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Abstract

Although cardiovascular toxicity from traditional chemotherapies has been well recognized for 

decades, the recent explosion of effective novel targeted cancer therapies with cardiovascular 

sequelae has driven the emergence of cardio-oncology as a new clinical and research field. 

Cardiovascular toxicity associated with cancer therapy can manifest as a broad range of potentially 

life-threatening complications, including heart failure, arrhythmia, myocarditis, and vascular 

events. Beyond toxicology, the intersection of cancer and heart disease has blossomed to 

include discovery of genetic and environmental risk factors that predispose to both. There is 

a pressing need to understand the underlying molecular mechanisms of cardiovascular toxicity 

to improve outcomes in patients with cancer. Preclinical cardiovascular models, ranging from 

cellular assays to large animals, serve as the foundation for mechanistic studies, with the 
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ultimate goal of identifying biologically sound biomarkers and cardioprotective therapies that 

allow the optimal use of cancer treatments while minimizing toxicities. Given that novel 

cancer therapies target specific pathways integral to normal cardiovascular homeostasis, a better 

mechanistic understanding of toxicity may provide insights into fundamental pathways that lead 

to cardiovascular disease when dysregulated. The goal of this scientific statement is to summarize 

the strengths and weaknesses of preclinical models of cancer therapy–associated cardiovascular 

toxicity, to highlight overlapping mechanisms driving cancer and cardiovascular disease, and 

to discuss opportunities to leverage cardio-oncology models to address important mechanistic 

questions relevant to all patients with cardiovascular disease, including those with and without 

cancer.
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Cardiovascular toxicity resulting from traditional cytotoxic cancer therapies has been 

well recognized for decades. However, the recent explosion of effective novel targeted 

cancer therapies with cardiovascular and metabolic sequelae has driven the emergence of 

cardio-oncology as a new field. Whereas cardiovascular toxicity manifests primarily as 

cardiomyopathy with traditional agents such as the anthracyclines, newer targeted agents 

and immunotherapies have been associated with a range of potentially life-threatening 

complications, including arrhythmia, myocarditis, and vascular events. Beyond toxicology, 

the intersection of cancer and heart disease has prompted the discovery of genetic and 

environmental risk factors that predispose to both. With increasing recognition of the 

short- and long-term consequences of cardiovascular toxicity, there is a pressing need to 

understand the underlying molecular mechanisms to improve cardiovascular outcomes in 

patients with cancer.

Preclinical cardiovascular models, ranging from cellular assays to large animals, serve as 

the foundation for mechanistic studies that ultimately aim to identify biologically sound 

biomarkers and cardioprotective therapies. Given that novel cancer therapies target specific 

pathways integral to normal cardiovascular homeostasis, a better mechanistic understanding 

of toxicity may provide insights into fundamental pathways that lead to cardiovascular 

disease when dysregulated. For instance, the role of HER2 (human epidermal growth factor 

receptor 2) in cardiomyocyte signaling was elucidated as a direct result of observations made 

in patients with breast cancer who developed cardiomyopathy while treated with inhibitors 

of this pathway.1

The goal of this scientific statement is to highlight strengths and weaknesses of preclinical 

models used to study cancer therapy–associated cardiovascular toxicity. We also discuss 

emerging platforms with great potential for use in cardio-oncology, as well as the increasing 

recognition that the biological mechanisms driving cancer and cardiovascular disease may 

overlap. Finally, we discuss opportunities for basic and translational investigators to harness 

preclinical models to address unmet needs in cardiovascular pathophysiology, with the goal 

of improving cardiovascular care in patients with and without cancer.

