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For the segmentation task of stroke lesions, using the attention U-Net model based on the self-attention mechanism can suppress
irrelevant regions in an input image while highlighting salient features useful for specific tasks. However, when the lesion is small
and the lesion contour is blurred, attention U-Net may generate wrong attention coefficient maps, leading to incorrect seg-
mentation results. To cope with this issue, we propose a dual-path attention compensation U-Net (DPAC-UNet) network, which
consists of a primary network and auxiliary path network. Both networks are attention U-Net models and identical in structure.
The primary path network is the core network that performs accurate lesion segmentation and outputting of the final seg-
mentation result. The auxiliary path network generates auxiliary attention compensation coefficients and sends them to the
primary path network to compensate for and correct possible attention coefficient errors. To realize the compensation mechanism
of DPAC-UNet, we propose a weighted binary cross-entropy Tversky (WBCE-Tversky) loss to train the primary path network to
achieve accurate segmentation and propose another compound loss function called tolerance loss to train the auxiliary path
network to generate auxiliary compensation attention coefficient maps with expanded coverage area to perform compensate
operations. We conducted segmentation experiments using the 239 MRI scans of the anatomical tracings of lesions after stroke
(ATLAS) dataset to evaluate the performance and effectiveness of our method. The experimental results show that the DSC score
of the proposed DPAC-UNet network is 6% higher than the single-path attention U-Net. It is also higher than the existing
segmentation methods of the related literature. Therefore, our method demonstrates powerful abilities in the application of stroke
lesion segmentation.

1. Introduction

Recent global statistics on the incidence of stroke cases
demonstrate that there are up to 10.3 million new cases
annually [1]. Stroke has become one of the top three lethal
diseases, besides chronic diseases. When a stroke occurs,
accurate diagnosis of the severity of the stroke and timely
thrombolytic therapy can effectively improve blood
supply in the ischemic area and significantly reduce the
risk of disability or even death. Therefore, it is clinically
significant to quickly and accurately locate and segment
the stroke lesions [2]. Since manual segmentation relies
on the doctor’s professional experience and medical
skills, individual subjectivity can reduce segmentation
accuracy. Furthermore, manual segmentation of the
stroke lesion is time-consuming. It may take a skilled

tracer several hours to complete accurate labeling and
rechecking of a single large complex lesion on magnetic
resonance imaging (MRI) [3].

This situation has changed after the advent of con-
volutional neural network (CNN) [4] and its continuously
evolving network structures, such as fully convolutional
network (FCN) [5] and SegNet [6], which have achieved
success in the field of image segmentation, especially medical
image segmentation [7]. However, CNN-based segmenta-
tion networks require a large amount of labeled medical data
for training, which is limited by the high cost of acquiring
and accurate labeling [8]. The multilevel U-shaped network
(U-Net) [9] based on CNN, consisting of the contraction and
expansion paths, mitigates the problem of requiring huge
amounts of labeled data. The U-Net network structure and
its improved network structure, such as the attention U-Net
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[10], U-Net++ [11], and R2U-Net [12], have been applied
successfully in medical segmentation tasks, such as skin
cancer [13], brain tumor [14], colorectal tumor [15], liver
[16], colon histology [17], kidney [18], and vascular borders
[19]. The U-Net network has thousands of feature channels,
especially the standard U-Net model with a five-level
structure with enormous parameters to be trained. During
the training process, the contraction path (encoder) and
expansion path (decoder) need to repeatedly extract deep-
scale features. The deep-scale features of standard U-Net are
considered abstract and low-resolution features, which in-
crease the training difficulty and make the training unstable
and inadequate.

To reduce the training difficulty caused by repeated
extraction of deep-scale features and improve segmentation
accuracy, many researchers employed a two-step method to
locate the lesion and segment the target area [20, 21].
However, these methods introduce additional positioning
operations and cannot achieve end-to-end training.
Schlemper et al. introduced a self-attention mechanism and
proposed an attention U-Net with an attention gate (AG)
[10] to avoid additional operations. The self-attention
mechanism reduces the dependence on external information
obtained from additional steps by utilizing the correlation
coefficient of feature signals from different scales. This
mechanism captures the internal correlation of features and
focuses attention on the target area. The attention U-Net
uses AG to generate a 2D attention coefficient map to
suppress irrelevant regions in an input image while high-
lighting salient features useful for specific tasks. The AG
module can be integrated into the standard U-Net model for
end-to-end learning without additional pretraining steps.
Compared with the standard U-Net training parameters, the
number of training parameters slightly increased with ad-
ditional computation of AG operations. The use of the built-
in self-attention module eliminates the use of additional
target location operations. It achieves the goal of reducing
training difficulty, improving training efficiency, and im-
proving model segmentation performance.

However, the self-attention mechanism based on cor-
relation operation has some deficiencies. The attention
coeflicient « for constraining the area of interest is generated
by the current-scale feature signal x and the rougher-scale
feature signal g derived from x, leading to a potential risk of
the segmentation network using the self-attention mecha-
nism. It implies that a small lesion with a nondistinct lesion
feature may cause the current level feature signal x to learn
the lesion feature inadequately. Consequently, the deviation
of the attention area from the lesion area due to the wrong or
insufficient attention coefficient learning leads to incorrect
segmentation results.

To solve the problem of the attention area deviating from
the lesion area, we proposed a dual-path attention com-
pensation U-Net (DPAC-UNet) network, which is com-
posed of the primary path network (primary network) and
auxiliary path network (auxiliary network). Both networks
are all attention U-Net segmentation models based on the
self-attention mechanism with an identical structure. The
primary network is the core part of DPAC-UNet, which
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performs lesion segmentation and outputs the final seg-
mentation result. The auxiliary network is used to generate
an auxiliary attention compensation coefficient map sent to
the primary network to compensate for possible attention
coefficient learning errors. The auxiliary network realizes its
compensation ability by focusing on a larger area than the
actual lesion area, which increases the coverage of the at-
tention coefficient map generated by the auxiliary network.
The attention coeflicient map with a larger attention area is
defined as a tolerant attention coefficient map, which is used
as an auxiliary compensation attention coeflicient to com-
pensate for possible errors in the primary network attention
coefficient map. To study our lesion segmentation network,
we use the ATLAS dataset [3], consisting of 239 T1-weighted
subacute and chromic stroke MRI scans released in 2018.

The main contributions of this article are summarized as
follows:

(1) We proposed a DPAC-UNet that uses the auxiliary
network to generate an attention coeflicient map
with a larger area to compensate for the possible
defect of the primary network’s attention coefficient
map.

(2) We proposed the WBCE-Tversky loss and tolerance
loss to train the primary and auxiliary networks of
the DPAC-UNet to realize their effects on the entire
network, respectively, and explore the optimal
hyperparameter configurations of the two proposed
loss functions.

