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Abstract

Pneumonia is a respiratory infection caused by bacteria or viruses; it affects many individu-

als, especially in developing and underdeveloped nations, where high levels of pollution,

unhygienic living conditions, and overcrowding are relatively common, together with inade-

quate medical infrastructure. Pneumonia causes pleural effusion, a condition in which fluids

fill the lung, causing respiratory difficulty. Early diagnosis of pneumonia is crucial to ensure

curative treatment and increase survival rates. Chest X-ray imaging is the most frequently

used method for diagnosing pneumonia. However, the examination of chest X-rays is a

challenging task and is prone to subjective variability. In this study, we developed a com-

puter-aided diagnosis system for automatic pneumonia detection using chest X-ray images.

We employed deep transfer learning to handle the scarcity of available data and designed

an ensemble of three convolutional neural network models: GoogLeNet, ResNet-18, and

DenseNet-121. A weighted average ensemble technique was adopted, wherein the weights

assigned to the base learners were determined using a novel approach. The scores of four

standard evaluation metrics, precision, recall, f1-score, and the area under the curve, are

fused to form the weight vector, which in studies in the literature was frequently set experi-

mentally, a method that is prone to error. The proposed approach was evaluated on two

publicly available pneumonia X-ray datasets, provided by Kermany et al. and the Radiologi-

cal Society of North America (RSNA), respectively, using a five-fold cross-validation

scheme. The proposed method achieved accuracy rates of 98.81% and 86.85% and sensi-

tivity rates of 98.80% and 87.02% on the Kermany and RSNA datasets, respectively. The

results were superior to those of state-of-the-art methods and our method performed better

than the widely used ensemble techniques. Statistical analyses on the datasets using

McNemar’s and ANOVA tests showed the robustness of the approach. The codes for the

proposed work are available at https://github.com/Rohit-Kundu/Ensemble-Pneumonia-

Detection.
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Introduction

Pneumonia is an acute pulmonary infection that can be caused by bacteria, viruses, or fungi

and infects the lungs, causing inflammation of the air sacs and pleural effusion, a condition

in which the lung is filled with fluid. It accounts for more than 15% of deaths in children

under the age of five years [1]. Pneumonia is most common in underdeveloped and develop-

ing countries, where overpopulation, pollution, and unhygienic environmental conditions

exacerbate the situation, and medical resources are scanty. Therefore, early diagnosis and

management can play a pivotal role in preventing the disease from becoming fatal. Radiologi-

cal examination of the lungs using computed tomography (CT), magnetic resonance imaging

(MRI), or radiography (X-rays) is frequently used for diagnosis. X-ray imaging constitutes a

non-invasive and relatively inexpensive examination of the lungs. Fig 1 shows an example

shows an example of a pneumonic and a healthy lung X-ray. The white spots in the pneu-

monic X-ray (indicated with red arrows), called infiltrates, distinguish a pneumonic from a

healthy condition. However, chest X-ray examinations for pneumonia detection are prone to

subjective variability [2, 3]. Thus, an automated system for the detection of pneumonia is

required. In this study, we developed a computer-aided diagnosis (CAD) system that uses an

ensemble of deep transfer learning models for the accurate classification of chest X-ray

images.

Deep learning is an important artificial intelligence tool, which plays a crucial role in

solving many complex computer vision problems [5, 6]. Deep learning models, specifically

convolutional neural networks (CNNs), are used extensively for various image classification

problems. However, such models perform optimally only when they are provided with a

large amount of data. For biomedical image classification problems, such a vast amount of

labeled data is difficult to acquire because it requires that expert doctors classify each image,

which is an expensive and time-consuming task. Transfer learning is a work-around to sur-

mount this obstacle. In this technique, to solve a problem that involves a small dataset, a

model trained on a large dataset is re-used and the network weights determined in this

model are applied. CNN models trained on a large dataset such as ImageNet [7], which con-

sists of more than 14 million images, are frequently used for biomedical image classification

tasks.

Ensemble learning is a popular strategy in which the decisions of multiple classifiers are

fused to obtain the final prediction for a test sample. It is performed to capture the discrimina-

tive information from all the base classifiers, and thus, results in more accurate predictions.

Some of the ensemble techniques that were most frequently used in studies in the literature are

average probability, weighted average probability, and majority voting. The average probabil-

ity-based ensemble assigns equal priority to each constituent base learner. However, for a par-

ticular problem, a certain base classifier may be able to capture information better than others.

Thus, a more effective strategy is to assign weights to all the base classifiers. However, for

ensuring the enhanced performance of the ensemble, the value of the weights assigned to each

classifier is the most essential factor. Most approaches set this value based on experimental

results. In this study, we devised a novel strategy for weight allocation, where four evaluation

metrics, precision, recall, f1-score, and area under receiver operating characteristics (ROC)

curve (AUC), were used to assign the optimal weight to three base CNN models, GoogLeNet,

ResNet-18, and DenseNet-121. In studies in the literature, in general, only the classification

accuracy was considered for assigning weights to the base learners [8], which may be an inade-

quate measure, in particular when the datasets are class-imbalanced. Other metrics may pro-

vide better information for prioritizing the base learners. The overall workflow of the

proposed ensemble framework is presented in Fig 2.
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Related work

Pneumonia detection using chest X-rays has been an open problem for many years [9, 15], the

main limitation being the scarcity of publicly available data. Traditional machine learning

methods have been explored extensively. Chandra et al. [16] segmented the lung regions from

chest X-ray images and extracted eight statistical characteristics from these regions, which they

used to classify them. They implemented five traditional classifiers: multi-layer perceptron

(MLP), random forest, sequential minimal optimization (SMO), classification via regression,

and logistic regression. They evaluated their method on 412 images and achieved a 95.39%

Fig 1. Examples of two X-ray plates that display (a) a healthy lung and (b) a pneumonic lung. The red arrows in (b)

indicate white infiltrates, a distinguishing feature of pneumonia. The images were taken from the Kermany dataset [4].

https://doi.org/10.1371/journal.pone.0256630.g001
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Fig 2. Representation of the proposed pneumonia detection framework. Pre = Precision score, Rec = Recall score, F1 = F1-score, AUC =

AUC score, and A(i) = {Prei, Reci, F1i, AUCi}; w(i) is the weight generated for the ith base learner to compute the ensemble, pðiÞj is the

probability score for the jth sample by the ith classifier, and ensj is the fused probability score for the jth sample; and the argmax function

returns the position having the highest value in a 1D array, i.e., in this case it generates the predicted class of the sample.

https://doi.org/10.1371/journal.pone.0256630.g002
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accuracy rate using the MLP classifier. Kuo et al. [17] used 11 features to detect pneumonia in

185 schizophrenia patients. They applied these features in a large number of regression and

classification models, such as decision trees, support vector machines, and logistic regression,

and compared the results of the models. They achieved the highest accuracy rate, 94.5%, using

a decision tree classifier; the other models fell short by large margins. Similarly, Yue et al. [18]

used 6 features to detect pneumonia in chest CT scan images of 52 patients; the best AUC

value they achieved was 97%. However, these methods cannot be generalized and were evalu-

ated on small datasets.