Asnani et al. Page 2

Circ Res. Author manuscript; available in PMC 2021 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PRECLINICAL MODELS TO STUDY CARDIOVASCULAR TOXICITY

Cultured Cell Models

Both traditional and novel cancer therapies can adversely affect a broad range of cell types 

in the cardiovascular system, from cardiomyocytes to nonmyocytes, including fibroblasts, 

pericytes, and endothelial cells. However, clinical observations of cardiomyopathy in 

patients treated with anthracyclines (eg, doxorubicin) motivated an early focus on 

recapitulating the drug effects in cultured cardiomyocytes, which are uniquely sensitive to 

perturbations in bioenergetic pathways. Rodent-derived cardiomyocytes, especially neonatal 

rat ventricular myocytes, are widely used cell models of cardiovascular disease (Table 

1) and have been used extensively to decipher mechanisms driving doxorubicin-induced 

cardiotoxicity, including oxidative stress, impaired energy metabolism, and abnormal 

activation of cell death pathways.

More recently, human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) 

have been harnessed to understand cardiovascular biology and specifically mechanisms 

of cancer therapy–associated toxicity, as summarized in a recent American Heart 

Association scientific statement15 and in Table 1. hiPSC-CMs enable high-throughput 

screening of toxicities from many cancer therapeutics in parallel, from conventional 

cytotoxic chemotherapies to newer targeted agents, and can offer insight into mechanisms 

of cardioprotection. Compared with rodent-derived cardiomyocytes, hiPSC-CMs display 

phenotypic characteristics that appear more representative of human cardiac physiology, 

including more typical ion channel expression, heart rate, contractility, and myofilament 

composition.16 Patient-specific hiPSC-CMs may recapitulate individual susceptibility to 

cardiovascular toxicity. For example, ex vivo treatment with doxorubicin identified those 

at risk of anthracycline cardiomyopathy3; however, the relationship between disease 

characteristics in patients and the in vitro phenotype is often unpredictable. hiPSC-CMs 

have an additional advantage in the modeling of cancer therapies that target human 

proteins but not their homologs in other species such as trastu-zumab, which specifically 

inhibits human HER2.4 Considerable experimental variability with hiPSC-CMs has been 

reported and highlights the need for more rigorous phenotyping, cross-validation between 

laboratories, and continued studies correlating phenotypic changes (eg, transcriptional 

changes, impaired contractility) with human disease end points in these models. Advances in 

gene therapy and engineered tissues, as discussed below, are expected to further improve the 

induced pluripotent stem cell methodologies.17

Organoid Systems

Microphysiological systems integrating engineered tissue have emerged as novel approaches 

to tackle the limitations of cell culture models. These “organs on a chip” typically 

incorporate human cells plated onto a polymeric membrane to enable evaluation of toxicity 

mechanisms that necessitate cross talk between different cell types such as cardiomyocytes, 

fibroblasts, and endothelial cells. Recent progress in the engineering of these organoid chips 

has allowed parallelized creation of multiple physiologically relevant tissues, including the 

heart.18 One limitation to this approach is the inability to account for the unique mechanical 

forces critical to the cardiovascular system such as contractile forces, tissue stiffness, and 
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the presence of pulsatile versus laminar versus oscillatory flow. These limitations may be 

partially overcome by the integration of microfluidics into organoid models.

The ability to mimic fully functional organs remains a challenge of organoid systems. 

Although physiological measurements can be performed on ex vivo organs isolated from 

animal models (eg, Langendorff heart preparations), these approaches have not generally 

been translated to human organs because of the difficulty in obtaining human tissues. 

Rejected donor hearts or isolated cardiac muscle segments from discarded surgical tissue 

could represent a unique means to define the impact of anticancer therapy on cardiac 

muscle, although downstream effects on other tissues may not be captured. Similarly, the 

use of pressurized isolated vessel preparations alongside indirect measurements of vascular 

reactivity has recently been tested in human coronary vessels incubated with doxorubicin.19 

With the use of a biomimetic culture system, human heart slices can be preserved and 

remain functional for 6 days with regard to calcium homeostasis, mitochondrial structure, 

and contraction and relaxation kinetics.20 However, the physiological or clinical relevance 

of these techniques has not yet been validated, prompting the National Toxicology Program 

to develop a new initiative, the National Toxicology Program Interagency Center for the 

Evaluation of Alternative Toxicological Methods. This program focuses on the development 

and evaluation of alternatives to animal use for chemical safety testing and could contribute 

to the understanding of cancer therapy–associated cardiovascular toxicity.

