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Abstract

C/C++/OpenCL-based high-level synthesis (HLS) becomes more and more popular for field­

programmable gate array (FPGA) accelerators in many application domains in recent years, thanks 

to its competitive quality of results (QoR) and short development cycles compared with the 

traditional register-transfer level design approach. Yet, limited by the sequential C semantics, it 

remains challenging to adopt the same highly productive high-level programming approach in 

many other application domains, where coarse-grained tasks run in parallel and communicate with 

each other at a fine-grained level. While current HLS tools do support task-parallel programs, the 

productivity is greatly limited ① in the code development cycle due to the poor programmability, 

② in the correctness verification cycle due to restricted software simulation, and ③ in the QoR 

tuning cycle due to slow code generation. Such limited productivity often defeats the purpose of 

HLS and hinder programmers from adopting HLS for task-parallel FPGA accelerators.

In this paper, we extend the HLS C++ language and present a fully automated framework with 

programmer-friendly interfaces, unconstrained software simulation, and fast hierarchical code 

generation to overcome these limitations and demonstrate how task-parallel programs can be 

productively supported in HLS. Experimental results based on a wide range of real-world task­

parallel programs show that, on average, the lines of kernel and host code are reduced by 22% and 

51%, respectively, which considerably improves the programmability. The correctness verification 

and the iterative QoR tuning cycles are both greatly shortened by 3.2× and 6.8×, respectively. Our 

work is open-source at https://github.com/UCLA-VAST/tapa/.

I. Introduction

C/C++/OpenCL-based high-level synthesis (HLS) [1] has been adopted rapidly by both 

the academia and the industry for programming field-programmable gate array (FPGA) 

accelerator design in many application domains, e.g., machine learning [2–4], scientific 

computing [5–8], and image processing [9–11]. Compared with the traditional register­

transfer level (RTL) paradigm where the debug turnaround time of even simple applications 

[12] can take tens of minutes, with HLS, programmers can follow a rapid development 

cycle. Programmers can write code in C and leverage fast software simulation to verify 

the functional correctness. The debug turnaround time for such a correctness verification 

cycle can take as few as just one second instead of tens of minutes, allowing functionalities 
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to be iterated at a fast pace. Once the HLS code is functionally correct, programmers 

can then generate RTL code, evaluate the quality of results (QoR) based on the generated 

performance and resource reports, and modify the HLS code accordingly. Such a QoR 

tuning cycle typically takes only a few minutes for a simple design or a component in 

a modular design. Thanks to the advances in HLS scheduling algorithms [13–17] and 

timing optimizations [18–21], HLS can not only shorten the development cycle, but also 

generate programs that are often competitive in cycle count [22], and more recently 

in clock frequency as well [19, 21]. Moreover, FPGA vendors provide host drivers 

and communication interfaces for kernels designed in HLS [23, 24], further reducing 

programmers’ burden to integrate and offload workload to FPGA accelerators.

However, not all programs are created equal for HLS. Data-parallel programs can be easily 

programmed following the sequential C semantics, which enables such applications to be 

quickly designed and iterated in the fast correctness verification cycle and QoR tuning cycle. 

In contrast, task-parallel programs are not supported by the native C semantics, and the 

productivity provided by current HLS tools is greatly limited for the following reasons:

• Poor programmability. Due to the lack of convenient application programming 

interfaces (API), programmers are often forced to write more code than 

necessary. For example, for an accelerator with PEs connected through a simple 

on-chip network, a network node needs to forward packets based on their content 

(header) and the availability of output ports. Without an API to read packets 

without consuming them (i.e., “peek”) from the ports, programmers have to 

manually and carefully create a buffer and maintain a small state machine to 

keep track of incoming packets. This not only elongates the development cycle, 

but also is error-prone.

• Restricted software simulation. As the key to fast correctness verification, 

software simulation is not always available to task-parallel programs. For 

example, Vivado HLS software simulation does not support Cannon’s algorithm 

[25] because its sequential execution of tasks cannot correctly simulate 

feedback loops in data paths, while Intel OpenCL simulator does not support 

more than 256 concurrent kernels [24]. Unavailability of software simulation 

forces programmers to resort to RTL simulation for correctness verification, 

significantly elongating the development cycle.

• Slow code generation. We found that current HLS compilers do not support 

hierarchical code generation for task-parallel programs. Instead, they treat all 

tasks as a monolithic design and process each instance of the same task as 

if they were different. For designs that instantiate the same task many times 

(e.g., in a systolic array), this leads to repetitive compilation on each task 

and unnecessarily slows down code generation. Programmers can manually 

synthesize tasks separately and instantiate them in RTL, but doing so requires 

debugging RTL code, which is time-consuming and error-prone. We think such 

processes should be automated.

