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a b s t r a c t 

Background and Objective: COVID-19 pandemic continues unabated due to the rapid spread of new mutant 

strains of the virus. Decentralized cluster containment is an efficient approach to manage the pandemic 

in the long term, without straining the healthcare system and economy. 

In this study, the objective is to forecast the peak and duration of COVID-19 spread in a cluster under dif- 

ferent conditions, using a probabilistic cellular automata configuration designed to include the observed 

characteristics of the pandemic with appropriate neighbourhood schemes and transition rules. 

Methods: The cellular automata, initially configured to have only susceptible and exposed states, enlarges 

and evolves in discrete time steps to different inf ection states of the COVID-19 pandemic. The transition 

rules take into account the probability and proximity of contact between infected hosts and suscepti- 

ble individuals. A transmittable and transition neighbourhoods are defined to identify the most probable 

individuals infected from a single host in a time step. 

Results: The model with novel neighbourhood schemes and transition rules reproduce the macroscopic 

behaviour of infection and recovery observed in pandemics. The temporal evolution of the pandemic 

trajectory is sensitive to lattice size, range, latent and recovery periods but has constraints in capturing 

the changes in the infectious period. A study of lockdown and migration scenarios shows strict social 

isolation is crucial in controlling the pandemic. The simulations also indicate that earlier vaccination with 

a higher capacity and rate is essential to mitigate the pandemic. A comparison of simulated and actual 

data shows a good match. 

Conclusions: The study concludes that social isolation during movement and interaction of people can 

limit the spread of new infections. Vaccinating a large proportion of the population reduces new cases in 

subsequent waves of the pandemic. The model and algorithm with real-world data as input can quickly 

forecast the trajectory of the pandemic, for effective response in cluster containment. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The world is facing an unprecedented challenge. The challenge, 

oronavirus Disease-2019 (COVID-19), caused by Severe Acute Res- 

iratory Syndrome Coronavirus 2 (SARS-CoV-2), first identified in 

uhan, China, in December 2019 is still spreading havoc. The 

orld Health Organization (WHO) declared COVID-19 a global pan- 

emic on 11 March 2020 [1] , and this infectious disease is now 

howing further surges due to the proliferation of mutant strains 

f the virus. 

Stringent implementation of healthcare advisories from WHO, 

trategies such as national lockdowns [2,3] and effective interven- 

ions by Governments in testing, isolating and treating the infected 

ided to control the spread of the virus in its first wave [4–6] . Nev-

rtheless, the viral pandemic affected human life and the global 
ttps://doi.org/10.1016/j.cmpb.2021.106402 

169-2607/© 2021 Elsevier B.V. All rights reserved. 
conomy in an adverse manner [7] . The relentless effort s of the 

cientific community in developing vaccines for the disease is fi- 

ally a success and vaccination programs are taking place all over 

he world [8,9] . 

Strategic planning and efficient deployment of resources is 

rucial in controlling this pandemic without overwhelming the 

ealthcare system or further affecting the economy [10,11] . This re- 

uires information on future demands of medical equipment and 

dditional infrastructure that may be needed [12] . Computational 

odels can provide valuable insights in this regard by forecasting 

he growth trends of the pandemic under different circumstances 

13–15] . Possibility for repeated and cost-effective parametric stud- 

es in a virtual environment, flexibility to include and adapt to real- 

ime data and simulation in a short duration, are some of the other 

dvantages of modeling. 

https://doi.org/10.1016/j.cmpb.2021.106402
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106402&domain=pdf
https://doi.org/10.1016/j.cmpb.2021.106402
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Mathematical modeling of infectious diseases is a mature area 

ith many well-known methods [16,17] and there have been sev- 

ral effort s in modeling COVID-19 too [18,19] . Simple deterministic 

ompartment models are a popular approach in simulating evolv- 

ng pandemics [20] . In this approach, the entire population is di- 

ided into distinct compartments at a particular instant of time, 

ased on infection status. The simplest compartment model is SIR 

odel, which consists of three states, S for susceptible individuals, 

for infected and R for recovered individuals [21] . Additional com- 

artments can be added to the model to simulate other infection 

tates observed in a pandemic. These are either formulated and 

omputed as ordinary differential equations or methods such as 

ellular Automata (CA) approach are used for the simulation [22–

4] . 

COVID-19 exhibits different transmission characteristics com- 

ared to other infectious diseases [25] and mathematical models 

ave been successful in identifying relevant parameters and repro- 

ucing observed disease dynamics [26–30] . CA configurations, with 

heir flexibility for defining heterogeneous states and local rules for 

tate transitions based on neighbourhood information, are ideal for 

imulating epidemics [31–33] . This method has been successfully 

sed for predicting long term behaviour of COVID-19 [34] and also 

o understand the effect of lockdown measures in a region [35,36] . 

In a recent study, Ghosh and Bhattacharya [37] , used Probabilis- 

ic Cellular Automata (PCA) with simulation parameters optimized 

sing a sequential genetic algorithm to forecast COVID-19 dynam- 

cs. This combination is shown to accurately estimate the time tra- 

ectory of COVID-19 when physically meaningful parameters are 

sed. In this CA configuration, the initial population with differ- 

nt disease states are distributed in a 2D lattice of fixed size. In 

nother work, the same authors incorporated factors like popula- 

ion density, testing efficiency and movement restriction into a PCA 

odel through appropriate probabilities to explain the variability 

f disease dynamics observed in different countries [38] . 