The remainder of this work is organized as follows: In
Section 2.1, we describe the network structure of the DPAC-
UNet and how to use the auxiliary network to compensate
for attention in the primary network. Section 2.2 proposes
two compound loss functions, the WBCE-Tversky loss and
the tolerance loss. In this section, we also conducted ex-
periments to discuss the effect of different hyperparameter
values of the loss functions on the performance of the
segmentation task. Finally, the steps to select the optimal
hyperparameter configuration of the two proposed loss
functions are listed. In Section 3, we train the DPAC-UNet
by the WBCE-Tversky and the tolerance loss functions with
the optimal hyperparameter configurations. In this section, a
visualization example is also presented to demonstrate the
effectiveness of the DPAC-UNet network further. We also
discussed the time consumption of the primary and auxiliary
networks of the DPAC-UNet, and we also tried to execute
the auxiliary network’s compensation mechanism for other
segmentation models with self-attention mechanisms.

2. Materials and Methods

2.1. DPAC-UNet. The attention U-Net introduces several
attention gates (AG) to generate attention coefficient maps
that suppress irrelevant regions in an input image while
highlighting salient features useful to improve segmentation
performance without introducing additional positioning
operations. However, it sometimes makes mistakes. A small
lesion with indistinct lesion features is difficult to distinguish
from the surrounding healthy tissues, leading to the current



Computational Intelligence and Neuroscience

scale feature signal x of a certain layer not learning the lesion
feature well. As a result, the attention coefficient generated
using x and its derived rougher feature g will deviate from
the lesion area. Therefore, the wrong attention coefficient
results in the AG outputting the wrong feature signal, which
affects the segmentation results. Thus, if the attention U-Net
finds the correct lesion in the AG module, it will emphasize
the relevant area and suppress the unrelated area to improve
the segmentation performance. Conversely, if the lesion
location is not found in the AG or is wrong, it will result in
diametrically opposite effects and degrade the segmentation
performance. To cope with the previously mentioned issues,
using the attention U-Net as the basic segmentation model,
we propose the DPAC-UNet network.

2.1.1. Overview of the Structure. The schematic of DPAC-
UNet is presented in Figure 1. We used two identical at-
tention U-Net models as the primary and auxiliary network
segmentation models, which correspond to the upper and
lower half of Figure 1, respectively. The WBCE-Tversky loss
function trains the primary network for accurate segmen-
tation. The auxiliary network is trained by the tolerance loss
to generate a tolerant auxiliary compensation attention
coefficient that compensates for the defect of the attention
coefficient map of the primary network. The details of the
two loss functions are described in Section 2.2. As presented
in Figure 1, the auxiliary network compensates for the
auxiliary compensation attention coefficient to the primary
network through the vertical dark red arrow line from the
AG marked (II) to the AG marked (I), in order to perform
the compensation operation. We just selected the second-
level AG of the primary and auxiliary networks for additive
compensation operation. This is because the resolution of
the attention coefficient maps generated by the two bottom
AGs (13 x 11 and 26 x 22) is too low. The difference between
the attention maps of the two networks on this resolution
scale is larger due to the difference of one pixel. When the
level is deeper, the receptive field affected by a single pixel is
very large. Consequently, the compensation operation at this
scale by the auxiliary network has a significant impact on the
primary network, and the compensating operation generates
a significant attention fluctuation. Furthermore, the first-
level AG, which is close to the uppermost layer’s output, does
not perform auxiliary attention compensation operation
because the feature map here is too close to the output and
affects the segmentation result. In summary, we only se-
lected the second-level AG to implement the compensation
operation in order to effectively compensate for the defective
attention coefficient map of the primary network and ensure
that it does not directly affect the accuracy of lesion seg-
mentation of the primary network.

Figure 2 presents the AG schematic of the primary and
auxiliary networks at the second level. The AG of the first,
third, and fourth levels are shown in Figure 1, which are not
involved in auxiliary attention coefficient compensation
operation and are identical in structure to the AG in the
literature [10]. The AG marked as (II) in the lower half of
Figure 1 is the second-level AG in the auxiliary network’s

attention U-Net, and its detailed structure is shown in Figure
2(a). In Figure 2(a), ® and @ are the input of the auxiliary
network AG, @ is the output of the current level for skip
connection (SC), where [ is the level number of current AG
(in this case I = 2), and feature signals xf and gf correspond
to the inputs labeled @ and @. The feature signals g} € R
and x! € RFx are sent to the AG block to generate the at-
tention coefficient &/ using the additive attention generation
operation in order to determine the area to focus, where i is
the pixel number,F* is the number of feature channels of
input feature signal x' at the current level, andF9 is the
number of feature channels of input feature signal g' at the
rougher level. When the additive attention coefficient map o
is generated using x! and g/, the feature signal x! is mul-
tiplied by o/ and used as the output of the AG gate and sent
to the decoding path through the SC at the current level. The
additive attention coefficient o marked as @ is the auxiliary
compensation attention coefficient map and sent to the AG
marked as (I) at the same level and in the same position of
the primary network in the upper half of Figure 1. The
equations for generating the attention coefficient of the
auxiliary network are as follows:

oy =W (o,(Wixl + Whgl+b,)) +b,, (1)
& = 0 (de (%3 913 Oue)): 2)
(af),, = resample(a;), (3)
d=xt-(a),, (4)

As presented in Figure 2(a), considering the inconsistent
spatial resolution and feature channel dimensions of feature
g: and x/, we also need to use the upsampling operation to
change the spatial resolution of the signal g' to make it
consistent with x/. Moreover, we need to use the linear
transformation W, € RFoFin and W € RF=*Fin to make the
number of feature channels of these two signals the same,
where b, € RFm and b, € R denote the biases of the two
linear transformations. In (1), o, is the ReLU activation
function, and the output of this activation function is lin-
early transformed by W € RPFin that forms an attention
coefficient matrix with only one feature channel. In (2), the
sigmoid activation function o, converts the attention co-
efficient matrix into a gridded attention coefficient map o’ to
act on x.. Resample !, and then, multiply the resampled
result by x! to generate the AG output feature signal X..
Figure 2(b) presents the block diagram of the AG marked as
(I) in the upper half of Figure 1, where the auxiliary com-
pensation attention coefficient map compensates for the
primary network. The structure and equations of the signal
operation process are almost consistent with the auxiliary
network, as presented in Figure 2(a). The difference is that
when generating the final additive fused attention coefficient
map, the auxiliary compensation attention coefficient map
generated by the auxiliary network AG is marked as ®, and
perform additive fusion together with the original attention
coefficient map generated by the primary network AG
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FIGURE 2: (a) Schematic of the AG structure of the auxiliary network, (b) schematic of the AG structure of the primary network, and (c) the
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definition of various operation symbols and dimensional changes of input and output feature signals.
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generated by inputs @ and @. According to (3) and (4), the
output feature signal @ of the primary network AG is
generated. Figure 2(c) presents the definition of various
operation symbols and dimension changes of input and
output feature signals in Figures 2(a) and 2(b).