In Vivo Models

Comprehensive assessment of cardiovascular toxicity often necessitates the use of an 

appropriate in vivo model that ideally incorporates all the distinctive pathological features 

of cardiovascular toxicity observed in patients. These models range from high-throughput 

experimental models (eg, zebratish) to large animal models (eg, swine), which have their 

own strengths and weaknesses (Table 1). For instance, larval zebratish are small and 

therefore well suited to chemical screening, an approach that has been used to identify 

small molecules that protect against doxorubicin cardiomyopathy.21 On the other hand, 

large animal models may phenocopy human cardiovascular toxicity more closely than 

small animal models, allowing detailed phenotyping of early cardiotoxicity by advanced 

imaging techniques such as cardiac magnetic resonance,14 but these studies are often 

limited by the high cost of maintaining and treating large animals. As with other 

models, it is important to consider time course, route of administration, and use of doses 

comparable to human therapeutic doses (see the Anthracyclines and Kinase Inhibitors 

sections). Animal models can be particularly useful in elucidating mechanisms of action 

contributing to specific cardiovascular phenotypes observed in patients. For instance, 

rodent and rabbit models have been harnessed to dissect the roles of vascular smooth 

muscle cell–mediated vasoconstriction and direct endothelial toxicity in 5-fluorouracil–

mediated coronary vasospasm. Finally, rodent models have been applied extensively to 

elucidate mechanisms of cardioprotection associated with carvedilol, dexrazoxane, and other 

established cardiovascular therapies.

Once a relevant in vivo model has been established, a key element to consider is 

the end point for assessing cardiovascular toxicity, which should be robust and easily 
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reproducible. Echocardiographic monitoring of left ventricular ejection fraction represents 

the most widely used approach, although the time course of echocardiographic changes 

does not always correlate with microstructural changes observed by histopathologic 

analyses. The incorporation of myocardial strain and strain rate, as detected with Doppler 

echocardiography, and cardiac magnetic resonance imaging can serve as more sensitive 

tools to detect early cardiac injury in rodents and large animals.22 Cardiac magnetic 

resonance imaging in particular can provide more objective and precise quantification 

of left ventricular function over time. Given the possible effects of sedatives on cardiac 

function (eg, heart rate changes, depression of cardiac function), many laboratories 

perform echocardiography in nonsedated rodents when possible. Additional markers of 

cardiomyocyte injury such as cardiac troponins and natriuretic peptides also can be helpful 

in assessing the severity of cardiac injury.

Despite the attempt to recapitulate key features of human disease, currently available in 

vivo models of cardiotoxicity display important shortcomings that should be taken into 

consideration for future studies (Table 1). Most experiments are carried out in healthy young 

rodents, whereas cancer therapy–associated cardiovascular toxicity in humans is a complex 

process that can be exacerbated by preexisting comorbidities. Although studies in mice have 

shown how previous exposure to doxorubicin increases the susceptibility to myocardial 

infarction or impairs adaptation to hypertension later in life, the opposite approach 

of modeling cardiotoxicity in animals with preexisting heart disease or cardiovascular 

comorbidities has not been attempted to date. Efforts have been made to establish models 

of juvenile doxorubicin exposure, demonstrating that hearts from young mice, unlike adult 

hearts, express the molecular machinery that primes them for apoptosis.23 Although similar 

cardiovascular toxicity has not been fully explored in aged mice, models of telomere 

dysfunction have been used to study the cardiotoxic effects of anthracyclines.24

Furthermore, to faithfully model cancer therapy–associated cardiovascular toxicity, 

it is important to take into consideration multimodal cancer therapies that can 

interact to potentiate cardiac dysfunction. For instance, anthracycline cardiotoxicity 

can be exacerbated by concurrent use of other cancer therapies, including traditional 

chemotherapy (cyclophosphamide, paclitaxel), targeted therapies (trastuzumab), and 

mediastinal radiotherapy. In addition, the potential interactions between cancer therapies 

and other medications intended for the treatment of cardiovascular comorbidities such as 

hypertension and diabetes should be considered and included in preclinical models.