In another important work, Schimit [39] , studied the impact of 

ocial isolation on dynamics of COVID-19 using PCA and ordinary 

ifferential equations. The model consists of eight disease states 

nd fifteen parameters and uses an extended neighbourhood to es- 

ablish random contact networks between cells. Each state transi- 

ion is based on either probabilities or pre-defined periods to ac- 

ount for the uncertainties in COVID-19 propagation. The results 

uggest that maintaining social isolation is crucial to keep the pan- 

emic spread under control and to avoid the overwhelming of the 

ealthcare system. The model is formulated for a country, with a 

xed lattice size of the order of 210 million and the simulation is 

eported to take over a week to complete. 

A spatiotemporal epidemiological forecast model for short and 

ong term local infection risk predictions for smaller regions such 

s counties is proposed by Zhou et al. [40] . The work shows that,

y using local information in the model through a CA which en- 

bles interconnectivity and regional variations, the prediction error 

s significantly reduced compared to that for a larger space. Dai 

t al. [41] predict the spread patterns of COVID-19 in cities using a 

A model that incorporates factors such as sex ratio, age, immunity 

nd various disease characteristics. The movement of the popula- 

ion is simulated by defining moving proportion and a maximum 

oving step length in a fixed lattice size with occupied and empty 

ells. 

Decentralised response through cluster containment or regional 

ockdowns is an effective approach to manage the pandemic in 

 short period [42] . Real-time surveillance of small geographical 

lusters called micro-containment zones enables error-free data 

ollection and analysis, followed by rapid decision making and 

nterventions with minimum disruption to the overall economy. 

ocal administration can mobilise their resources to support the 

ommunity during the containment and also to implement the 
2 
nd, test, trace, isolate and support system [4] , successfully carried 

ut to control the spread of the pandemic in its first wave. Addi- 

ionally, in cluster containment, the size of the susceptible popula- 

ion, which is a crucial parameter in determining the spread of the 

andemic [12] is small and can be easily monitored. 

The computational model in the present work is developed 

ased on the idea of monitoring a susceptible population in a clus- 

er to mitigate the pandemic. The susceptible population can be 

eople in a geographical region, or a subgroup in the region iden- 

ified through the process of contact tracing and kept in quaran- 

ine, or people in a particular age group or gender [43] . The size of

he susceptible population is not constant but can change during 

he spread of the pandemic or migration of people. In the litera- 

ure, most studies on modelling COVID-19 using CA have used a 

xed lattice size with human-occupied and empty cells. We pro- 

ose to use a variable size lattice, initially with only susceptible 

nd infected cells in it, which increases in size to accommodate the 

ncoming susceptible or infectious population. From the simulation 

erspective, concentrating on the susceptible population eliminates 

mpty cells, keeps the size of the lattice small, computational time 

nd memory requirements to a minimum and model varialbes to 

 few. Hence, in this work, we develop a PCA model, by defin- 

ng novel neighbourhood schemes and transition rules to include 

OVID-19 transmission and propagation characteristics and investi- 

ate the disease dynamics in a variable susceptible population un- 

er different conditions. 

The next section describes the model and algorithm in detail. 

mportant model parameters are identified from a sensitivity anal- 

sis in the third section. The fourth section discusses the effect of 

ockdown, migration and vaccination on COVID-19 dynamics and 

resents a validation of the model. 

. Methods: probabilistic cellular automata 

Cellular automata are discrete dynamical systems with a finite 

umber of identical cells [33] . The information of interest is stored 

n each cell and is called the state of the cell. There could be a

nite set of distinct states depending on the phenomena being in- 

estigated. The states of the cells are updated simultaneously in 

iscrete time steps, according to a pre-defined transition function 

44] . The evolution of the state of a particular cell depends on 

ts state and the states of its local neighbourhood of cells. The 

ransition functions may be deterministic or probabilistic and are 

niform in space and time. These are either given by analytical 

unctions or as a set of transition rules [45] . The local transition 

unctions are formulated such that, they replicate the physical be- 

aviour of the system being studied. The cellular automata C , thus 

an be represented as a tuple of four elements C = (L , A , N , F ) ,

amely lattice L , state A , neighbourhood N and transition func- 

ion F [15] . 

The cells of a CA can be represented as uniformly arranged el- 

ments in a two-dimensional space Z 

2 . Mathematically the lattice 

 = { x i j , 1 � i � m, 1 � j � n } , where L ⊂ Z 

2 , is a two dimensional

rray of m × n cells, and x i j ∈ L for the cell x with indices i and j.

 two-dimensional square lattice with m = n is used in the present 

ork. The detailed formulation of A , N and F are described in the 

ollowing sections. 

.1. Cellular automata configuration for Covid-19 simulation 

In the present CA configuration, a cell represents a person, and 

arious stages of the infection life-cycle undergone by the per- 

on, from susceptible to recovery or vaccinated, are represented by 

he state of that cell. The probable state of a cell is an element 

f a finite and ordered state set defined as A = { S, E, L, I, T , R, V } .
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Table 1 

Cellular automata states and assigned numerical values. 