In contrast to machine learning algorithms, for which handcrafted features need to be

extracted and selected for classification or segmentation [27, 28], deep learning-based methods

perform end-to-end classification [29, 30], where the relevant and informative features are

automatically extracted from the input data and classified. CNNs are preferred for image data

classification because they automatically extract translationally invariant features through the

convolution of the input image and filters. CNNs are translationally invariant and perform

better than machine learning or traditional image processing methods in image classification

tasks and thus are widely used by researchers.

Sharma et al. [19] and Stephen et al. [20] devised simple CNN architectures for the classifi-

cation of pneumonic chest X-ray images. They used data augmentation to compensate for the

scarcity of data. Sharma et al. obtained a 90.68% and Stephen et al. a 93.73% accuracy rate on

the dataset provided by Kermany et al. [4], hereafter called the Kermany dataset. Data augmen-

tation, however, provides only a limited amount of new information from which the CNNs

can learn and thus may not significantly boost their performance. Rajpukar et al. [14] used the

DenseNet-121 CNN model for pneumonia classification but achieved only a 76.8% f1-score

for classification. They suspected that the unavailability of patient history was a major cause

for the inferior performance of both their deep learning model and the radiologists with which

they compared the performance of their method.

Janizek et al. [21] proposed a framework based on adversarial optimization to remove the

dependency of models on the source of the datasets and produce robust predictions. They

obtained a 74.7% AUC score in the source domain and a 73.9% AUC score in the target

domain. Zhang et al. [22] proposed a confidence-aware module for anomaly detection in lung

X-ray images, posing the detection task as a one-class problem (determining only the anoma-

lies). They achieved an 83.61% AUC score on their dataset. Tuncer et al. [23] used a machine

learning-based method in which they applied the fuzzy tree transformation to the images, fol-

lowed by an exemplar division. Then, they extracted features using a multikernel local binary

pattern and classified the samples using traditional classifiers. They evaluated the method on a

small dataset consisting of COVID-19 and pneumonia samples and showed that it achieved a

97.01% accuracy rate.

To solve the data scarcity problem in biomedical image classification tasks, transfer learn-

ing, wherein knowledge gained from a large dataset is used to fine-tune the model on a current

small dataset, is currently a frequently used approach. Recently, Rahman et al. [10], Liang et al.

[11], Ibrahim et al. [12], and Zubair et al. [13] applied purely transfer learning approaches in

which different CNN models pre-trained on ImageNet [7] data are used for pneumonia classi-

fication. Table 1 tabulates the development of the state of the art for the pneumonia detection

problem.

Most state-of-the-art deep learning methods for pneumonia detection focus on the use of a

single CNN model. Ensemble learning [31, 32] allows the decisions generated by multiple CNN

models to be fused, thus effectively incorporating in the ensemble model the salient features of

all its base models, capturing complementary information from the different classifiers, and

allowing a more robust decision. This paradigm has been seldom explored in relation to the
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pneumonia detection task. Jaiswal et al. [24] used a mask region-based CNN for the detection

of pneumonia traces via segmentation, wherein they used an ensemble model consisting of

ResNet-50 and ResNet-101 for image thresholding. Gabruseva et al. [25] proposed a deep learn-

ing framework for the localization of pulmonary opacity, which was based on a single-shot

Table 1. Existing methods for pneumonia detection.

Method Approach Merits Demerits

Albahli et al.

[9]

• Transfer Learning using

InceptionResNet-V2

Reuse of models pretrained on a large

dataset

Oversimplified for a complex pattern recognition task;

Performance obtained is poor and not fit for practical use

Rahman et al.

[10]

• Transfer Learning using DenseNet-201

Liang et al.

[11]

• Transfer learning using ResNet-50 pre-

trained on ChestX-ray14 dataset

Ibrahim et al.

[12]

• Transfer learning using AlexNet

Zubair et al.

[13]

• Transfer learning using VGG-16

Rajpukar

et al. [14]

• Transfer learning using DenseNet-121

Albahli et al.

[15]

• Used generative adversarial networks to

generate synthetic data.

• Classification using ResNet-152

Generation of synthetic data to balance the

classes of the data because medical data are

scarce

Classification results (41% accuracy rate) are not fit for

practical use

Chandra

et al. [16]

• Segmentation of lung X-rays using image

processing

• Extraction and classification of eight

statistical features

Segmentation of lungs before classification

allows localization of the disease

The use of handcrafted features limits its ability to

perform in complex pattern recognition tasks; Evaluation

on a small dataset (412 images) cannot be generalized

Kuo et al.

[17]

• Used 11 features from patient data to fit

traditional classifiers

Use of 10-fold cross validation with 3 repeats

avoids overfitting

Patient data are often private and not publicly available to

fit to classification models

Yue et al. [18] • Segmented lung lobes using U-Net

• Extracted and classified radiomic features

from CT-scan images

Segmentation before classification helps

extract important features for radiologists

and allows localization of the disease

Method evaluated on a small dataset (72 lesion segments)

and thus difficult to generalize

Sharma et al.

[19]

• Devised a CNN model for classification of

X-ray images

Automatic feature learning for complex tasks Simple linearly progressing CNN model increases

computation cost without providing strong boost to

performanceStephen et al.

[20]

• Developed a simple seven-layer CNN

model for classification of X-ray images

Janizek et al.