2.1.2. Compensation Mechanism of the Auxiliary Network.
The traditional single-path self-attention model generates a
spatial attention coefficient map by the AG to cover the
lesion area of features to pay more attention to the lesion
area to improve the segmentation performance. Our pro-
posed method builds an auxiliary network to generate an
auxiliary attention coefficient map with a larger coverage
area to compensate the segmentation network (primary
network) to improve its hit rate of complete coverage of the
lesion by spatial attention coeflicient map. It should be noted
that the attention compensation map will not deviate from
the original attention area of the primary network but will be
constrained to increase the attention area around it. This
compensation mechanism is especially effective when the
lesion feature is indistinct, the lesion’s outline is unclear, or
the segmentation model cannot generate the correct region
of interest.

The qualitative analysis and comparison of using the
primary network individually or combined with an auxiliary
network are stated as follows. When DPAC-UNet uses the
auxiliary network to compensate for the primary network,
there are three situations:

Situation 1. (1) Use the primary network individually:
when the focus area of the attention coefficient map of
the single-path network is partially correct (Figure 3(a),
®), which will lead to reduced segmentation perfor-
mance. (2) Combined with an auxiliary network: after
the auxiliary network compensates the primary net-
work’s attention coefficient map with a larger focus area
through additive compensation, the compensated at-
tention coefficient map may be correct (Figure 3(a), @)
or remain unchanged (Figure 3(a), ®), which will
eventually improve the segmentation performance or
maintain the segmentation performance.

Situation 2. (1) Use the primary network individually:
when the focus area of the attention coefficient of the
primary network is completely correct, which will
generate correct segmentation results (Figure 3(b), ®).
(2) Combined with an auxiliary network: although the
auxiliary network compensates it for a larger attention
coefficient map, after the addition compensation op-
eration, the value of the original correct focus area
becomes larger, and the values of other areas are still
smaller than the value of the correct area (Figure 3(b),
®). Therefore, the primary network of DPAC-UNet
can still pay higher attention value in the correct area
and keep the segmentation performance unchanged.

Situation 3. (1) Use the primary network individually:
when the focus area of the primary network attention
coefficient is completely wrong (Figure 3(c), @), which
will lead to reduced segmentation performance. (2)

Combined with an auxiliary network: the larger aux-
iliary attention coefficient compensation map gener-
ated by the auxiliary network covers a larger area, and
the compensated attention coefficient map may be still
wrong (Figure 3(c), @), or correct partially
(Figure 3(c), ®), or correct completely (Figure 3(c),
@). At this time, correspondingly, the segmentation
performance will remain unchanged, or improve to
some extent, or improve significantly.

Therefore, by combining the previously mentioned three
situations, the overall average segmentation performance of
the whole dataset will be improved. It can also be seen from
Figure 3 that the attention coefficient map generated by the
auxiliary network does not deviate from the attention co-
efficient map area generated by the primary network.

2.2. Loss Functions of DPAC-UNet. We proposed two dif-
ferent compound loss functions to train the primary and
auxiliary networks. First, we proposed the WBCE-Tversky
loss for the primary network to generate an attention co-
efficient map focused on the target area and an accurate
segmentation result. Second, we proposed the tolerance loss
for the auxiliary network to generate an auxiliary com-
pensation attention coefficient map with a larger coverage
area to compensate for the primary network. It is called a
tolerance loss because it can generate an attention coefficient
map that covers a larger area and does not deviate from the
lesion area, which means a higher fault tolerance for at-
tention errors.

2.2.1. WBCE-Tversky Loss. The Tversky loss [22], which was
proposed to address data imbalance in medical image
segmentation, is introduced as a component of our WBCE-
Tversky. The Tversky loss is as follows:

ZiN:1 Pii- gii
221 Pli'91i+0‘25\:]1 Pli'goi"'/jzgl Doi - gyi
(5)

where p, ; denotes the probability that a voxel is a lesion and
Do, denotes the opposite, and g, ; denotes the probability of
whether a voxel is a lesion and g,,; denotes the opposite. The
Tversky loss achieves a trade-off between false positives (FP)
and false negatives (FN) by configuring the value of its
hyperparameter 3 and &, where a + § = 1. A higher f value
implies that the trained model’s recall is given greater weight
than the precision, and the network pays more attention to
FN. Often, the volume of the lesion is significantly smaller
than that of healthy tissue. For example, in the 239 MRI
scans of the ATLAS dataset, the voxel number ratio of the
lesion to the background is about 3:1000. The high ratio of
the nonlesion to lesion makes the segmentation network
prone to focusing on the nonlesion area, therefore, pre-
dicting the lesions as nonlesions and increasing FN in the
predicted results. To solve this problem, we increased the
value of the hyperparameter 8 of Tversky loss. Larger 3 gives
greater weight to recall than precision by placing more
emphasis on FN. We assume that using higher 8 in our

Tloss (0(,/_)7) =1-




6 Computational Intelligence and Neuroscience
Primary
Network (@) (@) @)
Individually
O] ® O)
Combined
with
Aucxiliary © © © ® < ©
Network ® o) ® ® ® ®
(@) (b) (©
[ ] Reallesion

Attention coefficient map of primary network

Attention coefficient compensation map of auxiliary network

FIGURE 3: Qualitative analysis of compensation mechanism of the auxiliary network.

generalized loss function in training will lead to higher
generalization and improved performance for the imbal-
anced dataset. So, we use the Tversky loss with higher f as a
part of the WBCE-Tversky loss for training the primary
network of DPAC-UNet. Meanwhile, in the tolerance loss,
we also need to use a Tversky loss function to constrain the
growth of the attention coefficient map to ensure that the
larger and more tolerant focus area will not deviate from the
lesion area. To compare the segmentation performance of
the Tversky loss with the different hyperparameter values of
p and select the appropriate hyperparameter  for the
WBCE-Tversky loss and tolerance loss, we used the Tversky
loss for the training the basic segmentation model, attention
U-Net. The hyperparameter  of the Tversky loss ranges
from 0.5 to 0.95, using 0.5 as the value interval. We con-
ducted an experiment using the sixfold cross-validation,
which is often used to train a model in which hyper-
parameters need to be optimized. We split the 239 stroke
MRI scans into training, validation, and test sets by sixfold
cross-validation according to Figure 4.

First, in each fold, we divided the data into training and
test sets using a ratio of about 5:1 (199:40), and we ensured
that all MRI scans of all test sets are not repeated. Second, we
further split the training set in each fold into the inner
training and validation sets using a ratio of about 4:1 (160:
39). The validation set is used to select the best-performing
model trained by the training set. Moreover, we also ensured
that the training, validation, and test sets of each fold have
the same lesion volume distribution for the accuracy of the
experiment results. The lesion size distribution of fold 1 is
presented in Figure 5.

The experimental configuration and results of training
the attention U-Net using Tversky are presented in Table 1.
We used 10 different 8 values to perform sixfold cross-
validation and computed the average metric scores of all
test sets’ results. We used the dice similarity coefficient
(DSC), F2 score (F2), precision (PRE), and recall (RE) as
the metrics for the model evaluation. DSC is a widely used
metric for evaluating the performance of the models; F2
score is often used to evaluate the performance of the

models for imbalanced data; PRE quantifies the number of
positive class predictions that belong to the positive class;
RE quantifies the number of positive class predictions made
out of all positive examples in the dataset. The experimental
results of training the attention U-Net with different
hyperparameter 8 values for the Tversky loss are presented
in Table 1.