The variability of intraspecies and interspecies phenotypes should also be considered in 

preclinical models. Cardiovascular phenotypes might differ in severity according to the 

genetic background of the animal strain used,25 with the potential for differences even 

between the N and J substrains of C57BL/6 mouse lines attributable to genetic variations. 

Sex is an additional variable that has been inadequately studied in preclinical models of 

cardiovascular toxicity. Despite the use of rigorous experimental techniques, there may still 

be a translational gap between animal models and clinical observations in human patients; 

for instance, imatinib causes cardiomyopathy in rodents but does not seem to have the same 

effect in patients.26 Integration of data from genomic and proteomic studies in patients can 
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be helpful in determining the relevance of molecular mechanisms identified in preclinical 

models.

BALANCING CARDIOPROTECTION WITH ANTITUMOR EFFICACY

Many cardiotoxicity preclinical platforms fail to incorporate simultaneous modeling of the 

cancer. From a therapeutic perspective, it is critical to assess the impact of novel candidate 

cardioprotectants on the antitumor activity of cancer therapy, typically with the use of 

xenograft models in zebrafish or rodents.7,12 Syngeneic models, in which tumor cells are 

derived from the same genetic background as a given mouse strain, are straightforward 

to establish, but the aggressiveness of the tumor cells may require euthanasia of the 

animal before the development of cardiotoxicity. As an alternative strategy, genetically 

engineered models promote spontaneous and less aggressive tumor growth that more closely 

recapitulates human malignancies.

Any preclinical model should also consider interactions of the immune system with 

the tumor and the cardiovascular system. Immunocompetent preclinical models will 

be necessary to study emerging toxicities associated with immunotherapies. Both 

syngeneic and genetically engineered models provide effective platforms to study 

cardiovascular toxicity in the presence of a functional immune system. Humanized tumor 

models, particularly patient-derived xenografts, may recapitulate genetic and phenotypic 

heterogeneity of tumors more closely, but they typically require immunocompromised hosts 

such as athymic nude or severe combined immunodeficiency mice.

BASIC MECHANISMS OF CARDIOVASCULAR TOXICITY ASSOCIATED WITH 

COMMON CANCER THERAPIES

Anthracyclines

Anthracycline cardiotoxicity was first recognized in patients in the 1970s and has 

been studied extensively in preclinical models. Although several mechanisms have been 

implicated in the pathogenesis of anthracycline cardiomyopathy (Table 2 and the Figure), the 

interplay between these mechanisms has not yet been fully defined. Future studies should 

aim to develop an integrated mechanistic understanding of the complex networks involved 

in the pathogenesis of cardiotoxicity. For instance, it will be essential to understand the 

effects of perturbation of 1 pathway such as intracellular iron overload on other proposed 

pathways such as autophagy or modulation of PI3Kγ (phosphoinositide 3-kinase-γ) in order 

to identify new therapeutic approaches that can translate clinically. Despite the variety of 

established models to study anthracycline cardiotoxicity, few have demonstrated the ability 

to reproduce the complex pathophysiology of the disease as it manifests in humans.

Careful consideration of drug dosing, formulation, and delivery is paramount to ensure 

reproducibility of cardiac phenotypes with anthracyclines and for other cardiotoxic cancer 

therapies. For instance, many anthracycline cardiotoxicity models in mice have used either 

very high doses or intraperitoneal injection of doxorubicin, which is more practical than 

intravenous delivery for regimens that require repeated administration or concomitant 

delivery of other agents such as cardioprotective small molecules. However, when possible, 
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the intravenous route should be favored because doxorubicin and other cancer therapies may 

elicit local injury of the peritoneum and fibrosis, with consequent malaise, anorexia, weight 

loss, and reduced drug absorption in subsequent injections. For example, acute models of 

anthracycline cardiotoxicity rely on a single administration of high-dose doxorubicin in 

mice (eg, 20 mg/kg), whereby cardiac phenotypes are typically analyzed within 1 week. 