CA State a Notation of a State value v 
( a ∈ A ) ( v ∈ V) 

Susceptible (potential) S 0 

Exposed (infected) E 1 

Latent L 2, 3 

Infectious I 4 to 8 

Treatment T 9 to 14 

Recovered (Removed) R t R = 15 

Vaccinated V t R + 1 = 16 
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ere the epidemiological states are represented by S the suscepti- 

le (potential) state, E exposed (infected) state, L latent state, I in- 

ectious state, T treatment state, R recovered (removed) state and 

 the vaccinated state. 

In the computer code, a particular state is identified by assign- 

ng a single or range of numerical values called state values to 

t. The state values, denoted by v , starts with 0 and extends to a

ser-defined upper limit t R , which represents the average time for 

ecovery. Every state a ∈ A , is assigned a state value v as a func-

ion of time by g(t) : V → A where V = { v , 0 � v � t R } . The values

 and 1 represents susceptible and exposed states respectively. The 

etails of other states in A and corresponding numerical value set 

used to represent these states are given in Table 1 . The values 

f latent, infectious and treatment periods are flexible and can be 

ecided based on scientific studies. 

A susceptible state v = 0 will become infected only as per lo- 

al transition rules to be defined shortly. All other state values are 

equentially updated in each time step by v = v + 1 . This updating

epresents the movement from the exposed state to the recovered 

tate through different stages of infection. The discrete-time step 

sed in the simulation is 1 day . Hence, the state value v of a cell

lso indicates days passed after that cell became infected. The up- 

ating of state value is stopped when v = t R , the recovered state.

t is assumed that the vaccinated people are immune to infection 

nd all infected people are recovered in due course of time. 

A cell, with a particular state assigned to it at time t , is denoted

y x t 
i j 

. There will be a corresponding global state configuration of 

A denoted by L 

t = { x t 
i j 
} , which is an array of states of all cells

t time t . The most probable S state cells, in L 

t , to which virus

ransmission can happen in a particular time step are identified by 

he procedure described further. 

.2. Transition and transmittable neighbourhoods 

The neighbourhood of a cell is a set of its surrounding cells 

hose states influence the evolution of that cell. The state x t+1 
i j 

of 

 cell at time t + 1 is a function of its own state and that of its

eighbourhood cells N ⊂ Z 

2 at time t . The number of cells in the 

eighbourhood can be decided depending on the phenomena be- 

ng simulated. 

Two of the commonly used neighbourhood schemes in cellu- 

ar automata computations are Von Neumann and Moore neigh- 

ourhoods of range r = 1 as shown in Fig. 1 . In the Von Neumann

cheme, the states of x i j and its four adjacent cells excluding the 

our diagonal cells constitute the neighbourhood; whereas in the 

oore scheme, states of x i j and all eight surrounding cells forms 

he neighbourhood. 

For a cell x i j , the Moore neighbourhood of range r is defined 

s a finite set N 

r 
i j 

= { (k, l) ∈ Z 

2 , | k − i | ≤ r and | l − j| ≤ r} , where

k, l) represents the indices of neighbourhood cells. Range r indi- 

ates the number of adjacent layers of cells that are included in 

he neighbourhood, such that the cardinality of N 

r 
i j 

is 4 r(r + 1) . A
3 
eighbourhood configuration N 

rt 
i j 

contains information on states of 

ach cell in the neighbourhood at time t . 

In the model, to simulate the local interactions of Covid-19 

ropagation, two types of neighbourhoods are defined. The first 

ne is an extended neighbourhood, called a transmittable neigh- 

ourhood, defined around an infectious cell and the second is the 

ransition neighbourhood, defined around a susceptible cell. The 

ransmittable neighbourhood identifies all potential cells for virus 

ransmission, and the transition neighbourhood decides whether 

hat transmission will happen or not. 

An infectious cell at time t can transmit the virus to many po- 

ential cells in its transmittable neighbourhood, that become in- 

ected at time t + 1 . The transition of a potential cell from x t 
i j 

= S to

 

t+1 
i j 

= E will but depend on states of cells in its transition neigh- 

ourhood. A Moore scheme of r = 1 around potential cell x t 
i j 

= S

s taken as the transition neigbhourhood and a Moore scheme of 

 = 3 around the cell x t 
i j 

= I is taken as the transmittable neigh-

ourhood. The cardinality of N 

1 
i j 

= 8 , N 

2 
i j 

= 24 and N 

3 
i j 

= 48 ( Fig. 1 ).

efining the transmittable neighbourhood as an extended Moore 

cheme of 48 cells increases the chances of finding potential cells 

round a host, which meets various constraints for virus trans- 

ission compared to a traditional Moore scheme of 8 cells. This 

nables the reproduction of an observed infection rate, especially 

uring lockdown conditions. 

Additionally, the transmittable neighbourhood of range r = 3 

rings in the following interactions of importance observed in 

ovid-19 propagation in to the model. N 

1 
i j 

represents the primary 

ontacts and N 

2 
i j 

represents the secondary contacts to infectious 

erson. N 

3 
i j 

takes into account the exposure due to the movement 

f people in the locality. All the 48 cells in the transmittable neigh- 

ourhood are examined to identify potential S state cells which 

ay get infected in a particular time step. The model algorithm 

ill scan the extended neighbourhood only if potential cells are 

ot found in lower ranges. 