Limited productivity support for task-parallel programs significantly elongates the 

development cycles and undermines the benefits brought by HLS. One may argue 
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that programmers should always go for data-parallel implementations when designing 

FPGA accelerators using HLS, but data-parallelism may be inherently limited, for 

example, in applications involving graphs. Moreover, researches show that even for data­

parallel applications like neural networks [3] and stencil computation [9], task-parallel 

implementations show better scalability and higher frequency than their data-parallel 

counterparts due to the localized communication pattern [26]. In fact, at least 6 papers 

[11, 27–31] among the 28 research papers published in the ACM FPGA 2020 conference 

use task-parallel implementation with HLS, and another 3 papers [32–34] use RTL 

implementation that would have required task-parallel implementation if written in HLS.

In this paper, we extend the HLS C++ language and present our framework, TAPA 

(task-parallel)1, as a solution to the aforementioned limitations of HLS productivity. Our 

contributions include:

• Convenient programming interfaces: We show that, with peeking and 

transactions added to the programming interfaces, TAPA can be used to program 

task-parallel kernels with 22% reduction in lines of code (LoC) on average. By 

unifying the interface used for the kernel and host, TAPA further reduces the 

LoC on the host side by 51% on average.

• Unconstrained software simulation: We demonstrate that our proposed 

simulator can correctly simulate task-parallel programs that existing software 

simulators fail to simulate. Moreover, the correctness verification cycle can be 

shortened by a factor of 3.2× on average.

• Hierarchical code generation: We show that by modularizing a task-parallel 

program and using a hierarchical approach, RTL code generation can be 

accelerated by a factor of 6.8× on our server with 32 hyper-threads.

• Fully automated open-source framework: TAPA is open-source at https://

github.com/UCLA-VAST/tapa/.

Table I summarizes the related work. Among all general HLS tools (Section VI-A) and 

streaming frameworks (Section VI-B): ① None of them supports peeking in their kernel 

APIs; only Intel HLS stream and Vivado HLS axis support transactions; only Merlin allows 

the accelerator kernel to be called from the host as if it is a C/C++ function. ② Vivado 

HLS, Merlin, and both streaming frameworks (ST-Accel [36] and Fleet [37]) execute tasks 

sequentially for simulation, which works on limited applications, while others launch one 

thread per task instance, which does not scale well. ③ All general HLS tools treat a task­

parallel program as a monolithic design and generate RTL code for each instance of task 

separately, except that Vivado HLS axis allows programmers to manually instantiate tasks 

using a configuration file when running logic synthesis and implementation. To the best of 

our knowledge, TAPA is the only work that provides convenient programming interfaces, 

unconstrained software simulation, and hierarchical code generation for general task-parallel 

programs on FPGAs using HLS.

1While a prior work TAPAS [35] and our work TAPA share similarity in name, our work focuses on statically mapping tasks to 
hardware, yet TAPAS specializes in dynamically scheduling tasks.
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II. Background

A. Task-Parallel Program

Task-level parallelism is a form of parallelization of computer programs across multiple 

processors. In contrast to data parallelism where the workload is partitioned on data and 

each processor executes the same program (e.g., OpenMP [41]), different processors in a 

task-parallel program often behave differently, while data are passed between processors. 

Examples of task-parallel programs include image processing pipelines [9–11], graph 

processing [42–45], and network switching [33]. Task-parallel programs are often described 

using dataflow models [46–50], where tasks are called processes. Processes communicate 

only through unidirectional channels. Data exchanged between channels are called tokens. 

In this paper, we borrow the terms channel and token, and focus on the problem of statically 

mapping tasks to hardware. That is, instances of tasks are synthesized to different areas in an 

FPGA accelerator. We plan to address dynamic scheduling [35, 39, 51] in our future work.

B. A Motivating Example

An on-chip ring network is a commonly used topology to provide all-to-all interconnection 

among many task-parallel processing elements (PE) in a single FPGA accelerator, which 

is particularly useful in graph processing [52–58] where each vertex may be connected to 

any other vertices. A ring network has the advantages of simplicity and high routability, but 

implementing a customized ring network in HLS faces several issues that make such designs 

verbose to write, hard to read, and error-prone. In this section, we use a simplified real-world 

design to illustrate the productivity issues for implementing such a ring network in HLS, 

which serves as a motivating example for our work.