[21]

• Developed a deep learning framework

based on adversarial optimization

Adversarial optimization removed

dependency on the source of the dataset and

view of the X-rays for classification

Results (AUC 74.7%) are not fit for deployment in the

field

Zhang et al.

[22]

• Developed a confidence-aware module

for anomaly detection in lung X-ray images

Posing the detection task as a one-class

problem helped improve the model

performance

The sensitivity obtained on the dataset was too low

(71.70%) for practical use

Tuncer et al.

[23]

• Applied fuzzy tree transformation to X-

ray images

• Extracted local features for classification

using an ensemble of traditional classifiers

Generation of three different feature images

improves the model performance

Handcrafted feature extraction limits performance in

complex pattern recognition tasks; Evaluation on a small

dataset cannot be generalized

Jaiswal et al.

[24]

• Developed a mask region-based CNN for

segmentation

• Used an ensemble model for image

thresholding

Use of threshold value in background boosts

the performance

An irregular trend was observed, where results of the

training set were lower than those of the testing set

Gabruseva

et al. [25]

• Localized pulmonary opacity based on a

single-shot detector

• Used a snapshot ensemble model for

segmentation

One-shot detector alleviates the problem of

scarcity of data

Irregular trend of validation loss over epochs during

model training

Pan et al. [26] • Used an ensemble of Inception-ResNet

v2, XceptionNet, and DenseNet-169 for

bounding box prediction

Ensemble learning allows the fusion of

salient properties of all its base learners

Pan et al. [26] suspect that their model evaluated on only

one dataset may not generalize over data acquired from a

different source

https://doi.org/10.1371/journal.pone.0256630.t001
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detector RetinaNet with Se-ResNext101 encoders. They executed an ensemble of several check-

points during the training phase (snapshot ensembling) and achieved a mean average precision

(mAP) of 0.26 over several intersection over union thresholds, one of the best results in the

Radiological Society of North America (RSNA) Pneumonia Detection Challenge. On the same

challenge, Pan et al. [26] used an ensemble of the Inception-ResNet v2, XceptionNet, and Den-

seNet-169 models for pneumonia detection and obtained the best result in the challenge, an

mAP value of 0.33. However, ensemble models have not been used for classification tasks in the

pneumonia detection problem to the best of our knowledge, and, for the first time in this

domain, we adopted ensemble learning in this study for the classification of lung X-rays into

“Pneumonia” and “Normal” classes. Three state-of-the-art CNN models with transfer learning,

GoogLeNet, ResNet-18, and DenseNet-121, were used to form the ensemble using a weighted

average probability technique, in which the weights are allocated using a novel approach.

Motivation and contributions

As previously mentioned, pneumonia affects a large number of individuals, especially children,

mostly in developing and underdeveloped countries characterized by risk factors such as over-

crowding, poor hygienic conditions, and malnutrition, coupled with the unavailability of

appropriate medical facilities. Early diagnosis of pneumonia is crucial to cure the disease

completely. Examination of X-ray scans is the most common means of diagnosis, but it

depends on the interpretative ability of the radiologist and frequently is not agreed upon by

the radiologists. Thus, an automatic CAD system with generalizing capability is required to

diagnose the disease. To the best of our knowledge, most previous methods in the literature

focused on developing a single CNN model for the classification of pneumonia cases, and the

use of the ensemble learning paradigm in this classification task has not been explored. How-

ever, the ensemble learning model incorporates the discriminative information from all the

constituent base learners, allowing it to make superior predictions, and thus was implemented

in this study. To handle the low amount of available biomedical data, transfer learning models

were used as base learners, the decision scores of which were ensembled.

The main contributions of this study are as follows.

1. An ensemble framework, proposed for boosting the performance of the base CNN learners

in pneumonia classification, was developed. For this purpose, a weighted average ensemble

technique was adopted.

2. The weights assigned to the classifiers were determined by fusing four evaluation metrics:

precision, recall, f1-score, and AUC. Instead of setting the weights based solely on the accu-

racy of classifiers or according to the results of experiments, we used a hyperbolic tangent

function.

3. The proposed model was evaluated on two publicly available chest X-ray datasets, the Ker-

many dataset [4] and the RSNA Pneumonia Detection Challenge [33] dataset, using the

five-fold cross-validation setting. The results are superior to those of state-of-the-art meth-

ods, indicating the viability of the method for use in the practical field.

Proposed method

In this study, we designed an ensemble framework of three classifiers (Fig 2), GoogLeNet [34],

ResNet-18 [35], and DenseNet-121 [36], using a weighted average ensemble scheme wherein

the weights allocated to the classifiers are generated using a novel scheme, as explained in

detail in the following sections.
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GoogLeNet

The GoogLeNet architecture proposed by Szegedy et al. [34] is a 22-layer deep network con-

sisting of “inception modules,” instead of uniformly progressive layers. An inception block

accommodates a large number of units at each stage by hosting parallel convolution and pool-

ing layers, resulting in an uncontrolled computational complexity because of the increased

number of parameters. To control the computational complexity, the GoogLeNet model uses

inception blocks with dimension reduction, as shown in Fig 3(b), rather than the naive incep-

tion block (Fig 3(a)) used in [37]. The performance of GoogLeNet, in which the inception

block was introduced, proves that an optimal sparse architecture built from the available dense

building blocks improves the performance of artificial neural networks for computer vision

tasks. The architecture of the GoogLeNet model is presented in Fig 4.

Fig 3. Inception modules in the GoogLeNet architecture. (a) The naive inception block that is replaced by (b) the

dimension reduction inception block in the GoogLeNet architecture to improve computational efficiency.

https://doi.org/10.1371/journal.pone.0256630.g003
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Fig 4. Architecture of the GoogLeNet model used in this study. The inception block is shown in Fig 3(b).

https://doi.org/10.1371/journal.pone.0256630.g004
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ResNet-18

The ResNet-18 model proposed by He et al. [35] is based on a residual learning framework,

which increases the efficiency of deep network training. The residual blocks in the ResNet

models facilitate the optimization of the overall network, which in turn improves model accu-

racy, unlike the original unreferenced mapping in monotonically progressive convolutions.

These residuals or “skip connections” perform identity mapping, which neither adds parame-

ters nor increases the computational complexity. The architecture of the ResNet-18 model is

presented in Fig 5.