Although these models can provide insight into the acute side effects of doxorubicin, 

primarily arrhythmias and electrocardiographic abnormalities in humans, they are usually 

characterized by a high mortality rate that is unrelated to cardiac toxicity.

A major challenge of modeling anthracycline cardiotoxicity in preclinical models 

relates to the difficulties of recapitulating the chronic and typically delayed nature of 

the cardiomyopathy observed in patients. In adults, cardiotoxicity is dose dependent 

and typically manifests within the first year after completion of treatment, although 

cardiotoxicity may manifest years after anthracycline exposure, as observed in the pediatric 

patient population. To better recapitulate typical dosing regimens in humans, protocols 

featuring repeated injection of low-dose doxorubicin (eg, 2–5 mg/kg weekly for multiple 

weeks) have been developed that result in chronic cardiotoxicity, with the total cumulative 

dose varying slightly, depending on the differing sensitivity of specific mouse strains to 

doxorubicin.27 These models are characterized by low mortality and the development of 

cardiomyopathy, which is similar to that observed clinically, which typically manifests as a 

decrease in fractional shortening of >10% at 6 to 8 weeks after therapy completion. Models 

that recapitulate late cardiotoxicity occurring years after anthracycline exposure have not yet 

been developed and represent an important unmet need.

Kinase Inhibitors

Aberrant activation of kinases is implicated in many tumor types and has led to the 

development of kinase inhibitors (KIs) for cancer therapy. KIs include monoclonal 

antibodies that bind the receptor kinase or its ligand, as well as small-molecule inhibitors 

that interfere with the binding of the kinase to ATP or its substrates.31 Kinases also 

play critical roles in cardiovascular homeostasis, with KIs potentially leading to diverse 

cardiovascular sequelae, as summarized in Table 3. These may be “on target,” whereby 

the kinase inhibited for the treatment of cancer also has a critical role in cardiovascular 

biology, or “off target,” which can occur when the inhibitor binds to multiple kinase 

receptors simultaneously or other targets. When preclinical studies of cardiovascular toxicity 

associated with KIs are designed, it is critical to select an appropriate dose that reflects the 

kinase binding profile observed in patients and recapitulates the pharmacokinetics seen in 

humans.8

The cardiomyopathy observed with trastuzumab provided an initial model of on-target 

cardiotoxicity. Although pharmacological mouse models of trastuzumab cardiotoxicity have 

been challenging because trastuzumab does not bind mouse HER2, genetic deletion of 

HER2 in a mouse model resulted in ventricular dilatation and increased susceptibility 

of isolated cardiomyocytes to myocardial stress, including anthracycline exposure.1,32 

Recently, the advent of hiPSC-CMs has allowed the implementation of a pharmacological 
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model of cardiomyocyte toxicity in which trastuzumab exposure impaired contractile 

function, calcium handling, and cardiac energy metabolism.4

Another class of KIs (eg, sunitinib, sorafenib) inhibit VEGF (vascular endothelial growth 

factor) or PDGF (platelet-derived growth factor) and can lead to various cardiovascular 

adverse effects, including hypertension, vascular disease, and cardiomyopathy.31 Mouse 

models of genetic or pharmacological inhibition of VEGFor PDGF suggest that inhibition 

of these pathways leads to capillary rarefaction with subsequent myocyte hypoxia 

and induction of hypoxia-inducible factors, which are sufficient to cause a reversible 

cardiomyopathy.13,33 Consistent with these models, the cardiomyopathy observed in patients 

treated with sunitinib and sorafenib is often reversible.38 Although mouse models have 

provided insights into VEGF inhibitor–associated hypertension, human translational studies 

will be critical to elucidate underlying mechanisms.