Fig. 1 shows an example where PEs in an accelerator are interconnected via a ring network. 

In this example, network nodes form a cyclic ring, and each ring node is connected to a 

PE via a bidirectional link. Each PE can send packets to other PEs through its associated 

node, specifying its destination PE in the packet header. Each node forwards packets either 

to its next node or to its associated PE, based on the packet header. We assume packets 

are sent infrequently and channels between nodes are provisioned so that they will never 

be full. Furthermore, we would like to insert packets from PEs to the network ASAP so 

that PEs will not stall due to back pressure from the ring nodes. While such a ring node 

can be written using Vivado HLS (Listing 1), we found that the followings are missing or 

hard-to-use in the HLS tools and significantly degrade the productivity.

1. Peeking: Peeking is defined as reading a token from a channel without 

consuming it. Compared with the normal destructive read, peeking is non­

destructive because the token may be read many times. For example, in our ring 

network, when Node 1 receives incoming packets from both PE 1 (via pe_in) 

and Node 0 (via node_in), it will forward the packet from PE 1 to Node 2 (via 

node_out) to prevent PE 1 from being stalled due to back pressure. In the same 

clock cycle, the packet from Node 0 cannot be forwarded unless the destination 

of that packet is PE 1 (via pe_out), because we cannot write two tokens to the 

same output channel (node_out) in the same clock cycle. This requires us to 

conditionally read tokens based on the content of tokens. Without a peek API, 
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one has to manually maintain a buffer for the incoming values, as shown in Line 

7–15 of Listing 1. This not only increases the programming burden, but also 

makes the design prone to errors in state transitions of the buffer.

2. Transactions: A sequence of tokens may constitute a single logical 

communication transaction. Using the same ring network example, we consider 

the whole accelerator execution as a logical communication transaction, and let 

each PE control the termination of each RingNode, as shown in Line 11 of 

Listing 1. Without an eot API, one has to manually add a special bit to the data 

structure to indicate the end-of-transaction (Line 1–4 of Listing 1). Note that the 

Pkt struct may be used elsewhere, thus it may be infeasible to add the eot bit 

directly to the Pkt struct. Moreover, determining the end of transaction must be a 

peek operation; otherwise, the HLS compiler will be unable to schedule the exit 

condition in the first stage of pipeline, leading to II greater than 1. This further 

complicates the HLS implementation (Listing 1).

3. System integration: To offload computation kernel from the host CPU to 

PCIe-based FPGA accelerators, programmers need to write host-side code 

to interface the accelerator kernel with the host. FPGA vendors adopt the 

OpenCL standard to provide such a functionality. While the standard OpenCL 

host-kernel interface infrastructure relieves programmers from writing their 

own operating system drivers and low-level libraries, it is still inconvenient 

and hard-to-use. Programmers often have to write and debug tens of lines of 

code just to set up the host-kernel interface. This includes manually setting 

up environmental variables for simulation, creating, and maintaining OpenCL 

Context, CommandQueue, Program, Kernel, etc. data structures [59]. Task­

parallel accelerators often make the situation worse because the parallel tasks are 

often described as distinct OpenCL kernels [24], which significantly increases 

the programmers’ burden on managing multiple kernels in the host-kernel 

interface. In our experiments, more than 60 lines of host code are created just 

for the host-kernel integration, which constitute more than 20 percent of the 

whole source code. Yet, what we want is just a single function invocation of the 

synthesized FPGA bitstream given proper arguments.

4. Software simulation: C does not have explicit parallel semantics by itself. Vivado 

HLS uses the dataflow model and allows programmers to instantiate tasks by 

invoking each of them sequentially [23]. While this is very concise to write 

(Listing 2), it leads to incorrect simulation results because the communication 

between a ring node and its corresponding PE is bidirectional, yet sequential 

execution can only send tokens from nodes to PEs because of their invocation 

order. This problem was also pointed out in [60]. In order to run software 

simulation correctly, the programmer can change the source code to run tasks in 

multiple threads, but doing so requires the same piece of task instantiation code 

to be written twice for synthesis and simulation, reducing productivity. While 

there exist other tools (e.g. [24]) that can run tasks in parallel threads and do 

not have the same correctness problem, we will show in Section V-D that such 

simulators do not scale well when the number of task instances increases.
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5. RTL code generation: In our ring network example, the same ring node is 

instantiated many times. While state-of-the-art HLS compilers can recognize 

multiple instances of the same function and reuse HLS results for regular non­

task-parallel programs, task-parallel programs are always treated as a monolithic 

one. This means instances of the same task in a task-parallel program are treated 

as if they were different, possibly in order to explore different communication 

interfaces of each instance. This significantly elongates the code generation time 

when the number of instances is large (Section V-E). We can manually do 

hierarchical code generation, i.e., synthesize each task separately and connect the 

generated RTL code, but doing so forces us to debug RTL code and spend tens 

of minutes to verify the correctness for each code modification, thus defeats the 

purpose for adopting HLS.