DenseNet-121

The DenseNet architectures proposed by Huang et al. [36] provide a rich feature

representation while being computationally efficient. The primary reason is that, in each

layer of the DenseNet model, the feature maps in the current layer are concatenated with

those from all the preceding layers, as shown in Fig 6. Because fewer channels are accom-

modated in the convolutional layers, the number of trainable parameters is diminished,

and thus, the model is computationally efficient. Furthermore, the concatenation of the

feature maps from the previous layers with the current layer enhances the feature

representation.

The values of the hyperparameters used for training the learning algorithms (base learners)

were set empirically and are shown in Table 2.

Proposed ensemble scheme

The ensemble learning model helps incorporate the discriminative information of all its

constituent models, and thus, its predictions are superior to those of any of its constituent

base learners. Weighted average ensembling is a powerful classifier fusion mechanism. How-

ever, the choice of the weights to be allocated to the respective base learners plays a pivotal

role in ensuring the success of the ensemble. Most approaches in the literature set the

weights experimentally or based solely on the accuracy of the classifier. However, this may

not be a good measure when a class imbalance exists in the dataset. The use of other evalua-

tion measures, such as precision, recall (sensitivity), f1-score, and AUC, may provide rela-

tively robust information for determining the priority of the base learners. To this end, in

this study, we devised a novel strategy for weight allocation, which is explained in the

following.

First, the probability scores obtained during the training phase by the base learners are uti-

lized to calculate the weights assigned to each base learner using the proposed strategy. These

generated weights are used in the formation of an ensemble trained on the test set. This strat-

egy is implemented to ensure that the test set remains independent for predictions. The predic-

tions of the ith model (ŷi) are generated and compared with the true labels (y) to generate the

corresponding precision score (pre(i)), recall score (rec(i)), f1-score (f1(i)), and AUC score

(AUC(i)). Assume that this forms an array A(i) = {pre(i), rec(i), f1(i), AUC(i)}. The weight (w(i))

assigned to each classifier is then computed using the hyperbolic tangent function, as shown in

Eq 1. The range of the hyperbolic tangent function is [0, 0.762] because x represents an evalua-

tion metric, the value of which is in the range [0, 1]. It monotonically increases in this range;

thus, if the value of a metric x is high, the tanh function rewards it by assigning to it a high
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Fig 5. Architecture of the ResNet-18 model used in this study.

https://doi.org/10.1371/journal.pone.0256630.g005
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priority; otherwise, the function penalizes it.

wðiÞ ¼
X

x2AðiÞ

tanh ðxÞ

¼
X

x2AðiÞ

ex � e� x

ex þ e� x

ð1Þ

These weights (w(i)) computed by Eq 1 are multiplied by the decision scores of the corre-

sponding base learners to compute the weighted average probability ensemble, as shown in Eq

2, where the probability array (for a binary class dataset) of the jth test sample by the ith base

classifier is pðiÞj ¼ fa; 1 � ag, where a� 1 and the ensemble probability for the sample is

ensemble_probj = {b, 1 − b}.

ensemble probj ¼

P
iw
ðiÞ � pðiÞj
P

iwðiÞ
ð2Þ

Finally, the class predicted by the ensemble is computed by Eq 3, where predictionj denotes

the predicted class of the sample.

predictionj ¼ argmaxðensemble probjÞ ð3Þ

Fig 6. Basic architecture of the DenseNet convolutional neural network model.

https://doi.org/10.1371/journal.pone.0256630.g006

Table 2. Hyperparameters used for training the convolutional neural network base learners.

Hyperparameter Value

Optimizer Adam

Loss Function Cross Entropy

Initial Learning Rate 0.0001

Learning Rate Scheduler ReduceLROnPlateau

No. of Epochs 30

https://doi.org/10.1371/journal.pone.0256630.t002
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Results and discussion

In this section, we report the evaluation results of the proposed method. Two publicly available

pneumonia chest X-ray datasets were used. The first dataset, the Kermany dataset [4], consists

of 5856 chest X-ray images from a large population of both adults and children, unevenly dis-

tributed among the classes “Pneumonia” and “Normal.” The second dataset was provided by

the RSNA [33] and was posed as a Kaggle challenge for pneumonia detection. The distribution

of images in the two datasets is provided in Table 3. The description of images in the training

and testing sets of each fold of the 5-fold cross-validation scheme adopted in this study are also

shown in the table. Furthermore, the implications of the obtained results are discussed. A com-

parative evaluation was conducted to demonstrate the superiority of the proposed method

over other models and frequently used ensemble techniques published in the literature.

Evaluation metrics

To evaluate the proposed ensemble method on the two pneumonia datasets, four standard

evaluation metrics were used: accuracy (Acc), precision (Pre), recall (Rec), and f1-score (F1).

To define these evaluation metrics, first, we define the terms “True Positive,” “False Positive,”

“True Negative,” and “False Negative.”

For a binary classification task, suppose the two classes in the dataset are called the “posi-

tive” and the “negative” class. The aforementioned terms can then be defined as follows.

• True Positive (TP) refers to a sample belonging to the positive class, being correctly classified

by a model.

• False Positive (FP) refers to a sample belonging to the negative class, being incorrectly classi-

fied as belonging to the positive class.

• True Negative (TN) refers to a sample belonging to the negative class, being correctly classi-

fied by the model.

• False Negative (FN) refers to a sample belonging to the positive class, being incorrectly classi-

fied as belonging to the negative class.

Table 3. Description of images in the training and testing sets in each fold of five-fold cross-validation in the two datasets used in this study.