Given the explosion of KIs in oncology and their associated cardiovascular sequelae, 

adoption of appropriate preclinical models of cardiotoxicity not only may dissect 

mechanisms of toxicity but also may lead to recognition of new kinase pathways in 

cardiovascular biology. For example, ibrutinib, a highly specific KI against Bruton tyrosine 

kinase used for the treatment of B-cell malignancies, is associated with arrhythmias, 

including atrial fibrillation. It is unclear whether this arrhythmogenic effect is an on-target 

(resulting from inhibition of Bruton tyrosine kinase) or off-target (caused by inhibition of 

another kinase) toxicity. Preclinical studies may illuminate novel kinase pathways that are 

critical to the development of arrhythmia, which could inform the development of new 

Bruton tyrosine kinase inhibitors. This concept has already been demonstrated with the 

observation that several multitargeted tyrosine KIs (eg, dasatinib, sunitinib, nilotinib) cause 

QT prolongation. This clinical finding prompted preclinical experiments suggesting a long­

term, PI3K–dependent, QT-prolonging effect that altered multiple ion currents, especially 

the late sodium current (INa-L),34 in contrast to other medications that cause QT prolongation 

immediately and almost invariably target repolarizing potassium channels (eg, IKr).

Immune-Based Therapies

Immune-based therapies have revolutionized treatment for patients with cancer by 

harnessing the immune system to treat cancer. These therapies may be very specific; for 

example, CAR T-cell (chimeric antigen receptor T-cell) therapy repurposes genetically 

modified immune cells to target specific tumor antigens. On the other hand, immune 

checkpoint inhibitors (ICIs) are monoclonal antibodies against immune checkpoints such 

as CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), PD-1 (programmed cell death 

protein-1), and PD-L1 (programmed cell death protein-ligand 1) that release the brakes 

on T-cell activation in a more generic way compared with adoptive T-cell therapies. 

These act as inhibitory regulators of T cells during the adaptive immune response, 

preventing excessive immune responses and allowing self-tolerance. However, by activating 

the immune system, these therapies can cause immune-mediated side effects. A broad 

range of cardiovascular toxicities, including myocarditis, pericarditis, vasculitis, accelerated 

atherosclerosis, arrhythmia, and potentially thrombosis, have emerged as infrequent 

but severe and life-threatening complications associated with ICIs.39 ICI-associated 
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myocarditis is characterized pathologically by myocardial infiltration of macrophages and 

T lymphocytes, resulting in myocyte death, consistent with the pathological definition for 

myocarditis.40

The emergence of immune-mediated cardiovascular diseases in cardio-oncology adds a new 

level of complexity for preclinical models, with animal models potentially best suited to 

recapitulate the resulting cellular interactions. Early data suggested that an on-target effect 

attributable to perturbation of the Ctla4 and Pdcd1 genes individually led to myocardial 

pathology.36 However, these models are background dependent and do not fully recreate 

the clinical and pathophysiological features of ICI-associated myocarditis. Monoallelic loss 

of Ctla4 in the context of complete genetic absence of PD-1 leads to premature death in 

mice as a result of myocardial infiltration by T cells and macrophages and causes severe 

electrocardiographic abnormalities, closely recapitulating the clinical and pathological 

hallmarks of ICI-associated myocarditis observed in patients.40a In another example of 

discordance between mouse models and clinical observations, CAR T-cells expressing a 

receptor with high affinity for the tumor antigen MAGE-A3 (melanoma-associated antigen 

3) were found to be safe in mice but led to fatal cardiogenic shock in patients.37 Subsequent 

studies in hiPSC-CMs determined that these T cells cross-reacted with a peptide from 

the cardiac sarcomeric protein titin in humans but not the equivalent peptide in mice.41 

The ongoing development of preclinical models that align with clinical phenotypes will be 

critical to understand the pathogenesis of cardiovascular toxicities, especially as the use of 

immunotherapies continues to expand. Emerging modalities such as CAR T-cell therapy and 

bispecific T-cell engager antibodies can also cause cardiomyopathy in the setting of cytokine 

release syndrome through mechanisms that have not yet been defined.