As presented in Table 1, the maximum RE value is
obtained when f takes a large value of 0.95, and the max-
imum PRE value is obtained when the minimum value of
0.05 is taken. DSC and F2 scores reached the maximum
when 3 = 0.80. Simultaneously, a trade-off between PRE and
RE has been made, indicating that, for the imbalanced
ATLAS dataset, training a model using the Tversky loss with
hyperparameter 8 = 0.80 improves the segmentation accu-
racy. We need a loss function that can train the primary
network of the DPAC-UNet to achieve an accurate seg-
mentation. To improve the segmentation performance, we
can handle the imbalanced dataset by selecting the hyper-
parameter f3 value of the Tversky loss to train the basic
segmentation model in order to reduce the tendency of the
lesion to be classified as nonlesion. As presented in Table 1,
the use of the Tversky loss with hyperparameter 8 = 0.80 to
train the attention U-Net on the ATLAS dataset achieves the
highest segmentation performance. However, as presented
in (5), if the denominator of the Tversky loss is a small value,
it causes instability in backpropagation and derivation. To
solve this problem, we introduced the WBCE loss [23] as
another part of the WBCE-Tversky loss. On the one hand, it
avoids the problems of backpropagation and gradient cal-
culation instability caused by the Tversky loss for small
denominators. On the other hand, using the WBCE loss and
giving greater weight to the minority class in the equation
adapts to the imbalance of dataset and further improves the
overall segmentation performance. The WBCE loss function
has differentiable properties, which simplifies the optimi-
zation process. The equation of the proposed WBCE-
Tversky loss is presented in (8). The compound loss function
is composed of the Tversky loss (5 = 0.80) and WBCE loss,
and their respective equations are presented as
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N
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WBCE — Tversky = WBCE, + Tjos (8= 0.8).  (8)

The WBCE loss adds weight w to the standard BCE loss
to give the pixels more importance, and a higher training
weight when the area of the lesion is small, thereby im-
proving the segmentation performance for unbalanced
datasets. As presented in (6), the main part of the WBCE loss
is the same as the BCE loss [23]. The only difference is that
we modified the calculation method of the weight w as
presented in (7) and took the reciprocal of the proportion of
lesion pixels to all pixels as the weight w, where N denotes
the number of pixels in the entire image to be segmented and
Y .9, is the number of lesion pixels to be segmented,
andsmooth = 1 is used to prevent division by zero error.

TaBLE 1: Experimental results when using the Tversky loss with
different 8 values to train the attention U-Net.

Metrics (%)

Weights

DSC F2 PRE RE
a =0.50,8=10.50 49.9 46.4 64.3 45.0
a =0.45,5=0.55 50.8 48.6 62.8 47.5
o =0.40,8 = 0.60 51.1 52.5 58.0 51.1
a=0.355=0.65 50.9 52.1 57.8 53.7
a=0.30,4=0.70 51.5 52.6 59.5 54.8
a=0.2503=0.75 52.0 51.5 61.3 52.5
a =0.20,5=0.80 52.7 55.4 56.7 58.3
a=0.15,5=0.85 50.5 52.5 53.4 55.5
a=0.10,5=0.90 50.2 52.7 53.2 56.5
a =0.05,5=0.95 51.6 55.0 53.5 59.4

To test and verify the proposed WBCE-Tversky loss, we
conducted a series of comparative experiments using the
WBCE loss, Tversky loss with different hyperparameter S,
and WBCE-Tversky loss with different 5. The model used in
the experiment, the experiment datasets, and the experiment
conditions are the same as the experiments corresponding to
Table 1. The experiment parameter configuration and results
are presented in Table 2. As can be seen from Table 2, for the
same hyperparameter f, the DSC and F2 scores of the
WBCE-Tversky loss are better than that of the Tversky loss.
The WBCE-Tversky loss also performs best at = 0.80.
Compared with the WBCE loss, the segmentation accuracy
improved significantly, the DSC score improved by 6.5%,
and the F2 score increased by 12.5%. In summary, on the
imbalanced ATLAS dataset, using the WBCE-Tversky loss
with 8 =0.80 to train the attention U-Net model achieves
the best segmentation performance. Therefore, we used
WBCE-Tversky loss with 8 = 0.80 as the loss function of the
DPAC-UNet’s primary network for accurate lesion
segmentation.

2.2.2. Tolerance Loss. When the focus area is larger than
the actual lesion area, the FP of the model segmentation
result increases. The FP and FPR are proportional, im-
plying that we can indirectly measure the tolerant degree
of the lesion area using FPR. To indirectly measure the
tolerant degree of the auxiliary compensation attention
coeflicient map, we used the FPR value as an indicator to
determine the tolerant degree of attention coeflicient
generated by the auxiliary network. To provide the pri-
mary network with a more tolerant auxiliary compen-
sation attention coefficient map and a much larger
coverage area, we proposed the tolerance loss by intro-
ducing a specificity reducing item combined with the
Tversky loss. It is called tolerance loss because the
compound loss function’s training goal is to obtain an
attention coeflicient map with high tolerance. The pro-
posed tolerance loss is presented in (11), where §; (A, §)
denotes the specificity reducing item presented in (10). The
concept of specificity reducing item is based on the ad-
justment of specificity, which measures the proportion of
negatives that are correctly identified, and s is presented in



TaBLE 2: Comparing the segmentation performance of the WBCE-
Tversky loss under different hyperparameter configurations.
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TaBLE 3: FPR values of the tolerance loss using different hyper-
parameter configurations.

Metrics (%)
DSC F2 PRE RE FPR

Loss functions Weights

Metrics (%)

Weights
DSC F2 PRE RE FPR

Loss functions

WBCE only
Tversky only
WBCE-Tversky
Tversky only
WBCE-Tversky
Tversky only
WBCE-Tversky
Tversky only
WBCE-Tversky
Tversky only
WBCE-Tversky

None 467 431 62.3 41.6 0.08

499 464 643 450 0.06
®=050,8=050 o5 495 632 495 010
511 525 580 511 0.14
521 515 59.6 52.0 0.10
515 52.6 595 54.8 0.4
519 504 622 50.3 0.10
527 55.4 567 583 0.16
53.2 556 62.6 562 0.12
502 527 532 565 0.20
515 51.6 57.7 531 0.4

a = 0.40, = 0.60
a =030, =0.70
a =020, = 0.80

a=0.10, 4 = 0.90

specificity = TiN
P YT IN S FP
9)
SN boi - goi ?
Sloss(/"(s):A( N . izl.po go . _6> > (10)
Yis1 Poi - Goi + Xy Pri- Gol
Thoss = Stoss 1 0) + T, (B = 0.8). (11)

Generally, the nonlesions in the imbalanced dataset
occupy a large part of the total area. Using the ATLAS
dataset as an example, the specificity of the segmentation
results is reached as high as 95%. Since FPR = 1 —Specificity,
it implies that the larger the proportion of nonlesions
identified as nonlesions, the smaller the FPR, and the less
tolerant the auxiliary compensation attention coefficient
map. Therefore, we introduce a specificity reducing item to
reduce the specificity of segmentation results, increase the
FPR of the auxiliary network’s training results, and increase
the size of the coverage area of the attention coefficient map.
As presented in (10) and (11), we used the hyperparameters A
and 6 to control the weight of the specificity reducing item in
the tolerance loss. We squared the specificity reducing item
and the Tversky loss to balance the equation to make the
backward derivation and backpropagation easier.