Dataset Division Class No. of Images Size of Images (Range) Size of Resized Images

Kermany Train Normal 1267 (127×384×3)—(2713×2517×3) 224×224×3

Pneumonia 3419

Test Normal 316 (189×490×3)—(2458×2720×3) 224×224×3

Pneumonia 854

Total Images 5856

RSNA Train Lung Opacity 16488 (1024×1024×3) 224×224×3

No Lung Opacity 4801

Test Lung Opacity 4111 (1024×1024×3) 224×224×3

No Lung Opacity 1201

Total Images 26601

https://doi.org/10.1371/journal.pone.0256630.t003
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Now, the four evaluation metrics can be defined as

Acc ¼
TP þ TN

TP þ FPþ TN þ FN
ð4Þ

Pre ¼
TP

TP þ FP
ð5Þ

Rec ðor SensitivityÞ ¼
TP

TP þ FN
ð6Þ

F1 ¼
2

1

Precisionþ
1

Recall
ð7Þ

The accuracy rate provides an overall measure of the number of correct predictions of the

model. However, the high accuracy rate of a model does not ensure its ability to distinguish

different classes equally if the dataset is imbalanced. In particular, in medical image classifica-

tion, a model that can be generalized to all classes is required. In such cases, the “precision”

and “recall” values provide insight into the performance of the model. “Precision” shows the

accuracy of the model’s positive label prediction. This provides the ratio of the correct predic-

tions to the total predictions yielded by the model. Conversely, “recall” measures the percent-

age of ground truth positives that the model correctly predicted. These two evaluation metrics

assess whether the model can reduce the number of FP and FN predictions. “F1-Score” pro-

vides a balance between “precision” and “recall,” considering both FPs and FNs. It penalizes

extreme values of “precision” and “recall,” each of which is achieved at the expense of the

other. Thus, in medical image classification, it is useful to consider evaluation metrics rather

than only the accuracy rate to obtain a precise identification of a non-diseased, as well as of a

diseased person.

Implementation

A five-fold cross-validation scheme was used in this study to evaluate robustly the performance

of the proposed ensemble model. The results for each fold and the average and standard devia-

tion values over the five folds are tabulated in Table 4 for the Kermany dataset [4] and in

Table 5 for the RSNA challenge dataset [33]. The high accuracy and sensitivity (recall) values

indicate the reliability of the proposed approach. Further, Figs 7 and 8 show the confusion

matrices obtained on the Kermany and RSNA datasets, respectively, and Fig 9 shows the ROC

Table 4. Results of five-fold cross-validation of the proposed ensemble method on the pneumonia Kermany data-

set [4].

Fold Acc(%) Pre(%) Rec(%) F1(%) AUC(%)

1 98.63 98.64 98.63 98.63 98.12

2 99.31 99.33 99.32 99.32 98.82

3 98.38 98.46 98.38 98.29 97.86

4 99.68 99.66 99.66 99.66 99.43

5 98.03 98.03 98.03 98.03 97.54

Avg±Std. Dev. 98.81±0.61 98.82±0.59 98.80±0.60 98.79±0.61 98.35±0.68

Avg: average Std.Dev: Standard Deviation.

https://doi.org/10.1371/journal.pone.0256630.t004
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curves obtained by the proposed method on all the five folds of cross-validation on the two

datasets.

Fig 10 shows the accuracy rates achieved by the base learners in transfer learning using dif-

ferent optimizers on the Kermany dataset. The best results were obtained by the Adam opti-

mizer for all three base learners; thus, it was chosen as the optimizer to train the base learners

for the ensemble framework.

Table 6 shows the results of the various ensembles consisting of three different base learners

(including recently proposed architectures), GoogLeNet, ResNet-18, ResNet-50, ResNet-152,

DenseNet-121, DenseNet-169, DenseNet-201, MobileNet v2, and NasMobileNet, on the Ker-

many dataset. The results justify the choice of the combination of base learners used in this

study, GoogLeNet, ResNet-18, and DenseNet-121. The ensemble combination achieved an

accuracy rate of 98.81%. The next best result, an accuracy rate of 98.54%, was achieved by the

ensemble of GoogLeNet, ResNet-18, and MobileNet v2. Further, for the chosen combination

of base learners, GoogLeNet, ResNet-18, and DenseNet-121, in the execution of the ensemble

we fixed some of the layers and trained the models to select the optimal setting. The results are

shown in Fig 11. The best results for the ensemble were achieved when all the layers were train-

able (0 layers frozen) on both datasets. Thus, we chose this setting for the ensemble

framework.

Gradient-weighted class activation maps analysis

Gradient-weighted class activation maps (GradCAM) [38] were employed in this study to

present a visual representation of the distinguishing regions in the chest X-ray images, that is,

the regions on which the classifier focuses to make a prediction. CAM calculates the number

of weights of each feature map (FM) based on the last convolution layer to compute the contri-

bution of the FM to the prediction ŷ at location (i, j), where our objective is a computed value

of Lg
ij that satisfies yg ¼

P
i;jL

g
ij. The final FM (Ck

ij) and the prediction ŷ are represented through

a linear relationship in which the linear layers contain global average pooling (GAP) layers and

fully connected layers (FCLs). (1) GAP outputs Ak ¼ Ck
ij and (2) the FCLs, which hold weight

wg
k, generate an output as in Eq 8, where Ck represents the visualization of the kth FM:

Lg
ij ¼

P
kw

g
kCk

ij.

yg ¼
X

k

wg
kAk ¼

X

k

wg
k

X

i;j

Ck
ij ¼

X

i;j

X

k

wg
kC

k
ij ð8Þ

CAM is an unsuitable method because of the problem of the vanishing nonlinearity of clas-

sifiers. Thus, instead of pooling them, we use GradCAM for globally averaging the gradients of

Table 5. Results of five-fold cross-validation of the proposed ensemble method on the pneumonia Radiological

Society of North America challenge dataset.

Fold Acc(%) Pre(%) Rec(%) F1(%) AUC (%)

1 86.63 86.78 86.63 86.70 86.63

2 86.78 87.05 87.05 87.05 86.78

3 87.97 88.00 87.80 87.90 87.97

4 85.98 86.00 86.63 86.31 85.98

5 86.89 86.63 86.98 86.80 86.89

Avg±Std. Dev. 86.85±0.72 86.89±0.73 87.02±0.48 86.95±0.59 86.85±0.72

Avg: average Std.Dev: Standard Deviation.

https://doi.org/10.1371/journal.pone.0256630.t005
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Fig 7. Confusion matrices obtained on the Kermany pneumonia chest X-ray dataset by the proposed method by 5-fold

cross validation. a) Fold-1. (b) Fold-2. (c) Fold-3. (d) Fold-4. (e) Fold-5.

https://doi.org/10.1371/journal.pone.0256630.g007
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the FM as weights. While the heat maps are plotted, class-specific weights are collected from

the last convolution layer through globally averaged gradients (GAG) of the FM instead of

pooling, as in Eq 9, where P is the number of pixels in an FM, g is the gradient of the class, and

