Table 1. Hydrogen-bond geometry (Å, °) for 1 .
Cg4 is the centroid of the C15B–C20B ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C10A—H10B⋯O2B | 0.99 | 2.35 | 3.223 (4) | 147 |
| C11A—H11A⋯N1A | 0.99 | 2.54 | 3.283 (4) | 132 |
| C13A—H13B⋯Br2B i | 0.99 | 2.92 | 3.746 (3) | 142 |
| C13A—H13B⋯O1A | 0.99 | 2.52 | 2.914 (4) | 103 |
| C9B—H9F⋯Br2A ii | 0.98 | 3.00 | 3.921 (4) | 158 |
| C11B—H11D⋯N1B | 0.99 | 2.45 | 3.207 (4) | 133 |
| C12B—H12D⋯Br1B ii | 0.98 | 2.86 | 3.499 (4) | 123 |
| C13B—H13D⋯O1B | 0.99 | 2.53 | 2.928 (4) | 104 |
| C22B—H22D⋯O2B | 0.99 | 2.64 | 3.322 (4) | 126 |
| C23B—H23E⋯O2A iii | 0.98 | 2.43 | 3.226 (5) | 138 |
| C22A—H22B⋯O2A | 0.99 | 2.59 | 3.278 (4) | 126 |
| C9B—H9D⋯Cg4iv | 0.98 | 2.96 | 3.731 (5) | 137 |
| C23B—H23D⋯Cg4v | 0.98 | 2.92 | 3.542 (5) | 122 |
| C12C—H12I⋯N1B | 0.98 | 2.56 | 3.24 (2) | 126 |
Symmetry codes: (i) x-1, y, z; (ii) -x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) -x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (iv) x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}; (v) x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}.