Chest Radiation

The adverse effects of chest radiation therapy have been studied in a variety of species, 

including rabbits, rats, and mice. Historically, γ- or x-ray radiation at doses up to 30 

Gy has been deployed as a 1-time treatment in preclinical models, with few studies 

using clinically relevant fractionation protocols or proton therapy. Although modern 

image-guided radiation delivery platforms that recapitulate treatment in patients have 

become available for small animals, most prior studies have used traditional methods 

such as lead shielding. Apolipoprotein E–deficient (ApoE−/−) mice on normal chow 

develop atherosclerotic coronary disease ≥20 weeks after receiving radiation doses of 

≥8 Gy.30 Systolic dysfunction in mice treated with chest radiation appears modest and 

occurs late after therapy. Histopathological analysis of the myocardium may show loss 

of microvascular density and fibrosis, a hallmark of radiation-induced organ dysfunction. 

Pericardial thickening and inflammatory cell infiltration have also been reported in several 

rodent studies. Despite some limitations, preclinical models have been used to identify 

genetic modulators of radiation-induced cardiovascular toxicity42 and to assess additive 

effects of chemotherapeutic agents (eg, tyrosine kinase inhibitors)43 and ICIs.44 Of note, 

models of radiation-induced valvular disease have not yet been established.
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FUTURE DIRECTIONS

Shared Risk Factors for Cancer and Cardiovascular Disease

Preclinical models must also capture novel clinical frontiers in cardio-oncology. The 

tumor itself may affect cardiovascular function and exacerbate the toxicities of cancer 

therapy. On the other hand, shared risk factors could predispose to both cancer and 

cardiovascular disease, a concept that has enormous public health implications. For example, 

in clonal hematopoiesis of indeterminate potential, somatic mutations in specific genes 

in hematopoietic cells are associated not only with an increased risk for hematologic 

malignancies but also with early mortality driven by cardiovascular events.45,46 In parallel 

with human “omics” studies,47 it will be necessary to establish mouse models in which 

the direct causal effects of specific mutations on the cardiovascular system can be tested. 

Even more intriguing are recent data suggesting that heart failure itself is a risk factor 

for tumor growth.48 Conversely, excess levels of the oncometabolite D-2-hydroxyglutarate 

have been associated with the development of dilated cardiomyopathy.49 Perturbations 

in systemic inflammation, oxidative stress, AMP-activated protein kinase, plasminogen 

activator inhibitor-1, and Wnt signaling have similarly been proposed as shared mediators 

of cancer and cardiovascular disease, and cardioprotective therapies such as statins could 

improve cancer-related outcomes. Appropriate preclinical models will be critical to better 

define the mechanisms of these complex interactions between the cardiovascular system and 

tumor biology.

Translation to the Clinic

Establishment of preclinical models that recapitulate key features of human cardiovascular 

toxicity (eg, aging, comorbidities, tumor biology) will be an essential step toward 

translation of potential biomarkers or therapeutics. Given the strengths and weaknesses 

of each preclinical model discussed in this statement, multiple complementary models 

may be necessary to fully understand the complex and interrelated pathways involved 

in the pathogenesis of toxicity and their implications for patient care. High-throughput 

technologies such as metabolomics, proteomics, and genomics are increasingly being used 

to illuminate candidate pathways in humans that can be interrogated in preclinical models to 

understand underlying biological mechanisms. Computational modeling could accelerate 

the generation and interpretation of vast amounts of data, for instance, by predicting 

potential cardiovascular toxicities on the basis of existing drug/cell interaction databases. 

In the age of precision medicine, identification of genetic risk factors that predispose 

certain patients to severe cardiovascular toxicity, or conversely that offer cardioprotection, 

will be of the utmost importance. To maximize applications of these techniques to cardio­

oncology, there is a need for large, multicenter biorepositories that include blood samples, 

endomyocardial biopsy samples, and autopsy tissues when relevant. Proper recording and 

adjudication of cardiovascular end points in cancer trials and, conversely, cancer end points 

in cardiovascular registries and trials will be equally important. Advances in molecular 

imaging techniques can also provide insights into mechanisms of toxicity in real time during 

treatment, both in patients and in preclinical models. Finally, new artificial intelligence and 

machine learning approaches may be valuable in integrating genetic risk with environmental 

and individual risk factors.
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Cardio-Oncology as an Emerging Platform for Physician-Scientists