Ck
ij is the value of the kth FM.

a
g
k ¼

1

P

X

i

X

j

@yg

@Ck
ij

ð9Þ

After the relative weights have been gathered, the coarse saliency map (Lc) is calculated as

the weighted sum, ack � Ck
ij, of the ReLU activation (Eq 10), where ack represents the neuron

importance weights. It introduces a linear combination to the FM because only the features

that have a positive influence on the respective class are of interest; the negative pixels in the

Fig 8. Confusion matrices obtained on the Radiological Society of North America pneumonia challenge chest X-ray dataset by the proposed method by five-fold

cross validation. a) Fold-1. (b) Fold-2. (c) Fold-3. (d) Fold-4. (e) Fold-5.

https://doi.org/10.1371/journal.pone.0256630.g008
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Fig 9. Receiver operating characteristic curves obtained by the proposed ensemble method on the two pneumonia

chest X-ray datasets used in this research. (a) Kermany dataset [4]. (b) RSNA challenge dataset [33].

https://doi.org/10.1371/journal.pone.0256630.g009
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Fig 10. Variation of accuracy rates on the Kermany dataset [4]) achieved by the three base learners, GoogLeNet, ResNet-18, and DenseNet-121 and their

ensemble, according to the optimizers chosen for fine tuning.

https://doi.org/10.1371/journal.pone.0256630.g010

Table 6. Results of extensive experiments performed to determine the base learners for forming the ensemble in this study.

Model-1 Model-2 Model-3 Acc(%) Pre(%) Rec(%) F1(%)

NasNetMobile MobileNet v2 ResNet-152 96.67 96.70 96.67 96.68

NasNetMobile MobileNet v2 ResNet-50 97.00 97.02 97.01 97.01

NasNetMobile MobileNet v2 DenseNet-169 96.41 96.40 96.41 96.41

NasNetMobile MobileNet v2 DenseNet-201 96.06 96.21 96.07 96.11

MobileNet v2 ResNet-152 DenseNet-169 96.92 97.03 96.92 96.95

MobileNet v2 ResNet-50 DenseNet-169 97.77 97.82 97.78 97.79

MobileNet v2 ResNet-50 DenseNet-201 95.98 96.40 95.98 96.06

MobileNet v2 ResNet-152 DenseNet-201 94.87 95.57 94.87 94.99

NasNetMobile ResNet-152 DenseNet-169 95.21 95.71 95.21 95.31

NasNetMobile ResNet-152 DenseNet-201 92.56 94.06 92.56 92.81

NasNetMobile ResNet-50 DenseNet-169 96.41 96.66 96.41 96.46

NasNetMobile ResNet-50 DenseNet-201 92.99 94.28 92.99 93.20

GoogLeNet ResNet-152 DenseNet-121 97.17 97.37 97.18 97.21

GoogLeNet ResNet-152 DenseNet-201 95.04 95.65 95.04 95.15

GoogLeNet ResNet-18 DenseNet-201 98.20 98.23 98.21 98.21

GoogLeNet MobileNet v2 DenseNet-121 98.29 98.29 98.29 98.29

GoogLeNet ResNet-18 MobileNet v2 98.54 98.54 98.55 98.54

GoogLeNet MobileNet v2 NasNetMobile 98.12 98.13 98.12 98.11

GoogLeNet ResNet-18 DenseNet-121 98.81 98.82 98.80 98.35

https://doi.org/10.1371/journal.pone.0256630.t006
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Fig 11. Variation in performance (accuracy rates) of the ensemble with respect to the number of fixed non-trainable layers in the base learners on the

two datasets used in this study. (a) Kermany dataset [4]. (b) RSNA challenge dataset [33].

https://doi.org/10.1371/journal.pone.0256630.g011
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image that belong to other categories are discarded.

Lg ¼ ReLU
X

i

a
g
kC

k

 !

ð10Þ

Fig 12 shows the results of the GradCAM analysis of a pneumonic and a healthy lung X-ray,

where all three models were used to form the ensemble. Evidently, the different models

focused on different regions of the lung X-rays, indicating that the base learners capture com-

plementary information. This led to the success of the ensemble approach. The confidence

scores for the pneumonic lung X-ray shown in Fig 12(a)–12(c) are GoogLeNet: 99.99%,

ResNet-18: 75.21%, and DenseNet-121: 98.90%; all predicted correctly. For the healthy lung

case shown in Fig 12(d)–12(f), the confidence scores are GoogLeNet: 99.47%, ResNet-18:

97.61%, and DenseNet-121: 98.93%; all predicted correctly.

Fig 12. Gradient-weighted class activation map (GradCAM) decision visualization of chest X-ray images when the three chosen base learners were used to form

the ensemble. Different regions of the X-rays are the focus of the different models that capture complementary information. Case-1: (a)–(c) show a pneumonic lung

X-ray analyzed using the three base learners; the confidence scores of the three base learners are GoogLeNet: 99.99%, ResNet-18: 75.21%, and DenseNet-121: 98.90%

Case-2: (d)–(f) show a healthy lung X-ray analyzed using the three base learners; the confidence scores of the three base learners are GoogLeNet: 99.47%, ResNet-18:

97.61%, and DenseNet-121: 98.93%.

https://doi.org/10.1371/journal.pone.0256630.g012
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Comparison with state-of-the-art methods

Table 7 compares the performance of the proposed ensemble framework and those of the

existing methods in the literature on the Kermany pneumonia dataset. It should be noted that

the proposed method outperformed all the other methods. It is also noteworthy that all these

previous methods (Mahmud et al. [39], Zubair et al. [13], Stephen et al. [20], Sharma et al.

[19], and Liang et al. [11]) revolved around using a single CNN model for the classification of

pneumonic lung X-ray images and that the proposed ensemble framework outperformed

them, indicating that the ensemble technique devised in this study is a reliable method for the

image classification task under consideration. To the best of our knowledge, no studies on the

classification of images in the RSNA pneumonia dataset exist. Hence, for this dataset, we com-

pared the performance of the proposed model to that of several baseline CNN models.