.3. Virus transmission in transmittable neighbourhood 

Transmission of the SARS-CoV-2 virus is reported to happen 

hen there is direct, indirect or close contact between infected 

ersons and others. Testing, identifying and isolating infected peo- 

le is an important step in breaking the chain of virus transmission 

46] . The computational model thus should include parameters ac- 

ounting for local interaction of people for realistic forecasting of 

he disease dynamics [25,47] . Two parameters, namely, social iso- 

ation factor for the locality and social isolation factor for the indi- 

idual, are defined to account for the possibility of movement and 

ontact of people. These factors represent the probability of virus 

ransmission and bring in the stochasticity of COVID-19 dynamics 

nto the model. 

The imposed restrictions to movement in a region is repre- 

ented by social isolation factor for locality λl , with λl = 0 for un- 

estricted movement and λl = 1 for total restriction. The value of 

l is the same for the entire lattice and is kept constant for a par- 

icular duration of time such as the lockdown period. The move- 

ent of an individual in a region depends on the receptiveness of 

estrictions and regulations by the individual. The social isolation 

actor for the individual λp , which is unique and time-dependent 

ccounts for this. The value of λp is randomly generated in the 

ime step and has a range of 0 to 1, with 0 representing total com-

liance and 1 representing no compliance to restrictions. For an in- 

ected individual, the condition λp < λl , indicates that the person 

omplies with imposed restrictions and virus transmission will not 

appen from that individual. Whereas the condition λp ≥ λl , indi- 
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Fig. 1. Neighbourhood schemes and boundary conditions. 
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ates the possibility of contact between an infected individual and 

usceptible people, and a high chance of transmission. 

If the condition λp ≥ λl is satisfied for an infected cell, then 

he procedure of identifying exposed cells in its neighbourhood in- 

olves a two-step process. Both these steps are sequentially exe- 

uted in each time step. In the first step, the transmittable neigh- 

ourhood of the infected cell is examined and a finite set { C i j } with

ll potential S state cells is created. The elements of the set are a 

uple, (i, j, 
∑ 8 

1 v ) ∈ { C i j } , which contains indices i, j of each S state

ell and a sum of state values of its transition neighbourhood 

∑ 8 
1 v . 

he sum of state values is an indication of the proximity and dura- 

ion of local interaction between potential and all infected individ- 

als in its transition neighbourhood. { C i j } can be an empty set or

an have a maximum cardinality of 4 r(r + 1) in time t . An empty

et results when no susceptible cells are available in the transmit- 

able neighbourhood. This is the second condition, after λp < λl , 

hat leads to a stochastic outcome of the model. 

In the second step, R t number of cells in { C i j } are marked as

nfected by assigning v = 1 , starting from the cell with the high-

st value of 
∑ 8 

1 v and proceeding in descending order. The number 

 t represents the maximum number of transmission from a sin- 

le host per time step. The value of R t can be kept as constant or

andomly selected from a set of numbers in each time step. Even 

hough R t could range from 1 to cardinality of { C i j } , selecting a

igher value will result in a sudden and unrealistic spread of in- 

ection in few time steps. Hence, in the present study a constant 

alue of R t = 2 is used. It may be noted that R t is not the same

s the basic reproduction number R o which represents the average 

umber of secondary infections caused by an infected individual 

ntroduced to a susceptible population [34,48] . 

.4. Transition rules and boundary conditions 

The global state configuration L 

t of the CA is updated in dis- 

rete time steps as a sequence of mappings F : L 

t → a , a ∈ A ,

here F represents the local transition function. The transition 

ules can be formulated as follows, 

• A cell in an infectious state infects a maximum of R t susceptible 

cells in its transmittable neighbourhood when social isolation 

factor λp ≥ λl . 
• The R t number of susceptible cells are identified in decreasing 

order of their sum of state values. 
4 
• The value of any state other than susceptible is updated se- 

quentially in each time step with v = v + 1 until v = t R . 

In terms of assigned state values v , the transition rules can be 

ritten as Eq. (1) . 

 : L 

t → v , v ∈ V 
 (x t+1 

i j 
) = 1 for v (x t 

i j 
) = 0 if x t 

i j 
∈ { C s 

i j 
} 

 (x t+1 
i j 

) = v (x t 
i j 
) + 1 for 0 < v (x t 

i j 
) < t R 

(1) 

Here, { C s 
i j 
} ⊂ { C i j } has R t number of elements with maximum 

alues of 
∑ 8 

1 v . It may be noted that only the transition from S to 

state takes place as per the procedure explained in Section 2.3 . 

ll other mappings f t+1 
a (x t 

i j 
) , a ∈ A\ E progresses in time as map-

ing to the sequence of states in A , for the duration considered 

or simulation as f τa (x t 
i j 
) , 0 � τ � (t − 1) . 

The initial configuration of the CA consists of only susceptible 

nd infected states i.e., at time t = 0 , L 

0 = { S, E} . The state val-

es of all lattice cells are assigned v = 0 , except the infected cells

hich are assigned a state value of v = 1 . The infected states are

andomly assigned in the lattice. An adiabatic boundary condition, 

n which the boundary cells of the lattice are mapped with their 

djacent cell states ( Fig. 1 ), is used in the simulation to handle evo-

ution at lattice boundaries. The mapping can be mathematically 

epresented as Eq. (2) . 