In this paper, we present the TAPA framework and address these challenges by providing 

convenient programming interfaces, unconstrained software simulation, and hierarchical 

code generation.

III. TAPA Programming Model and Interfaces

A. Hierarchical Programming Model

TAPA uses a hierarchical programming model. Each task is either a leaf that does not 

instantiate any channels or tasks, or a collection of tasks and channels with which the tasks 

communicate. A task that instantiates a set of tasks and channels is called the parent task 
for that set. Correspondingly, the instantiated tasks are the children tasks of their parent, 

which may be parents of their own children. Each channel must be connected to exactly 

two tasks. One of the tasks must act as a producer and the other must act as a consumer. 
The producer streams tokens to the consumer via the channel in the first-in-first-out (FIFO) 

order. Each task is implemented as a C++ function, which can communicate with each 

other via the communication interface. A parent task instantiates channels and tasks using 

the instantiation interface, and waits until all its children tasks finish. One of the tasks is 

designated as the top-level task, which defines the communication interfaces external to the 

FPGA accelerator, i.e., the system integration interface.

B. Convenient Programming Interfaces

1. Communication Interface: TAPA provides separate communication APIs for the 

producer side and the consumer side, which use ostream and istream as the 

interfaces, respectively. The producer of a channel can test the fullness of the 

channel and append tokens to the channel (write) if the channel is not full. 

The consumer of a channel can test the emptiness of the channel and remove 

tokens from the channel (destructive read), or duplicate the head of token without 

removing it (non-destructive read, a.k.a., peek), if the channel is not empty. Read, 

peek, and write operations can be blocking or non-blocking.

A special token denoting end-of-transaction (EoT) is available to all channels. 

A process can “close” a channel by writing an EoT token to it, and a process 

can “open” a channel by reading an EoT token from it. A process can also 
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test if a channel is closed, which is a non-destructive read operation to the 

channel (eot). An EoT token does not contain any useful data. This is designed 

deliberately to make it possible to break from a pipelined loop when an EoT is 

present, for example, in Line 3 of Listing 3. Listing 3 shows an example of how 

the communication interfaces are used in TAPA, which implements the same 

functionality as Listing 1, but with 55% fewer lines due to the absence of the 

auxiliary struct for end-of-transaction token and the manually maintained input 

buffer that implements peek operations.

2. Instantiation Interface: A parent task can instantiate channels and tasks using the 

instantiation interface. Channels are instantiated using channel<type, capacity>. 

For example, channel<Pkt, 2> instantiates a channel with capacity 2, and data 

tokens transmitted using this channel have type Pkt. Tasks are instantiated using 

task::invoke, with the first argument being the task function and the rest of 

arguments being the arguments to the task instance. This is consistent with 

std::invoke in the C++ standard library. Listing 4 shows how channels and tasks 

are instantiated in TAPA.

3. System Integration Interface: TAPA uses a unified system integration interface to 

further reduce programmers’ burden. To offload a kernel to an FPGA accelerator, 

programmers only need to call the top-level task as a C++ function in the 

host code. Since TAPA can extract metadata information, e.g., argument type, 

from the kernel code, TAPA will automatically synthesize proper OpenCL 

host API calls and emit an implementation of the top-level task C++ function 

that can set up the runtime environment properly. As a user of TAPA, the 

programmer can use a single function invocation in the same source code to run 

software simulation, hardware simulation, and on-board execution, with the only 

difference of specifying proper kernel binaries.

IV. TAPA Framework Implementation

A. Software Simulation

State-of-the-Art Approach: There are two state-of-the-art approaches to run software 

simulation for task-parallel applications: the sequential approach and the multi-thread 

approach. A sequential simulator invokes tasks sequentially in the invocation order [23]. 

Sequential simulators are fast, but cannot correctly simulate the capacity of channels and 

applications with tasks communicating bidirectionally, as discussed in Section II-B. A 

multi-thread simulator invokes tasks in parallel by launching a thread for each task. This 

enables the capacity of channels and bidirectional communication to be simulated correctly. 