In (10), the specificity reducing item is the square of the
difference between the specificity equation and §. Since the
training goal of any loss function is to make the value as small as
possible, the training goal of (10) is to make value 0, which
means that the value of specificity is close to the value of
hyperparameter §. Therefore, setting a reasonable § can control
the specificity value to the desired degree. The smaller the 6, the
smaller the specificity obtained by the network training. As
mentioned earlier, since FPR = 1 — Specificity, the smaller the
specificity, the larger the obtained FPR value, and the resulting
attention coefficient map is more tolerant with a larger coverage
area. We set the hyperparameter § value of our tolerance loss to
0.6,0.7, 0.8, or 0.9. The other hyperparameter A is set to 1,2, 3,4,
or 5 to adjust the contribution of the specificity reducing item of
the tolerance loss. The value of the hyperparameter f3 is set to 0.8
according to the conclusion discussed in Section 2.2.1. The
experiment results are presented in Table 3.

=09 459 552 385 67.7 044
0=08 446 557 367 71.6 0.57

A=1 =07 40.7 512 331 672 0.61

=06 302 441 210 771 1.27

=09 452 554 363 70.6 0.51

1=2 =08 322 453 23.0 72.6 1.09

=07 304 446 206 709 1.34

=06 148 260 89 835 4.44

=09 361 480 274 702 0.74

Tolerance loss 1=3 =08 221 351 141 741 2014
ﬂ =0.8 =07 228 361 148 794 2.01
=06 11.8 188 7.6 835 4.57

=09 394 509 314 689 0.69

=4 =08 239 376 156 742 1.89

=07 149 254 92 80.6 4.09

=06 79 112 57 828 4.99

=09 344 475 249 724 0.90

=5 =08 20.7 335 133 823 274

=07 132 241 78 841 5.63
=06 57 11.8 31 928 18.97

As presented in Table 3, the different FPR values gen-
erated by the tolerance loss with different hyperparameters A
and dare compared. Based on (10), when A = 5, the tolerance
loss gives the most significant weight to the specificity re-
ducing item. Increasing A and keeping & constant produce
higher FPR. Furthermore, the smaller the value of §, the
smaller the value of specificity, and the higher the FPR. In
Table 3, the largest FPR value was obtained when
A =5,0=0.6, and the FPR reaches as high as 18.97%. We
also introduce a Tversky loss part to constrain the spatial
position and contour shape of the lesion and restrict the
growth of the attention coverage area with a high FPR value,
rather than randomly increasing the FPR of the results.

As visual examples, we export the attention coeflicient
heatmaps of four MRI slices of different lesion sizes, which
were segmented by the attention U-Net trained by tolerance
loss with 10 varying configurations of hyperparameter. The
attention coefficient heatmaps are generated by the AG
(marked as II) in the auxiliary network in Figure 1. Note
that, in the tolerance loss, the hyperparameter = 0.8 is
fixed, because we used the other two parameters to adjust the
FPR value. Considering the FPR of some values may be
caused by a smaller A and a larger § or by a larger A and a
smaller J, to draw the heatmaps, we sorted the FPR values in
Table 3 and evenly selected 10 hyperparameter configura-
tions of the tolerance loss according to the different FPR
values. The attention coefficient heatmaps from the selected
10 hyperparameter configurations from Table 3 are also
presented in Figure 6. It can be seen that as the FPR value
increases, the coverage area of the attention coeflicient map
gradually increases. Due to the restriction of the Tversky loss
part in the tolerance loss, although the focus area increased
gradually, it did not deviate from the lesion area. Therefore,
when tolerance loss is used in the auxiliary network of the
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FIGURE 6: Attention coeflicient heatmaps generated by the attention U-Net with different hyperparameters of the tolerance loss.

DPAC-UNet, the primary network gets a compensation
attention coefficient with the correct region irrespective of
the increase of the FPR value and the coverage area.
However, for the coverage area of the auxiliary compen-
sation attention coefficient map, the case is not the larger the
better, indicating that FPR is not as high as possible. We
need to set a moderate value of hyperparameters A and 6 to
provide the best segmentation performance for DPAC-
UNet. Therefore, in Session 3, the optimal A and § hyper-
parameters will be selected based on the DPAC-UNet model
depending on the experiment performance.

2.2.3. Hyperparameter Selection. In order for the auxiliary
network to generate a larger proper attention coefficient
map, it needs to be trained by the tolerance loss proposed.
Only when the hyperparameter configuration of the toler-
ance loss function is selected appropriately, the auxiliary
network can provide moderate compensation to the at-
tention module of the primary network to improve the
segmentation performance. The selection process of loss
function hyperparameter configuration of the primary and
auxiliary network follows the following two steps:

Step 1. With 0.05 as the interval, from 0.5 to 0.95, using
10 different 8 values of Tversky loss to train the single-
path Attention U-Net model, take the 8 value with the
best segmentation performance as the selected 8 value
of the proposed WBCE-Tversky loss and Tolerance loss.

Step 2. To select appropriate § and A values for the
tolerance loss, so that the auxiliary network can provide
appropriate attention coefficient map compensation
and achieve the best segmentation performance of the
entire DPAC-UNet, we use the WBCE-Tversky loss
function (fix the 8 value that has been selected in the
first step) to train the primary network. We set the
tolerance loss § value to 0.6, 0.7, 0.8, or 0.9, and set A
value to 1, 2, 3, 4, or 5; that is, we use a total of 20

different parameter pairs of tolerance loss to train the
auxiliary network, and take the § and A pair with the
best segmentation performance as the selected values of
proposed tolerance loss.

When our method is applied to other different types of
datasets of medical segmentation tasks or different seg-
mentation models, the hyperparameter configurations of
loss functions are different, and the hyperparameter values
need to be redetermined. This is because the hyperparameter
selection of the loss function needs to consider the imbalance
of different datasets and the individual differences of at-
tention maps generated by different models.

3. Experimental Results and Analysis

3.1. Dataset and Training. 'The ATLAS dataset has a high 3D
resolution that can meet the requirements of rotation slicing
operations, which contains 239 MRI data and focuses on the
subacute and chronic stages of stroke disease. The operations
of MNI-152 [24] image registration, intensity normalization
[25], bias field correction [26], and changing the resolution
of MRI scans to 176 x 208 x 176 through cropping and
interpolation operation to fit our method have been per-
formed. We use the sixfold cross-validation to ensure that
the test sets can cover the entire dataset. We also divide the
training set of each fold into the inner loop training set and
the inner loop validation set for best model selection. It
should be noted that since the distribution of the number of
MRIs of different sizes is extremely imbalanced in the
dataset, it is necessary to ensure that the training, validation,
and test sets have similar lesions sizes™ distribution.