 1 j = x 2 j , x m j = x (m −1) j , j = 1 . . . n 

 i 1 = x i 2 , x in = x i (n −1) , i = 1 . . . m 

(2) 

This boundary condition is applied and boundary cells are 

pdated in each time step after lattice computations are over. 

he supplementary file describes the model algorithm in detail.. 

 computer code is written in Python programming language 

ased on this algorithm. The simulations and analysis are carried 

ut on a computer with AMD Ryzen 

TM 3 2200U processor with 

adeon 

TM Vega 3 Graphics card and 4 GB RAM. 

. Sensitivity analysis of model parameters 

The probabilistic cellular automata model presented above is 

ested with a fixed susceptible population to see if the model can 

eproduce the macroscopic behaviour of a pandemic propagation. 

t is assumed that the entire susceptible population is infected and 

ecovered in due course. Further, a parametric study assesses the 

ualitative response of the model to changes in input parameters. 

able 2 shows the details of parameters used in the simulations. 
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Fig. 2. Temporal evolution of the probabilistic cellular automata. 

Table 2 

Model parameters used in simulations. 

Parameter Notation Value 

Discrete time step t 1 day 

Range of neighbourhood r 1,2,3 

Maximum transmission R t 2 

Lattice dimension (m = n) m 100, 150, 200 

Initial infected I 1 

Initial recovered R 0 people 

Latent period L p 1 - 4 days 

Infectious period I p 3 - 9 days 

Recovery time t R 7, 14, 21 days 

Social isolation factor, locality λl 0 

Social isolation factor, person λp Random (0,1) 
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Fig. 3. Temporal evolution of active infections with cellular automata parameters 

( L p = 1 , I p = 4 , t R = 14 ). 
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.1. Time trajectory of COVID-19 propagation 

The simulation is initiated with one infected cell placed at the 

enter of the lattice and the temporal evolution of the PCA is 

hown in Fig. 2 a. The susceptible population decreases, the recov- 

red population increases, and the active infections (states E, L, I, T ) 

xhibit growth and decline in time. The time taken for 10 0 0 re-

eated simulations for statistical analysis is 156 min. The rate of 

nfection increases with time, as the percentage of infected popula- 

ion increases and further accelerates the spread in the susceptible 

opulation. The recovered cases gradually increase after the spec- 

fied recovery time and surpass the active cases with progress in 

ime. Simulation with this parametric configuration shows a peak 

f 50 % active cases, after 49 days of infection onset. 

It can be seen that the model reproduces the macroscopic trend 

f pandemic propagation anticipated in a susceptible population. 

he initial positioning of the infected cell in the lattice significantly 

ffects the temporal evolution of the CA as the propagation front 

rows. The supplementary file contains plots showing the evolu- 

ion of lattice cells in their respective coloured states for better 

ata visualisation. 

The number of active cases for the 49th day obtained from all 

0 0 0 simulations is shown in Fig. 2 b to analyse the distribution

f stochastic outcome from the model. The data exhibits a normal 

istribution with a mean of 5049 and has a standard deviation of 

4. The corresponding error estimate based on 95% confidence in- 

erval is below 1% of the mean value. 

.2. Effect of parameters on COVID-19 propagation 

The effect of CA configuration on the time trajectory of the pan- 

emic is studied first. The lattice dimensions (size of the suscep- 
5 
ible population) and the range r of the transmittable neighbour- 

ood are two parameters of the CA that influence the peak and 

uration of the pandemic. 

Fig. 3 shows that, when r is held constant at 1, for a lattice di- 

ension of m = 100 the active infections reach a peak of 39.4% on 

ay 52, and the entire population is infected and recovered in 77 

ays. For lattice dimensions m = 200 , the peak is 21.1% on day 102,

nd it takes 140 days for infection and recovery of the entire pop- 

lation. The maximum transmission R t and recovery time t R deter- 

ine infection and recovery rates in the model. Both parameters 

re held constant in these simulations. The number of active cases 

hus linearly increases as the disease spreads in the fixed popu- 

ation and decreases rapidly after the peak value when the recov- 

ry rate dominates the infection rate. Evidently, as the size of the 

opulation increases, it takes more days to infect all. For the case 

 = 200 , when the range r = 3 , the rate of propagation is steep,

ith a peak of 57.2% on day 37 and recovery on day 59. Hence, the

ate of virus transmission is slow in a large population compared 

o that in a small population when the range r is held constant. 

hereas, the per-day infection increases with an increase in the 

ange r, resulting in a rapid propagation of virus in a population of 

onstant size. 

The effect of significant infection characteristics such as latent 

eriod, infectious period and recovery period on the progress of 

he pandemic is now studied. The latent period is the time taken 

or the virus to develop the ability to transmit after infecting a 
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Fig. 4. Temporal evolution of active infections with infection characteristics. 
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Fig. 5. Temporal evolution of active infections with lockdown conditions. 
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ost. Fig. 4 a shows that, latent period has a sensitive influence on 

he model output when other parameters are held constant. When 

he latent period is one day, the virus transmission is rapid in the 

opulation and when it is four days, the virus transmission occurs 

t a slower rate. In these simulations, lattice size is m = 100 and

ange r = 3 . The rapid rise and decline of the L p = 1 trajectory is

lso because of the change in range r = 3 , as a comparison with

ame latent period curve in Fig. 3 ( m = 100 , r = 1 ) shows. For the

OVID-19 pandemic, studies report a latent period of 2 to 6 days 

48] , and as mentioned in Section. 2.1 , the model is flexible to in-

lude such range of values. 