However, they may perform poorly due to the inefficient context switch handled by the 

operating system. The FLASH simulator [60, 61] proposed an alternative to the above, 

which uses HLS scheduling information to create an interleaving execution of all tasks. 

Note that although FLASH is also single-threaded, it is different from a sequential simulator 

because it interleaves tasks via source-to-source transformation while a sequential simulator 

does not. Compared with a sequential simulator, FLASH is on average 1.7× slower [61], 

due to additional scheduling information being taking into consideration for cycle-accurate 
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modeling. Besides, generating simulation executable becomes slower due to the need of the 

HLS scheduler output for cycle-accuracy, which is not needed for correctness verification.

In this section, we present an alternative approach to run software simulation on task-parallel 

applications. Given that the inefficiency of multi-thread execution is mainly caused by 

the preemptive nature of operating system threads, we propose an approach that uses 

collaborative coroutines [62, 63] instead of preemptive threads for each task. Note that 

fast and/or cycle-accurate debugging in general [64] is out of the scope of this paper; we 

focus on the correctness and scalability issues for task-parallel programs.

Coroutine-Based Approach: Routines in programming languages are the units of 

execution contexts, e.g., functions in C/C++ [65]. Coroutines [66] are routines that execute 

collaboratively; more specifically, coroutines can be explicitly suspended and resumed. A 

coroutine can invoke subroutines and suspend from and resume to any subroutine [63]. 

A context switch between coroutines takes only 26ns on modern CPUs [63], while a 

preemptive thread context switch takes 1.2~2.2μs [67], which is two orders of magnitude 

slower.

TAPA leverages coroutines to perform software simulation as follows. When a task 

is instantiated, a coroutine is launched but suspended immediately. Once all tasks are 

instantiated, the simulator starts to resume the suspended coroutines. A resumed task will 

be suspended again if any input channel is accessed when empty or any output channel is 

accessed when full, which means that no progress can be made from this task. A different 

task will then be selected and resumed by the simulator. Moreover, the coroutines can be 

distributed in a thread pool. The thread pool launches one thread per CPU core and can bind 

the thread to the corresponding core, which prevents the threads from preemption against 

each other. This improves simulation parallelism without introducing high context switch 

overhead as in the multi-thread simulators. We will show in Section V-D that the coroutine­

based simulator outperforms the existing simulators by 3.2× on average. TAPA software 

simulator is implemented as a C++ library, which can be compiled by any compatible C++ 

compiler.

B. RTL Code Generation

State-of-the-Art Approach: Current HLS tools treat the whole task-parallel program 

as a monolithic design, treat channels as global variables, and compile different instances 

of tasks as if they are completely unrelated. This can lead to a significant amount of 

repeated work. For example, the dataflow architecture generated by a stencil accelerator 

compiler, SODA [7, 9], is highly modularized, and has many functionally identical modules. 

However, both the Vivado HLS and Intel FPGA OpenCL backends generate RTL code 

for each module separately. When the design scales out to hundreds of modules, RTL 

code generation can easily run for hours, taking even longer time than logic synthesis and 

implementation. While we recognize that a programmer can manually generate RTL code 

for each task and glue them at RTL level, doing so defeats the purpose of using HLS for high 

productivity. We also recognize that fast RTL code generation in general is an interesting 
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problem, but we focus on the inefficiency exacerbated by task-parallel programs in this 

paper.

Modularized Approach: Thanks to the hierarchical programming model, TAPA can 

keep the program hierarchy, recognize different instances of the same task, and compile 

each task only once. As such, the total amount of time spent on RTL code generation is 

reduced. Moreover, modularized compilation makes it possible to compile tasks in parallel, 

further reducing RTL code generation time on multi-core machines. TAPA implements this 

by invoking the vendor tools in parallel for each task. On average, TAPA reduces HLS 

compilation time by 4.9× (Section V-E).

Fig. 2 shows how RTL code is generated by TAPA, which is composed of four steps. First, 

TAPA extracts the HLS code for each task and the metadata information of the whole 

design, including the communication topology among tasks, token types exchanged between 

tasks, and the capacity of each channel. Source-to-source transformation is applied in this 

step to insert HLS pragmas where necessary (e.g., to generate proper RTL interfaces). Then, 

the vendor HLS tool is used to generate RTL code and HLS report for each task. While 

TAPA uses libraries to implement kernel APIs extensively, e.g., for read, write, and the 

end-of-transaction bit, not all APIs, e.g., peeking, can be implemented as libraries, due to the 

lack of support from the HLS scheduler. To support peeking, TAPA adds a scalar argument 

to each istream, and connect this port to the output of first-word-fall-through FIFO when the 

RTL code is assembled in the next step.