We use the deep learning framework PyTorch to conduct
our experiments on three NVIDIA Tesla T4 GPUs. We train
the models 100 epochs at most and save the best model when
the validation set loss is the smallest. We used the lookahead
optimizer [27] for model training. The optimizer improves
the stability of the optimization process while considering
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the dynamic adjustment of the learning rate and the ac-
celeration of the gradient descent. We set the initial learning
rate to 1 x 10™*. The same experiment conditions and en-
vironment, used in the previous experiments in Section 2,
are used for reproducing the single-path segmentation
models, such as U-Net and attention U-Net. We applied the
WBCE-Tversky loss for accurate segmentation to train these
single-path models and use their results to compare the
results of our DPAC-UNet method.

3.2. Experiment and Results. In Section 2.1, we elaborated on
the principle of the proposed DPAC network structure.
Using the attention U-Net as the basic segmentation model
of the primary and auxiliary networks of the DPAC method,
we proposed a specific segmentation model, DPAC-UNet. In
Section 2.2, we also proposed the WBCE-Tversky loss and
tolerance loss to train the primary and auxiliary networks,
respectively. Moreover, we explored and verified the value of
hyperparameter 3 of the WBCE-Tversky loss through the
experiments presented in Tables 1 and 2 and found that
when f = 0.8, the primary network based on the attention
U-Net achieves the best segmentation performance trained
by the WBCE-Tversky loss.

We also explained the relationship between the values of
different hyperparameters § and A and the coverage area of
the auxiliary compensation attention coefficient map in
Section 2.2. The coverage area of the auxiliary attention
coefficient map is proportional to the FPR value, and the
FPR value is proportional to A and inversely proportional to
0. We need to select a suitable set of A and § values to obtain
an auxiliary attention coefficient map with a suitable cov-
erage area in order to enable the DPAC-UNet to achieve the
best segmentation performance. Therefore, based on the
experiment results, as presented in Table 3, we explored the
optimal hyperparameter configuration of A and § to train the
best DPAC-UNet model. We used the tolerance loss
(B = 0.8) configured with different hyperparameters A and §
to train the auxiliary network of DPAC-UNet and the
WBCE-Tversky loss ( = 0.8) to train the primary network
of the DPAC-UNet.

Table 4 presents the experiment results corresponding to
the experiment of DPAC-UNet trained by the tolerance loss
function with different hyperparameters. In Table 4, the
FPR* represents the FPR results of single-path attention
U-Net trained by tolerance loss functions with different
hyperparameter configurations from Table 3. We sort FPR*
in ascending order and identified the corresponding toler-
ance loss functions and hyperparameter configurations. We
use tolerance loss functions with these sorted configurations
to train the auxiliary network of the DPAC-UNet and the
WBCE-Tversky loss (8 = 0.8) to train the primary network.
Then, we got the experiment results of the different con-
figurations of DPAC-UNet to select the best hyperparameter
configuration.

By observing the relationship between FPR* and seg-
mentation metrics, as presented in Table 4, it is evident that as
the coverage area of the attention coefficient generated by the
auxiliary network increases (indicated by FPR*), the DSC and
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F2 scores of the DPAC-UNet gradually increase. When the
values of the hyperparameters are A = 4 and § = 0.7, the DSC
and F2 scores get the maximum value. As the FPR* further
increases, the segmentation performance gradually declines.
When the coverage area significantly increases with the FPR*
value, it negatively affects the primary network. As presented
in Figure 6, when A = 5 and § = 0.6, the FPR* value reaches
the maximum, as well as the coverage area of the auxiliary
compensation attention, which occupies a quarter of the
brain slice. At this time, the coverage area is too large to
constrain the primary network to focus on the correct lesion
area effectively. Its attention coefficient map generated by this
hyperparameter configuration even interferes with the pri-
mary network, so its DSC and F2 scores are negatively af-
fected as presented in Table 4. The change of FPR* is
determined by the hyperparameters A and § together. FPR* is
proportional to A and inversely proportional to . Therefore,
the smallest A and the largest § will generate the smallest
FPR*, and the largest A and smallest dwill lead to the largest
FPR*. Figure 7 presents a line chart of the segmentation
accuracy changing with FPR*. The line chart indicates that
the DPAC-UNet segmentation accuracy changes as the FPR*
increases. As the FPR* increases, the DSC and F2 scores
increase and then decrease. It shows that when the FPR* is
small, the coverage area of the corresponding auxiliary at-
tention compensation coefficient map is also small. It cannot
compensate for the primary network adequately and effec-
tively. When the FPR* value is too large, it tends to over-
compensate. Only when the hyperparameter values are
moderate and its corresponding FPR* value is moderate can
the DPAC-UNet achieve the best segmentation performance.

Simultaneously, it can be seen from Table 4 that the FPR
values generated by the DPAC-UNet’s primary network are
all small, irrespective of the loss function of the auxiliary
network used and the corresponding FPR* value. This is
because the compensation operation of the auxiliary com-
pensation attention coefficient map generated by the aux-
iliary network does not directly affect the segmentation
result of the primary network. It is an additive compensation
operation from the auxiliary network to the primary net-
work during the training process; therefore, it does not
participate in the gradient operation and backpropagation of
the primary network. However, it partially modified the size
of the coverage area of the primary network’s attention
coefficient map. The primary network still considers accu-
rate segmentation as its training purpose. It does not gen-
erate FP as high as the auxiliary network due to the increased
attention area after compensation.

In summary, when the primary network uses the WCBE-
Tversky loss function with hyperparameter configuration of
B =028, and the auxiliary network uses tolerance loss
function with hyperparameter configuration of f=10.8,
A =4, and § = 0.7, our DPAC-UNet can achieve the highest
segmentation accuracy.

3.3. Visualization Examples. To show the principle of the
DPAC-UNet, we give the attention coeflicient heatmaps and
segmentation results of using attention U-Net (primary
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TaBLE 4: The segmentation performance of the DPAC-UNet using different hyperparameter configurations.
Loss functions Weights . Metrics (%)
FPR DSC F2 PRE RE FPR
1. A=16=09 0.438 54.8 54.1 63.6 55.1 0.111
2. A=2,6=09 0.508 53.0 52.4 61.5 53.3 0.101
3. A=1,6=0.8 0.573 55.2 54.7 64.4 55.7 0.120
4, A=1,86=0.7 0.607 54.1 54 62.2 55.1 0.117
5. A=4,86=09 0.689 55.9 56.6 63 57.4 0.124
6. A=3,6=09 0.743 55.3 56 61.1 58.1 0.173
7. A=538=09 0.898 53.8 54.1 62.8 55.7 0.142
8. A=2,=0.8 1.091 54.9 55.4 61.2 56.9 0.140
9. A=1,6=0.6 1.27 555 55.6 63.7 57 0.126
Tolerance loss, § = 0.8 10. A=2,6=0.7 1.335 55.8 55.8 64.8 57.2 0.133
? 11. A=4,6=0.38 1.888 53.6 53 64.4 53.9 0.111
12. A=3,8=0.7 2.006 56.9 57.7 61.6 59.6 0.149
13. A=3,6=0.8 2.143 56.7 57.3 61.9 59.1 0.157
14. A=538=0.8 2.744 56.7 56 65.8 56.8 0.103
15. A=4,8=0.7 4.093 59.3 59.8 65.6 59.9 0.106
16. A=2,6=0.6 58.2 58.6 62.6 60.3 0.151
17. A=3,6=0.6 57.5 57.5 64 58.8 0.137
18. A=4,86=0.6 56.5 56.9 62.5 61.6 0.153
19. A=538=0.7 5.634 56.2 57.5 63 59.3 0.132
20. A=5038=0.6 18.97 52.8 51.5 65.9 52.1 0.196