Another important period in the life-cycle of the virus is the in- 

ectious period during which the virus remains contagious and its 

ransmission occurs through various spread mechanisms. If the in- 

ectious period is more, the host could transmit the virus to many 

eople. The present CA configuration, however, has limitations in 

apturing this fact, as a host in an infectious state is restricted 

o transmit only to the S state cells in its transmittable neigh- 

ourhood. As the infectious period is increased, the host cell may 

e in the infectious state, but this is not reflected in the rate of 

andemic propagation, as no additional susceptible cells are avail- 

ble to infect in the neighbourhood. The identical time trajectory 

ith different infectious periods and same average recovery time 

 R = 14 days, shown in Fig. 4 b, is attributed to this constraint in

he present model. Fig. 4 b also shows the effect of average recov- 

ry time of the disease, t R , on rate of propagation. Clearly, when 

 R = 21 , the peak of active cases is high compared to that for t R = 7

r 14. In the model recovery period t R is user-defined, and hence 

t is easy to adapt the value reported by authorities. 

. Results and discussions 

Control measures such as lockdowns, steps such as relaxing re- 

trictions and allowing migration of people to revive the economy 

nd resume daily life and mitigation strategies such as vaccination 

oll out are some of the vital phases observed in the course of the 

OVID-19 pandemic. The developed model is used to carry out a 

arametric study to simulate these phases and the results are dis- 

ussed in this section. 

.1. Effect of lockdown on time trajectory of pandemic 

Lockdowns aim to prevent the movement and interaction of 

eople and thus break the chain of the transmission cycle. As de- 

cribed in Section 2.3 , the social isolation factor for the locality λl , 

s the parameter that indicates the intensity of lockdown in that 

egion. In the simulations, the value of λ is 0 at the start, and on
l 

6 
he day of lockdown it is changed to a higher value by invoking a 

ubroutine. The randomly generated social isolation factor for the 

nfected person λp , is then compared with λl . Virus transmission 

an happen if λp ≥ λl . The probability of λp ≥ λl reduces with an 

ncrease in λl during the lockdown, thus reducing the rate of virus 

ransmission. If there is no lockdown, then all infected individual 

ould transmit the virus to their susceptible contacts. The reduc- 

ion in the rate of infection with the increase in values of λl , im-

osed on day 15 onwards, is shown in Fig. 5 . 

A lower value of λl shows a higher rate of infection propaga- 

ion. As λl is increased from 0.55 to 0.85, the rate of virus trans- 

ission decreases as indicated by the change in slope of active 

ases. For λl = 0 . 55 , the peak of active cases is 42.2 % on the

6th day, and all individuals are infected and recovered in 75 days. 

hen λl = 0 . 85 , the rate of virus transmission is slow and the

eak cases has a lower value of 18.4 % on the 83rd day but it takes

47 days for all active cases to recover. The different values of in- 

ection rate before and after imposing lockdown leads to the two 

ocal peaks observed on this curve. It can be seen that when λl 

 0.95, the number of active cases rapidly declines after impos- 

ng lockdown and reaches zero in 46 days. Only a few individu- 

ls are infected in this case which emphasizes the significance of 

trict lockdown on mitigating the pandemic. When λl = 0.65 or 

.75, lockdown is not very effective and the entire population is 

nfected eventually. 

Previous studies show that a high percentage of reduced con- 

acts through social isolation limits the spread of new cases 
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Fig. 6. Temporal evolution of active infections with different migration conditions 

( M day is migration start day). 
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39,47] . The timing of enforcing lockdown restrictions is also cru- 

ial, with earlier implementations leading to lesser infections [3,5] . 

he present study also agrees with these results. In lockdown sit- 

ations, if movement and interaction of people are there, then the 

nfection will spread gradually with a smaller peak but for a longer 

uration. The healthcare system may not collapse but might ex- 

aust the resources and people involved in it. Aggressive lockdown 

an curb the curve in a short span without infection spreading to a 

arge section of the population. Different non-pharmaceutical inter- 

entions have varying effects on disease transmission [6] , and the 

resent model can provide initial estimates of such interventions 

y choosing appropriate values of social isolation factors. 

.2. Effect of migration on time trajectory of pandemic 

Migration changes the size of the population and the dynam- 

cs of the pandemic. In a closely monitored and controlled region, 

he number of people migrating by various modes of transporta- 

ion is accurately registered. The size of the cellular automata is 

ncremented by a value δ in each time step to account for the 

igrating population. It is assumed that people are only migrat- 

ng into the region and not moving out, so the size of the lattice 

nly increases. In the migrating population, susceptible as well as 

xposed (infected) people will be present. Exposed states are as- 

igned proportionally and distributed randomly in the lattice in 

ach time step to account for this. 

We studied two factors of importance in allowing migration in 

 region. First, the day on which migration can be started in a 

egion with lockdown restrictions and second, the relaxations in 

ockdown that can be allowed during migration. Fig. 6 shows a 

omparison of active cases per day when migration is allowed on 

ay 30, 45 and 60 with strict lockdown conditions of λl = 0 . 85 and

= 5 . In all three cases, the second surge of active infections hap-

ens, which gradually declines with time. The increase in suscep- 

ible population and infection rate due to migration results in the 

econd higher peak observed in these cases. For migration day 30, 

he peak of active cases is 40.7 % on day 53, and for migration day

0, the peak is 35.2 % on day 82. 