Using the metadata extracted in the first step, TAPA assembles the per-task RTL code to 

create the complete kernel. In this step, for each parent task, TAPA instantiates the children 

tasks and channels, and generates a small state machine that controls start of the children 

tasks and termination of the parent task. Finally, TAPA packages the assembled RTL code to 

a format that the vendor implementation tool can recognize (xo file for Vitis).

V. Evaluation

We prototype TAPA on Xilinx devices using Vivado HLS as the backend; support for 

Intel devices will be added later. We compare the productivity of TAPA with two vendor 

tools that provide end-to-end high-level programming experience (including host-kernel 

communication): Xilinx Vitis 2019.2 suite and Intel FPGA SDK for OpenCL Pro Edition 

19.4. The experimental results are obtained on an Ubuntu 18.04 server with 2 Xeon Gold 

6244 processors.

A. Benchmarks

Table II summarizes the benchmarks used in this paper. All implementations (Vivado HLS, 

Intel OpenCL, and TAPA) of each benchmark are written in such a way that tasks in 

each implementation have one-to-one correspondence, corresponding loops are scheduled 

with the same initiation interval (II), and each task performs the same computation. This 

not only guarantees source codes to all tools are functionally equivalent, but also makes 

all tools generate consistent quality of results (QoR), which enables fair comparison of 

tool run time. Note that we aim to compare the productivity of the HLS tools, not QoR 
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(although we want to make sure there is no QoR degradation). In particular, we were unable 

to guarantee that the generated RTL codes have exactly the same cycle-accurate behavior 

without having access to the HLS compiler’s scheduling algorithm. For example, the bucket 

sort network implemented in TAPA has a total latency of 3 cycles while the Vivado HLS 

implementation has a total latency of 6. This is inevitable because, using Vivado HLS, the 

manually maintained buffer forces an additional latency of 1 cycle at each network stage. 

The shallower pipeline makes TAPA use 40% fewer LUTs and 39% fewer FFs for network. 

For other benchmarks, TAPA uses 0.4% fewer LUTs and 1% fewer FFs on average. This 

shows that the additional APIs provided by TAPA does not add resource overhead.

B. Lines of Kernel Code

TAPA simplifies the kernel code in two aspects. First, the TAPA communication interfaces 

simplify the code with the built-in support for peeking and transactions. This not only 

simplifies the body of each task definition, but also removes the necessity for many struct 

definitions. Second, the TAPA instantiation interfaces simplify the code by allowing tasks to 

be launched concisely. Fig. 3 shows the lines of kernel code comparison of each benchmark. 

On average, TAPA reduces the lines of kernel code by 22%. Note that only synthesizable 

kernel code is counted; code added for multi-thread software simulation is not counted for 

Vivado HLS.

C. Lines of Host Code

The host code used in the benchmarks contains a minimal test bench to verify the 

correctness of the kernel code. TAPA system-integration API automatically interfaces with 

the OpenCL host APIs and relieves the programmer from writing repetitive code just to 

connect the kernel to a host program. Fig. 4 shows the lines of host code comparison. On 

average, the length of host code is reduced by 51%.

D. Software Simulation Time

Fig. 5 shows four simulators, that is, the sequential Vivado HLS simulator, the multi-thread 

Vivado HLS simulator, the multi-thread Intel OpenCL simulator, and the coroutine-based 

TAPA simulator. Among the three simulators, the sequential simulator fails to correctly 

simulate benchmarks that require feedback data paths (cannon and page_rank). Due to the 

larger memory footprint required for storing the tokens transmitted between tasks and lack 

of parallelism, the sequential simulator is outperformed by the coroutine-based simulator in 

all but one of the benchmarks (network). The two multi-thread simulators correctly simulate 

all benchmarks, except that Intel OpenCL cannot handle gaussian because its large number 

of task instances (564) exceeds the maximum allowed by the simulator (256). However, 

the multi-thread simulators perform poorly on benchmarks that are communication-intensive 

(e.g., network) or have more tasks than the number of available threads (e.g., gaussian). 