0.9) -
0.9) -
0.8) -
0.7) A
0.9) -

T — T
— AN N N N S e S s e S S
0 R N N N N N SN ROl SN
) S o oSS oo oo oS oo
= T T T T T T T T T T T T T A T T T TR
JRRRRRDRRRD DD QDD DD DD D
STad T~ Al d~adF eSS n F A
T T T T T T [ T Y [ 1 S
LR RRRRERRRRRRRRReRcR R =
A STSTSTSTSTSTSTTTITSTSTTSTTSSSCES
EU)Q)QJU)Q)Q)Q)Q)Q)Q)U)Q)Q)U)Q)QJQ)Q)Q)Q)
>UUUUUUUUUUUUUUUUQUUU
EESgE8cEgcegegsEgsge g g€ g g
© © 8 © © 8 © © © © © © © © © © © © © ©
e = T = - T = = = = = = = T = T =1
LV VUV VUV VO VUV VUV VYV VLV LV VL VLV L VL VL LV L VY
00000000000 o000 o
FHFFEFEFBRFPFEFERHREFEEFEFEREEBREEBRBREREE
—e— DSC
—o— F2

FIGURE 7: Segmentation performance of DPAC-UNet with the
change in FPR™.

network) individually and using DPAC-UNet with the
auxiliary network when segmenting an MRI slice, as pre-
sented in Figure 8.

Using the primary network individually as presented in
Figure 8(a), @ is the attention coefficient heatmap gen-
erated by the second-level AG of classic Attention U-Net; it
can be observed that its attention coeflicient map has

obvious defects. Although the lesion’s location is correct,
the coverage area of the lesion is too small to perform
accurate segmentation. ® is the segmentation result;
comparing ® with the truth label of @, it can be seen that
there is a big difference between the segmentation result
and the ground truth. When using the DPAC-UNet to
segment the slice, as presented in Figure 8(b), @ is the
attention coefficient heatmap generated by the primary
network at the location marked as (I) in Figure 1. It is
evident from the figure that the attention coeflicient
heatmap has obvious defects that are consistent with @, as
presented in Figure 8(a), which is also a defective attention
heatmap with a smaller coverage area than the actual lesion.
Notably, the attention coeflicient heatmap @, as presented
in Figure 8(b), introduces a certain amount of noise. As
presented in Figure 8(b), ® is the auxiliary compensation
attention coeflicient generated by the DPAC-UNet’s aux-
iliary network at the location marked as (II) in Figure 1. Itis
evident that the coverage area is moderately larger than the
actual lesion, and covering the correct lesion region. After
compensating the auxiliary compensation attention coef-
ficient map of ® to the primary network’s attention co-
efficient map of @ through an additive compensation
operation, a new attention coefficient map after compen-
sation is obtained, as shown in ®. Comparing @ and @, as
presented in Figure 8(b), the insufficient coverage area of
attention coefficient in @ has been compensated, and the
noise has also been significantly reduced. ® is the final
segmentation result of the DPAC-UNet. After using the
DPAC-UNet, the segmentation result has been signifi-
cantly improved in terms of both lesion contour and area.
One thing to note here is when we compare the heatmap @
of Figure 8(a) generated by single-path attention U-Net and
the heatmap @ of Figure 8(b) generated by DPAC-UNet’s
primary network, the attention heatmaps of Figures 8(a)
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FIGURE 8: Visualization examples of the attention coefficient maps of different methods: (a) single-path primary network individually;

\(b) DPAC-UNet.

and 8(b) are slightly different in noise level because they are
two independent trained models, but the respective heat-
map @ has the defects of the same pattern.

3.4. Comparison of Different Methods. Many lesion seg-
mentation methods have been studied recently using the
ATLAS dataset. Zhou et al. proposed a new architecture
called dimension-fusion-UNet (D-UNet) [28], which
combines 2D and 3D convolution in the encoding stage.
Yang et al. proposed a CLCI-Net using cross-level fusion and
a context inference network [29]. The previously mentioned
existing segmentation results serve as a comparison for our
experiments.

Using the same conditions as the previous experiments,
we conducted a comparison experiment of the following
models and loss functions:

(1) the U-Net [9] model trained by the WBCE-Tversky
loss (8 =0.8)

(2) the attention U-Net [10] trained by the WBCE-
Tversky loss (8 = 0.8)

(3) the DPAC-UNet model proposed in this paper,
trained by the WBCE-Tversky loss and tolerance loss
(=08,0=0.7,1=4)

Cases (2) and (3) are, respectively, using the primary
network individually and combined with the auxiliary
network.

The final experiment comparison results are presented in
Table 5 that the DPAC-UNet achieved the highest DSC and
F2 scores. Comparing the single-path model attention U-Net
with our DPAC-UNet, from using primary network indi-
vidually to the introduction of the auxiliary attention
compensation mechanism, the DSC score improved by 6%.
Comparing the classic U-Net with attention U-Net, from no
attention to the introduction of self-attention mechanism,
the DSC score only improved by 2.1%. The previously
mentioned comparison shows that our DPAC-UNet has a
very significant performance improvement compared to the
single-path self-attention segmentation model. Compared
with the methods in the existing literature, it is 5.7% higher
than the D-UNet and 1.1% higher than the CLCI-NET. This
suggests that our DPAC-UNet achieved improved
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TaBLE 5: Comparison of segmentation performance of different methods.
Metrics (%
Models Loss functions (%)
DSC F2 PRE RE

D-UNet Enhance mixing loss 53.5 — 63.3 524
CLCI-NET Dice loss 58.1 — 64.9 58.1
U-Net WBCE-Tversky(f = 0.8) 51.1 49.2 59.3 48.7
Attention U-Net WBCE-Tversky(f = 0.8) 53.2 55.6 62.6 56.2
DPAC-UNet WBCE-Tversky(f = 0.8), tolerance(§ = 0.7,1 = 4) 59.2 59.0 65.6 59.9

segmentation performance than the existing methods. As
shown in Figure 9, we present a group of boxplots of the
segmentation performance distribution of all 239 MRI scans
to evaluate the performance of the different models. The 239
segmentation results are generated from the six nonrepeated
test sets split by sixfold nested cross-validation. From the
boxplots, we can state the following: first, comparing our
DPAC-UNet model with the other two models, the overall
segmentation accuracy increases significantly, and also, the
minimum value of the boxplot of DSC and F2 scores and its
lower quartile value increase significantly. This proves that
our method significantly improves the data with poor
performance using the other two methods. Second, when
comparing the middle value and upper quartile of boxplots,
we can see that, for the data with better segmentation
performance segmented by the other two models, the
DPAC-UNet has a slight improvement. For data with dis-
tinct lesion characteristics that are easy to segment, the
primary network can generate a correct attention coefficient
map with a high probability. At this time, using the auxiliary
network to compensate the primary network will not reduce
the segmentation accuracy or even slightly improve it. By
observing the boxplots of the FPR results, it is evident that
the FPR values of the three models are consistently small.
This proves that although the auxiliary compensation at-
tention coefficient map generated by the DPAC-UNet’s
auxiliary network has a high FPR, after compensating it to
the primary network, the segmentation result of the primary
network maintains a small FPR.