Table 8 shows the evaluation results obtained with the base CNN models used to form the

ensemble and several other standard CNN transfer learning models in comparison with those

of the proposed method on both the datasets used in this study. It can be seen that the pro-

posed ensemble method outperformed the base learners, as well as other transfer learning

models, by a fair margin on both datasets.

Table 7. Comparison of the proposed method with other methods in the literature on the Kermany pneumonia dataset [4] and the Radiological Society of North

America challenge dataset [33].

Dataset Method Acc(%) Pre(%) Rec(%) F1(%) AUC(%)

Kermany Mahmud et al. [39] 98.10 98.00 98.50 98.30 -

Zubair et al. [13] 96.60 97.20 98.10 97.65 -

Stephen et al. [20] 93.73 - - - -

Sharma et al. [19] 90.68 - - - -

Liang et al. [11] 90.50 89.10 96.70 92.70 -

Proposed Method 98.81 98.82 98.80 98.79 98.35

RSNA Antin et al. [40] - - - - 61.00

Zhou et al. [41] 79.70 - - 80.00 -

Yao et al. [42] - - - - 71.30

Rajpukar et al. [14] 76.80

Proposed Method 86.85 86.89 87.02 86.95 86.85

https://doi.org/10.1371/journal.pone.0256630.t007

Table 8. Comparison of the proposed ensemble framework with several standard convolution neural network models in the literature on both the Kermany and the

Radiological Society of North America challenge datasets.

Dataset Model Acc(%) Pre(%) Rec(%) F1(%) AUC(%)

Kermany GoogLeNet 97.89 98.12 98.12 98.12 97.89

AlexNet 97.17 97.22 97.18 97.19 97.17

VGG-16 97.09 97.12 97.09 97.1 97.09

DenseNet-121 96.23 96.63 96.24 96.31 96.23

ResNet-18 97.29 98.31 98.29 98.3 97.29

Proposed Method 98.81 98.82 98.80 98.79 98.35

RSNA GoogLeNet 84.83 84.98 84.83 84.90 84.83

AlexNet 85.86 85.15 84.86 85.00 85.86

VGG-16 81.05 80.08 81.17 80.62 81.05

DenseNet-121 85.67 84.98 85.55 85.26 85.67

ResNet-18 84.98 85.55 85.37 85.46 84.98

Proposed Method 86.85 86.89 87.02 86.95 86.85

https://doi.org/10.1371/journal.pone.0256630.t008
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Furthermore, to establish the superiority of the proposed ensemble scheme over traditional

popular ensemble techniques, the results are compiled in Table 9. The same three base CNN

learners, GoogLeNet, ResNet-18, and DenseNet-121, were used in the ensembles; the average

results over the five folds of cross-validation are shown for both the Kermany and RSNA chal-

lenge datasets. The proposed ensemble method outperformed popular ensemble schemes. On

both datasets, it can be seen that the weighted average ensemble that considers only the accu-

racy metric used as the weights achieved the performance closest to that of the proposed

ensemble technique. In the majority voting-based ensemble, the class that obtained the maxi-

mum votes from the base learners is predicted as the class of the sample. For the maximum

probability ensemble, the probability scores for each class are summed over all the base learn-

ers and the class having the maximum probability is set as the predicted class of the sample,

whereas in the average probability ensemble, equal weighting is given to each contributing

classifier.

Error analysis

Fig 13 shows two test samples from the Kermany dataset [4] where two base learners yielded

incorrect predictions with a low confidence rate and the third base learner yielded the correct

prediction with a very high confidence rate, finally leading the ensemble framework to predict

the sample correctly. Fig 13(a) shows a sample where GoogLeNet predicted “Pneumonia” with

a confidence score of 52.1%, ResNet-18 predicted “Pneumonia” with a confidence score of

73.8%, and DenseNet-121 predicted “Normal” with a confidence score of 89.4%. The proposed

ensemble framework finally correctly predicted the sample to belong to the “Normal” class

with a confidence score of 68.1%. Similarly, in the case of Fig 13(b), GoogLeNet predicted

“Normal” with a confidence score of 98.6%, ResNet-18 predicted “Pneumonia” with a confi-

dence score of 58.3%, and DenseNet-121 predicted “Pneumonia” with a confidence score of

69.3%. The proposed ensemble framework correctly predicted the sample to be “Normal” with

a confidence score of 66.3%. This indicates the robustness of the ensemble framework

performance.

Fig 14 shows several test samples from the Kermany dataset [4] where the ensemble frame-

work failed to classify the samples correctly. Fig 14(a) shows a case where a sample belonging

to class “Normal” was misclassified as “Pneumonia”; the corresponding GradCAM analysis

images are shown in parts (c), (d), and (e). This may be due to the poor image quality, where

the contrast of the image is not adequate, resulting in the base learners classifying the sample

incorrectly. The GradCAM analysis showed that GoogLeNet and DenseNet-121 focused on

Table 9. Performance comparison of the proposed ensemble technique and popular ensemble schemes in the literature for the two datasets used. The same base

learners were used in all the ensembles: GoogLeNet, ResNet-18, and DenseNet-121.

Dataset Ensemble technique Acc(%) Pre(%) Rec(%) F1(%) AUC (%)

Kermany Maximum Probability 97.77 97.84 97.79 97.76 97.79

Average Probability 97.85 97.81 97.79 97.78 97.81

Majority Voting 98.11 98.13 98.12 98.10 97.85

Weighted Average with only accuracy 98.20 98.22 98.20 98.18 98.11

Proposed Ensemble 98.81 98.82 98.80 98.79 98.35

RSNA Maximum Probability 85.67 85.80 85.67 85.73 85.67

Average Probability 86.10 85.98 86.11 86.04 86.11

Majority Voting 85.98 85.67 85.98 85.82 85.98

Weighted Average with only accuracy 86.63 86.54 86.63 86.58 86.54

Proposed Ensemble 86.85 86.89 87.02 86.95 86.85

https://doi.org/10.1371/journal.pone.0256630.t009
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the spinal cord in the X-ray, whereas ResNet-18 focused on the white area of the retracted

lungs, leading to incorrect predictions. Fig 14(b) shows a case where an image of class “Pneu-

monia” was classified as “Normal” by the model. The GradCAM analysis images are shown in

(f), (g), and (h). As in the previous case, the GoogLeNet and DenseNet-121 models focused on

the spinal cord, and the ResNet-18 model focused on part of the spinal cord and the retracted

left lung. A pneumonic lung X-ray is characterized by abscesses or pleural effusion, that is,

fluid in the alveoli, which appears as white spots in a lung X-ray, as explained in Fig 1. It is

plausible that such an early stage of pneumonia, where the white infiltrates have just started to

appear sparingly in the lungs, was not captured by the CNN models. In such cases, doctors use

air bronchogram signs to detect pneumonia. The shape and lumen of the bronchi with air

bronchogram signs were used to distinguish lung cancer, tuberculosis, and pneumonia.