Cardio-oncology has come to the forefront of academic medicine as a field ripe with 

excellent opportunities to make impactful advances in science and patient care. The diverse 

cardiovascular sequelae of targeted cancer therapies represent an opportunity for closer 

collaboration between basic scientists and clinicians to interrogate the cardiovascular and 

cardiometabolic changes caused by the modulation of critical signaling pathways in patients 

with cancer. In this regard, cardio-oncology represents a novel and growing platform for 

basic and translational cardiovascular investigation located at the intersection of molecular 

biology, cardiovascular research, and drug discovery.50 Cancer therapies targeting specific 

molecular pathways can serve as tools for understanding the role of these pathways in 

other noncancer disease states; for instance, a detailed understanding of the sequelae of 

VEGF inhibition has contributed to the development of novel biomarkers for peripartum 

cardiomyopathy. In addition to cardiovascular toxicities associated with cancer therapies, 

malignancies and related conditions such as amyloidosis exert direct and indirect effects 

on the heart through mechanisms that remain underexplored. The National Heart, Lung, 

and Blood Institute and the National Cancer Institute have recognized cardio-oncology as 

a research area of importance.51 The public health impact of cancer therapy–associated 

cardiovascular toxicity will continue to expand with the rapid development of new cancer 

treatment paradigms; several new targeted agents and immunotherapies are approved by 

the US Food and Drug Administration each year. Cardiovascular injury mechanisms arising 

from cancer and cancer therapy present a unique opportunity not only to improve care for 

a growing patient population but also, more broadly, to understand fundamental signaling 

pathways in the heart that are modulated by specific cancer therapies.
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Figure. Mechanisms of anthracycline cardiotoxicity.
Several mechanisms have been proposed to contribute to the cardiotoxic effects of 

anthracyclines such as doxorubicin (DOX). These include topoisomerase “poisoning,” 

alterations of cell survival and metabolic pathways, and excessive generation of reactive 

oxygen species (ROS). In the nucleus, DOX binds Top2β (topoisomerase 2β), thereby 

promoting p53-dependent DNA damage responses and altering the transcription of genes 

involved in mitochondrial biogenesis, for example, PGC-1α (peroxisome proliferator­

activated receptor-γ coactivator 1-α). As a polyaromatic hydrocarbon, DOX activates the 

AhR (aryl hydrocarbon receptor), a ligand-activated transcription factor that translocates to 

the nucleus to induce the expression of Cyp1 (cytochrome P450 family 1 enzymes). DOX 

can inhibit the binding of the HIF (hypoxia-inducible factor) heterodimer (HIF-1 α/ARNT 

[aryl hydrocarbon receptor nuclear translocator]) to the hypoxia response element, leading 

to a decrease in the HIF transcriptional response. DOX induces defects in mechanisms of 

organelle quality control such as autophagy and mitophagy, which are under the control 

of PI3Kγ (phosphoinositide 3-kinase-γ), p53, and BNIP3 (BCL2/adenovirus E1B 19 kd­

interacting protein 3) and exacerbate DOX-associated mitochondrial dysfunction and ROS 

production. DOX can trigger ROS production directly or after being reduced to semiquinone 

radicals that undergo redox cycling, generating superoxide and hydrogen peroxide. DOX can 

bind to iron, resulting in iron cycling and subsequent production of cytotoxic hydroxyl 

radicals via the Fenton reaction. These events occur in the mitochondria where DOX 

preferentially accumulates on its binding to the mitochondrial phospholipid cardiolipin. ROS 
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production also can be secondary to accumulation of calcium or iron within mitochondria, 

resulting from activation of the MCU (mitochondrial calcium uniporter) and inhibition of the 

iron transporter ABCB8 (ATP-binding cassette subfamily B member 8), respectively. DSB 

indicates double-strand break; and TCA, tricarboxylic acid cycle.
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