Although the coroutine-based TAPA simulator is not always the fastest simulator for all 

benchmarks, the worst-case slowdown is only 6%, which is not significant in comparison 

with the multi-thread simulator, which can be 11× slower. On average, TAPA is 3.2× faster 

than other simulators.
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E. RTL Code Generation Time

Fig. 6 shows the RTL code generation time comparison. Thanks to the hierarchical 

programming model and modularized code generator, TAPA shortens the HLS compilation 

time by 6.8× on average. This is because ① TAPA runs HLS for each task only once even 

if it is instantiated many times, while Vivado HLS and Intel OpenCL run HLS for each task 

instance; ② TAPA runs HLS in parallel on multi-core machines.

VI. Related Work

Table I on Page 2 shows a brief summary of the related HLS tools. Section VI-A presents 

more details about these tools. Two domain-specific streaming frameworks are discussed 

in Section VI-B. SystemC and pthread are two well-known alternative API paradigms that 

support task-parallel programs. We will discuss and compare them with TAPA in Section 

VI-C.

A. HLS Support for Task-Parallel Programs

Intel HLS—Intel HLS supports two different inter-task communication interfaces: pipe and 

stream. pipe implements a simple FIFO interface with data, valid, and ready signals, while 

stream implements an Avalon-ST interface that supports transactions. Tasks are instantiated 

using launch and collect.

Intel FPGA OpenCL—Intel FPGA OpenCL supports the simple FIFO interface via two 

sets of APIs, i.e., standard OpenCL pipe and Intel-specific channel. Tasks are instantiated 

by defining OpenCL__kernels, which forces instances of the same task to be synthesized 

separately as different OpenCL kernels.

Vivado (Vitis) HLS—Vivado (Vitis) HLS provides two different streaming interfaces: 

ap_fifo and axis. ap_fifo generates the simple FIFO interface. Tasks are instantiated by 

invoking the corresponding functions in a dataflow region (Listing 2). axis generates 

AXI-Stream interface with transaction support. It requires the programmers to instantiate 

channels and tasks in a separate configuration file when running logic synthesis and 

implementation. This allows different instances of the same task to be synthesized only 

once, but takes longer time to learn and implement compared with ap_fifo.

Xilinx OpenCL—Xilinx OpenCL supports standard OpenCL pipe, which generates AXI­

Stream interfaces similar to Vivado HLS axis, but pipe does not provide APIs to support 

transactions.

LegUp—LegUp supports the simple FIFO interface via FIFO. Tasks are instantiated using 

pthread API (Section VI-C).

Merlin—Merlin [40] allows programmers to call the FPGA kernel as a C/C++ function and 

provides OpenMP-like simple pragmas with automated design space exploration based on 

machine learning. To support task-parallel programs, Merlin leverages its backend vendor 

HLS tools’ programming interfaces.
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Their limitations are summarized in Table I on Page 2. Note that a common limitation of 

HLS tools (including TAPA) is that they can not guarantee the software description produces 

deterministic output sequences for task-parallel programs. For instance, the emptiness test 

to an input channel is prone to breaking determinism, yet it is available to all HLS tools 

for performance and expressiveness reasons: merging two input channels round-robin using 

non-blocking reads would produce an output sequence determined by the relative arrival 

order of the input tokens. An implication of non-determinism is we cannot assert that 

a program is deadlock-free just because its simulation succeeds. This is different from 

deterministic programs, e.g., Kahn process networks [47], whose successful simulation 

generally implies deadlock-free on-board execution. For applications that can be efficiently 

written without breaking determinism, e.g., streaming applications, there are dedicated 

frameworks developed specifically for them, which are discussed in the next section.

B. Streaming Framework

ST-Accel—ST-Accel [36] is a high-level programming platform that features highly 

efficient host-kernel communication interface exposed as a virtual file system (VFS). It 

uses Vivado HLS as its backend for hardware generation.

Fleet—Fleet [37] is a massively parallel streaming framework for FPGAs that features 

highly efficient memory interfaces for massive instances of parallel processing elements. 

Programmers write Fleet programs in a domain-specific RTL language based on Chisel [70].

TAPA aims to support more general task-parallel applications beyond streaming.

C. Alternative APIs

SystemC—SystemC is a set of C++ classes and macros that provide detailed hardware 

modeling and event-driven simulation. It supports both cycle-accurate and untimed 

simulation and many simulator implementations are available [71, 72]. The official open­

source SystemC simulator implementation uses coroutines without thread pooling. Some 

HLS tools support a subset of untimed SystemC as the input [23]. SystemC supports 

task-parallel programs natively via the SC_MODULE constructs and tlm_fifo interfaces, 

which supports peeking. While SystemC supports peeking FIFOs and coroutine-based 

simulation for task-parallel programs, it is limited by its special and verbose coding style. 