Statistical analysis

To analyze statistically the viability of the proposed ensemble framework, we performed two

non-parametric tests: McNemar’s statistical test [43] and the analysis of variance (ANOVA)

test [44], where the proposed ensemble model was compared to the base classifiers, the proba-

bility scores of which were used in this study to determine the formation of the ensemble: Goo-

gLeNet, ResNet-18, and DenseNet-121. Table 10 tabulates the McNemar’s test results and

Table 11 tabulates the ANOVA test results on both the pneumonia chest X-ray datasets used

in this study. To reject the null hypothesis, the p-value in both McNemar’s and the ANOVA

test should be lower than 0.05 (5%); according to Tables 10 and 11, for every case in both data-

sets, the p−value is less than 0.05. Thus, the null hypothesis was rejected by the results of both

statistical tests. This establishes that the proposed ensemble framework captures complemen-

tary information from the base classifiers and its predictions are superior, thus ensuring that

the ensemble model is statistically dissimilar to any of the contributing models.

Fig 13. Examples of samples from the Kermany dataset where two out of three base learners yielded incorrect predictions, but the ensemble yielded the correct

prediction. Both images are of class “Normal”. (a) Case-1: GoogLeNet predicted “Pneumonia” with a confidence score of 53.1%, ResNet-18 predicted “Pneumonia”

with a confidence score of 73.8%, and DenseNet-121 predicted “Normal” with a confidence score of 89.4%. The proposed ensemble framework predicted “Normal”
(correct classification) with a confidence rate of 68.1 (b) Case-2: GoogLeNet predicted “Normal” with a confidence score of 98.6%, ResNet-18 predicted “Pneumonia”

with a confidence score of 58.3%, and DenseNet-121 predicted “Pneumonia” with a confidence score of 69.3%. The proposed ensemble framework predicted “Normal”
(correct classification) with a confidence rate of 66.3%.

https://doi.org/10.1371/journal.pone.0256630.g013
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Fig 14. Examples of samples from the Kermany dataset [4] that were classified incorrectly by the proposed ensemble framework. Case-1: (a) shows an image

originally belonging to class “Normal” but misclassified as “Pneumonia” by the framework. The GradCAM analysis images are shown in (c), (d), and (e) for

GoogLeNet, ResNet-18, and DenseNet-121, respectively. Case-2: (b) shows an image of class “Pneumonia” predicted to belong to the “Normal” class by the framework.

The GradCAM analysis images are shown in (f), (g), and (h)for GoogLeNet, ResNet-18, and DenseNet-121, respectively.

https://doi.org/10.1371/journal.pone.0256630.g014
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Conclusion and future work

Early detection of pneumonia is crucial for determining the appropriate treatment of the dis-

ease and preventing it from threatening the patient’s life. Chest radiographs are the most

widely used tool for diagnosing pneumonia; however, they are subject to inter-class variability

and the diagnosis depends on the clinicians’ expertise in detecting early pneumonia traces. To

assist medical practitioners, an automated CAD system was developed in this study, which

uses deep transfer learning-based classification to classify chest X-ray images into two classes

“Pneumonia” and “Normal.” An ensemble framework was developed that considers the deci-

sion scores obtained from three CNN models, GoogLeNet, ResNet-18, and DenseNet-121, to

form a weighted average ensemble. The weights assigned to the classifiers were calculated

using a novel strategy wherein four evaluation metrics, precision, recall, f1-score, and AUC,

were fused using the hyperbolic tangent function. The framework, evaluated on two publicly

available pneumonia chest X-ray datasets, obtained an accuracy rate of 98.81%, a sensitivity

rate of 98.80%, a precision rate of 98.82%, and an f1-score of 98.79% on the Kermany dataset

and an accuracy rate of 86.86%, a sensitivity rate of 87.02%, a precision rate of 86.89%, and an

f1-score of 86.95% on the RSNA challenge dataset, using a five-fold cross-validation scheme. It

outperformed state-of-the-art methods on these two datasets. Statistical analyses of the pro-

posed model using McNemar’s and ANOVA tests indicate the viability of the approach. Fur-

thermore, the proposed ensemble model is domain-independent and thus can be applied to a

large variety of computer vision tasks.

However, as previously mentioned, in some instances the ensemble framework failed to

produce correct predictions. In the future, we may investigate techniques such as contrast

enhancement of the images or other pre-processing steps to improve the image quality. We

may also consider using segmentation of the lung image before classification to enable the

CNN models to achieve improved feature extraction. Furthermore, because three CNN models

are required to train the proposed ensemble, the computation cost is higher than that of the

CNN baselines developed in studies in the literature. In the future, we may attempt to reduce

the computational requirements by employing methods such as snapshot ensembling.

Table 10. Results of McNemar’s statistical test of the ensemble model and the base learners on both datasets. For

all the base learners with which the proposed model is compared, the p−value is less than 0.05, and thus, the null

hypothesis is rejected.

McNemar’s Test p-value

Kermany dataset RSNA dataset

GoogLeNet 0.0000 0.0017

ResNet-18 0.0430 0.0214

DenseNet-121 0.0002 0.0006

https://doi.org/10.1371/journal.pone.0256630.t010

Table 11. Results of analysis of variance (ANOVA) statistical test of the ensemble model and the base learners on

both datasets. For all the base learners with which the proposed model is compared, the p−value is less than 0.05, and

thus, the null hypothesis is rejected.

ANOVA Test p-value

Kermany Dataset RSNA Dataset

GoogLeNet 0.0435 0.0131

ResNet-18 0.0021 0.0001

DenseNet-121 0.0017 0.0056

https://doi.org/10.1371/journal.pone.0256630.t011
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