The effect of relaxing the lockdown restrictions during migra- 

ion is also shown in Fig. 6 . The active cases per day under differ-

nt lockdown conditions of λl = 0.85 and 0.55 are compared with 

o lockdown condition of λl = 0 for migration start day of 60. Re- 

axing the lockdown restrictions during migration rapidly increases 

he active cases close to that of λl = 0 . A sharp decline that follows

s due to a high rate of recovery in comparison to new infections. 
7 
The results are in line with the observations of Sirakoulis et al. 

32] , that movement of people increases the overall infected popu- 

ation. A second surge is unavoidable during migration, but delay- 

ng the process can limit the peak of active cases. The spread of 

nfections is also closely linked to the interactions between peo- 

le as described in Section. 4.1 . The surge in infections observed 

n delayed migration is due to this fact. Thus, the results infer that 

igration should be allowed only under strict lockdown conditions 

o that the peak of active cases is limited to a manageable level. 

.3. Effect of vaccination on time trajectory of pandemic 

Universal immunisation is the scientific solution to control and 

itigate a pandemic. As inoculation drive is a time-consuming pro- 

ess, it is vital to study the effect of various factors of vaccination 

rogram on infection reduction to aid in formulating a vaccination 

olicy. In the present work, we look at how three such factors, C v ,

 v and d v influence the dynamics of COVID-19. Here C v is the per 

ay capacity of the healthcare system to administer vaccination, r v 
s the rate parameter of vaccination and d v is the day on which 

accination is started, 

To simulate the vaccination program, the number of people to 

e vaccinated in each time step is estimated as a function of C v 
nd r v . An equal number of people in the susceptible state are then 

andomly selected and marked as vaccinated in the lattice [32] . A 

alue of v = 16 , which is higher than the recovered state value, is

ssigned for vaccinated states to identify them as immune indi- 

iduals. Since the health system capacity limits the maximum vac- 

inations per day, in the model a logistic function that converges 

o this capacity estimates the per-day registrations R v . Time de- 

ay in reaching this maximum per day capacity depends on factors 

uch as availability of vaccine and hesitancy of people, which is 

ccounted by the rate parameter r v in the function. 

 v = 

C v 

1 + 

C v −R i 
R i 

e −r v t 
(3) 

he logistic function is shown in Eq. (3) , in which the per day vac-

ination capacity C v is provided as a percentage of total susceptible 

opulation, t is the time step and R i represents the initial regis- 

ration on d v = 1 . In the following simulations, C v = 0.01, r v = 0 . 6 ,

 v = 1 and R i = 1 unless otherwise specified. 

Fig. 7 a shows the effect of rate parameter r v on peak and dura- 

ion of the pandemic. A notable reduction in per day active infec- 

ions is observed with an increase in r v . The peak percentage of ac- 

ive infections with r v = 0.2 is 53 % on day 36 and it reduces to 38

 on day 34 with an increase in r v = 1. An increase in r v from 0.2

o 0.6 significantly reduces the peak cases, whereas further change 

o 1 does not, because in the logistic function r v has an exponen- 

ial influence on the growth of per day registration. The duration of 

he pandemic is comparable in all the cases as it mainly depends 

n the recovery time. 

Fig. 7 b shows a comparison of the time trajectory of active 

ases without vaccination and with different vaccination capaci- 

ies. As C v increases, the peak of active cases reduces due to the 

uick rise in the immune population. If C v is at least 10% of the 

usceptible population, then a substantial decline in active infec- 

ions and duration of the pandemic is observed. Starting the vac- 

ination campaign at the earliest possible day reduces the peak of 

ctive cases ( Fig. 8 ) and subsequently the pressure on healthcare 

ystem. The peak cases is 56.6 % on day 37 without vaccination, 

hereas it is 50 % on day 35 for d v = 25 and 40.8 % on day 34, for

 v = 0. 

The present model is also used to investigate the peak and du- 

ation of a second wave of infection in a partially vaccinated popu- 

ation. An immune state V is assigned for vaccinated people in the 

nitial configuration of the lattice. As shown in Fig. 9 , when the 
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Fig. 7. Temporal evolution of active infections with parameters estimating number 

of vaccinations per day. 

Fig. 8. Effect of vaccination start day d v on active infections. 
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Fig. 9. COVID-19 spread in a partially vaccinated population. 

Table 3 

Model parameters used in validation. 

Common parameters (Notation) Value 

Initial parameters 

Lattice dimension (m ) 25 

Infection parameters 

Latent period (L p ) 2 days 

Infectious period (I p ) 3 - 6 days 

Recovery time (t R ) 14 days 

Social isolation factor (λl ) 0.1 

Simulation for 110 days 

Lockdown (day 15) λl = 0 . 75 

Migration (day 60) λl = 0 . 60 , δ = 5 

Simulation for 237 days 

Lockdown (day 15) λl = 0 . 75 

Migration (day 60) λl = 0 . 60 , δ = 1 

Relaxing restrictions (day 110) λl = 0 . 50 , δ = 4 

Flattening of curve (day 220) λl = 0 . 65 , δ = 1 
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ercentage of the immune population is increased from V = 15% 

o 30% and 45%, the peak of the active infections is seen to re-

uce significantly. The decline in susceptible population and in- 

rease in recovered population with an initial immune population 

f V = 45% is also shown in this figure. 