Listing 5 shows the example discussed in Section II-B written in SystemC. Compared 

with other C-like HLS languages, SystemC is more verbose and less productive due to its 

special language constructs: for TAPA code snippets shown in Listing 3 and Listing 4, the 

equivalent SystemC kernel code would be 86% longer. On the host side, SystemC generates 

the main function in sc_main by itself for simulation, and programmers need to spend 

time incorporating the SystemC test bench with other parts of their program. This is not 

a problem if the whole system is defined by the kernel in SystemC, e.g., as in embedded 

systems, but in data center applications where the FPGA accelerator is only part of the 

system, this introduces non-trivial complication.

Pthread—Pthread API is a set of widely used standard APIs that can be used to implement 

task-parallel programs using threads. Pthread requires programmers to explicitly create and 
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join threads, and each argument needs to be manually packed and passed. Listing 6 shows an 

example using the accelerator discussed in Section II-B. Compared with the invoke API used 

by TAPA, the pthread APIs require more effort to program: for TAPA code snippets shown 

in Listing 3 and Listing 4, equivalent pthread-based code would be 2.4× long.

In summary, while the API alternatives do exist in their own domains, they are more verbose 

and thus less productive compared with TAPA for task-parallel FPGA acceleration.

VII. Conclusion and Future Work

In this paper, we present TAPA as an HLS C++ language extension to enhance the 

programming productivity of task-parallel programs on FPGAs. TAPA has multiple 

advantages over state-of-the-art HLS tools: on average, ① its enhanced programming 

interface helps to reduce the lines of kernel code by 22%, ② its unified system integration 

interface reduces the lines of host code by 51%, ③ its coroutine-based software simulator 

shortens the correctness verification development cycle by 3.2×, ④ its modularized 

code generation approach shortens the QoR tuning development cycle by 6.8×. As a 

fully automated and open-source framework, TAPA aims to provide highly productive 

development experience for task-parallel programs using HLS. For future work, we plan 

to extend our work to support dynamic tasks on FPGAs.
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Fig. 1: 
An accelerator with 4 PEs connected via a ring network.
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Fig. 2: 
TAPA code generation. The host-kernel interface code is generated together with the kernel 

RTL code using metadata of the top-level task.
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Fig. 3: 
LoC comparison for kernel code. Lower is better.
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Fig. 4: 
LoC comparison for host code. Lower is better.
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Fig. 5: 
Simulation time in log scale. Lower is better. Sequential simulator fails to simulate cannon 

and pagerank correctly. Intel OpenCL multi-thread simulator cannot simulate gaussian due 

to its large number of task instances.
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Fig. 6: 
RTL code generation time in log scale. Lower is better.
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TABLE I:

Summary of related work.

Related Work
Programmability

Software Simulation RTL Code Generation
Peeking Transaction Host Iface.

Fleet [37] No No N/A Sequential N/A

Intel HLS (pipe) No No N/A Multi-thread Monolithic

Intel HLS (stream) No Yes N/A Multi-thread Monolithic

Intel OpenCL No No OpenCL Multi-thread Monolithic

LegUp [38, 39] No No N/A Multi-thread Monolithic

Merlin [40] No No C++ Sequential Monolithic

ST-Accel [36] No No VFS Sequential Hierarchical

Vivado HLS (ap_fifo) No No OpenCL Sequential Monolithic

Vivado HLS (axis) No Yes OpenCL Multi-thread Manual

Xilinx OpenCL No No OpenCL Multi-thread Monolithic

TAPA Yes Yes C++ Coroutine Hierarchical
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TABLE II:

Benchmarks used in this paper. Each task may be instantiated multiple times, so task instance count (#Inst.) 

and channel count (#Chan.) are greater than task count (#Task).

Benchmark Application #Task #Inst. #Chan.

cannon Cannon’s algorithm [25] 5 91 344

cnn VGG [68] convolutional network [3] 14 209 366

gaussian Gaussian stencil filter [9] 15 564 1602

gcn Graph convolutional network [52] 5 12 25

gemm General matrix multiplication [3] 14 207 364

network Bucket sort w/Omega network [69] 3 14 32

page_rank PageRank citation ranking [54] 4 18 89
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Listing 1:

Ring network node written in Vivado HLS.
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Listing 2:

Accelerator task instantiation in Vivado HLS.
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Listing 3:

Ring network node written in TAPA.
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Listing 4:

Accelerator task instantiation in TAPA.
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Listing 5:

SystemC TLM API example.
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Listing 6:

Pthread API example.
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