—C29—C32 | −178.9 (5) |
| C12—C13—C14—C15 | 2.8 (10) | C28—C29—C30—C31 | 0.0 |
| C16—C13—C14—C15 | 180.0 (6) | C32—C29—C30—C31 | 178.9 (5) |
| C11—C10—C15—C14 | −0.7 (9) | C29—C30—C31—C26 | 0.0 |
| C2—C10—C15—C14 | 177.4 (5) | C27—C26—C31—C30 | 0.0 |
| C13—C14—C15—C10 | −0.8 (10) | C18—C26—C31—C30 | −179.5 (5) |
Hydrogen-bond geometry (Å, º)
Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 (in molecule A) and C19–C24 and C26–C31 (in molecule B), respectively.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C5—H5A···Cg2i | 0.93 | 2.84 | 3.645 (8) | 146 |
| C23—H23A···Cg4ii | 0.93 | 3.00 | 3.775 (5) | 142 |
| C25—H25C···Cg3iii | 0.96 | 2.93 | 3.717 (7) | 140 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x+1, y+1/2, −z; (iii) x−1, y, z.
Funding Statement
This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan grant EIF-BGM-4- RFTF-1/2017–21/13/4).
References
- Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
- Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.
- Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
- Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
- Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
- Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
- Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
- Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. [DOI] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
- Mukhtarova, S. H. (2021). New Materials, Compounds and Applications, 5, 45–51.
- Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. [DOI] [PMC free article] [PubMed]
- Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
- Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
- Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. [DOI] [PMC free article] [PubMed]
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021008756/zn2009sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021008756/zn2009Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021008756/zn2009Isup3.cml
CCDC reference: 1984582
Additional supporting information: crystallographic information; 3D view; checkCIF report