The results show that an increase in the percentage of the vac- 

inated population slows down the spread of new infections. An 
8 
ccelerated vaccine rollout and adherence to non-pharmaceutical 

nterventions until adequate vaccination coverage are critical in 

ontrolling the COVID-19 pandemic [8] . Initially, people received 

he COVID-19 vaccination campaign with hesitancy due to various 

oncerns [9] , and now there is a shortage of supply. The model can 

orecast the overall impact of the vaccination program and priori- 

ise population subgroups for effective inoculation. 

.4. Model performance and validation 

To assess the performance of the computational model and to 

alidate the results, a comparison of the simulated and actual pan- 

emic propagation data for the state of Kerala, India, is done. The 

rst case of the COVID-19 pandemic in India is reported in Kerala 

n 30 January 2020. The data for 237 days from 9 March 2020, 

hen the first wave of infections started, to 31 October 2020 is 

sed for comparison [49] . A statewide lockdown is declared from 

3 March 2020, and after lifting of restrictions in phases, notable 

igration to the state started on 7 May 2020, which are equal to 

5th and 60th day respectively from 9 March 2020. 

Table 3 lists the model parameters used in the validation. All 

ther parameters are same as given in Table 2 . The lockdown and 

igration conditions are simulated by changing the value of pa- 

ameters on day 15 and 60. From day 60, the size of the lattice 

s proportionally increased ( m = m + δ) per time step to account 

or the change in susceptible population. The additional exposed 

ases introduced due to migration is taken as 4% of the population. 

ig. 10 a shows a comparison for the first 110 days, with lockdown 

tarting on day 15 and migration starting on day 60. Time taken 
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Fig. 10. Validation of simulated results with actual data from Kerala, India. 
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or 10 0 0 iterations for statistical analysis is 112 min. The shaded 

egion indicates the confidence interval with a cumulative proba- 

ility of 95%. The results establish the ability of the present model 

o reproduce the trajectory of the pandemic with appropriate val- 

es of model parameters. 

The forecast for longer durations with constant model parame- 

ers resulted in the divergence of the trajectory with an increase in 

opulation. To improve the results, the parameters are changed in 

elected intervals and an estimate of incoming infections based on 

ctual data is given as input. The model parameters are changed 

n day 60, 110 and 220 as shown in Table 3 . The percentage

f infected individuals in the incoming population is estimated 

rom the actual data as the ratio of the seven-day rolling aver- 

ge of infections to the seven-day rolling average of individuals 

n quarantine. Fig. 10 b shows a close comparison of actual and 

imulated data for a longer duration of 237 days. For this case, it 

akes 186 min to complete 50 iterations for the statistical anal- 

sis. Hence, the model with appropriately estimated parameters 

rom actual data forecasts the dynamics with many infections in 

 longer duration. 

Realistic forecasting of the time trajectory of the pandemic is 

btained with few parameters when the population size is small. 

s the size of the population increases, the results deviate from ac- 

ual data and simulating the exact trajectory requires changing the 
9 
alues of model parameters in smaller intervals of time. Hence, the 

resented model with simple transition rules and neighbourhood 

chemes is ideal for simulating COVID-19 outbreak in a population 

ubgroup with fewer computational resources and time. 

. Conclusion 

The unprecedented crisis of the COVID-19 pandemic has af- 

ected the lives of millions of people across the world. Decen- 

ralised cluster containment, which concentrates on small regions 

r population subgroups, facilitates early detection and isolation of 

nfected cases and efficient use of resources in the long run. This 

tudy proposes a computational model based on probabilistic cel- 

ular automata for forecasting the peak and duration of the COVID- 

9 propagation in a cluster under various conditions. The cellular 

utomata configuration consists of a two-dimensional regular lat- 

ice, representing a population subgroup, with each of its cell rep- 

esenting a person at a particular stage of pandemic. A transmit- 

able and transmission neighbourhoods are defined around a sin- 

le host to identify the most probable susceptible individuals. The 

ransition rule states that virus transmission occurs when suscep- 

ible individuals are present in the transmittable neighbourhood of 

he infected individual and violates the conditions of social iso- 

ation. The size of the lattice is increased proportionally to ac- 

ommodate incoming susceptible and infectious populations dur- 

ng migration. 

The sensitivity of model parameters such as the size of the sus- 

eptible population, range of the transmittable neighbourhood and 

arious disease characteristics on the time trajectory of the pan- 

emic is simulated first. A statistical analysis of the output shows a 

ariation of results within 1% of the mean data. The impact of lock- 

own, migration and vaccination on the dynamics of the pandemic 

s then studied. Results indicate that stringent lockdown, controlled 

igration under strict social isolation conditions and a higher vac- 

ination capacity is essential for a smaller peak and duration of 

he pandemic. The model performance is assessed and validated 

y simulating and comparing the results with actual COVID-19 data 

rom the state of Kerala in India. 

Simulations using the present model, with minimum parame- 

ers and computational requirements, can provide valuable insights 

nto evolving disease dynamics in a cluster for effective decision 

aking and quick response. Improvements by including fluctua- 

ions in migrating population, using scientifically estimated social 

solation factors and testing different vaccination scenarios with 

eal data will enable the model to forecast the long-term behaviour 

f the pandemic. 
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