3.5. Time Consumption. The parameter amount, training,
and testing computation time for each part of DPAC-UNet
are listed in Table 6 to understand which part of the network
needs more time for executing. Since the primary and
auxiliary networks are trained in parallel as a whole, the
computation time of each part cannot be measured sepa-
rately at the same time. Therefore, we compared the com-
putation complexity and time consumption of the primary
and auxiliary networks of DPAC-UNet by training them
independently.

The amount of our DPAC-UNet’s training parameters is
double compared with the single-path attention U-Net
(primary network or auxiliary network). The training time of
the DPAC-UNet (5.11 hours on average) is about 1.7 times
that of each subnetwork (3.06 hours on average). The testing
time of the DPAC-UNet (17 secs on average) is about 1.7
times that of each subnetwork (10 secs on average). Although
DPAC-UNet has significantly increased the total number of

model parameters and training time consumption after the
introduction of the auxiliary network compensation
mechanism, the significant improvement in segmentation
performance makes up for the shortcoming of model
complexity.

3.6. DPAC Structure of Other Models. The DPAC structure
proposed in this paper that uses the auxiliary network to
compensate the primary network can be applied to most
segmentation models with spatial self-attention. We
implemented our method on two other segmentation
models with self-attention mechanism, RA-UNet [30] and
AGResU-Net [31], and compared the experimental results of
single-path with dual-path networks with auxiliary net-
works. The experimental results are shown in Table 7. The
previously mentioned two single-path segmentation models
can effectively improve the segmentation performance after
using the auxiliary network for attention compensation. It
shows that our method can be applied to other segmentation
networks with the self-attention mechanism. It should be
noted that, in accordance with the hyperparameter selection
steps in Section 2.2.3, when the dataset and segmentation
model change, the hyperparameters of the tolerance loss
function need to be redetermined. As shown in Table 7,
when the 6 value of AGResU-Net is 0.6, the DPAC structure
can achieve the best segmentation performance.

4. Discussion and Conclusions

In this paper, we proposed the DPAC-UNet using the classic
self-attention model, attention U-Net, as the basic seg-
mentation model. To realize the functions of the DPAC-
UNet’s primary and secondary networks, we proposed the
WBCE-Tversky and tolerance losses as the training loss
functions, respectively. We explored the hyperparameter
configuration of the loss functions by applying sixfold cross-
validation on the 239 MRI data of the ATLAS stroke seg-
mentation dataset. We discovered that the WBCE-Tversky
loss achieves the most accurate segmentation performance
for the primary network when f3 = 0.8. The tolerance loss
generates a tolerant auxiliary compensation attention co-
efficient map with a moderate coverage area to compensate
for the primary network’s defective attention coeflicient
map. It achieves the best segmentation performance when
B =0.8,1=4, and § = 0.7. The experiment results indicate
that the DSC score of the proposed DPAC-UNet with the
auxiliary network is 6% higher than that without the aux-
iliary network. Compared with the methods in the existing



14 Computational Intelligence and Neuroscience
1.0 4
- 0.014
0.8 N - 0.012
* ¢
¢ - 0.010
0.6 - AR
g L 0.008 8
g ' T 008 :
w w
0.4 - ¢ b Looos
¢
- 0.004
0.2
- 0.002
¢
0.0 - ¢ ) L 0.000
DSC F2 PRE RE FPR
Models
mm U-Net
mm Attention U-Net
mm DPAC-UNet
FIGURE 9: Boxplots of metric results for different models.
TaBLE 6: Time consumption of DPAC-UNet.
Networks Parameters (M) Training (hours) Testing (seconds)
Primary network 40.4 3.07 10
Auxiliary network 40.4 3.05 10
DPAC-UNet 80.8 511 17
TaBLE 7: Experimental results of DPAC structure based on other models.
. ) Metrics (%)
No. Networks Auxiliary Loss functions
DSC EF2 PRE RE
1 RA-UNet Without WBCE-Tversky (8 = 0.8) 54.1 56.5 63.8 58.1
With WBCE-Tversky (B = 0.8), tolerance (6 = 0.7,A = 4) 60.3 59.9 67.1 60
Without WBCE-Tversky (8 = 0.8) 55.2 59.7 61.4 57.5
2 AGResU-Net With WBCE-Tversky (8 = 0.8), tolerance (8 = 0.6,1 = 4) 60.5 62.2 66.6 61.1

literature, the DSC score of the proposed DPAC-UNet is
5.7% higher than the D-UNet and 1.1% higher than the
CLCI-NET. The results indicate that the proposed method
achieved an improved segmentation performance and
verified the effectiveness of the proposed method.

It should be noted that although we used the same dataset
in the proposed method as D-UNet and CLCI-NET, the
version varied. We used the version without defacing that
contains 239 MR images, and D-UNet and CLCI-NET used the
version with defacing that contains 229 MR images. Fur-
thermore, considering that the cross-validation dataset split-
ting methods do not generate the same training, validation,
and testing sets, and also considering that the loss functions
used are also different, achieving the best segmentation per-
formance does not directly prove that the proposed method is
the best. It proves that we have reached a higher level of
segmentation performance in the current methods.

The purpose and focus of our work are to improve the
performance of the single-path attention mechanism seg-
mentation model by using our DPAC method. As shown in

Table 6, although our method obviously requires more
computing resources and takes more training time, the im-
provement in the segmentation performance of our method
balances out the shortcomings in increased model complexity.
The five-hour training time is currently at a lower or average
level in some of the latest existing network models, which are
currently used for stroke lesion segmentation. Moreover, we
will implement our DPAC network structure on other basic
segmentation models with a self-attention mechanism to
verify our method’s versatility. We also proved that if our
DPAC structure is applied to other models based on the self-
attention mechanism, it can also effectively improve the
segmentation performance. In future work, we plan to use
other stroke segmentation datasets to compare the effec-
tiveness of our method across various datasets.

Data Availability

The ATLAS dataset is publicly available at http://fcon_1000.
projects.nitrc.org/indi/retro/atlas_download.html.
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