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Background and Objective: COVID-19 pandemic continues unabated due to the rapid spread of new mutant
strains of the virus. Decentralized cluster containment is an efficient approach to manage the pandemic
in the long term, without straining the healthcare system and economy.

In this study, the objective is to forecast the peak and duration of COVID-19 spread in a cluster under dif-
ferent conditions, using a probabilistic cellular automata configuration designed to include the observed
characteristics of the pandemic with appropriate neighbourhood schemes and transition rules.
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Covid-19
Computational model

Probabilistic cellular automata Methods: The cellular automata, initially configured to have only susceptible and exposed states, enlarges

Lockdown and evolves in discrete time steps to different infection states of the COVID-19 pandemic. The transition
\l\//l‘gr_atlc;f‘ rules take into account the probability and proximity of contact between infected hosts and suscepti-
daccination

ble individuals. A transmittable and transition neighbourhoods are defined to identify the most probable
individuals infected from a single host in a time step.

Results: The model with novel neighbourhood schemes and transition rules reproduce the macroscopic
behaviour of infection and recovery observed in pandemics. The temporal evolution of the pandemic
trajectory is sensitive to lattice size, range, latent and recovery periods but has constraints in capturing
the changes in the infectious period. A study of lockdown and migration scenarios shows strict social
isolation is crucial in controlling the pandemic. The simulations also indicate that earlier vaccination with
a higher capacity and rate is essential to mitigate the pandemic. A comparison of simulated and actual
data shows a good match.

Conclusions: The study concludes that social isolation during movement and interaction of people can
limit the spread of new infections. Vaccinating a large proportion of the population reduces new cases in
subsequent waves of the pandemic. The model and algorithm with real-world data as input can quickly
forecast the trajectory of the pandemic, for effective response in cluster containment.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The world is facing an unprecedented challenge. The challenge,
Coronavirus Disease-2019 (COVID-19), caused by Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2), first identified in
Wuhan, China, in December 2019 is still spreading havoc. The
World Health Organization (WHO) declared COVID-19 a global pan-
demic on 11 March 2020 [1], and this infectious disease is now
showing further surges due to the proliferation of mutant strains
of the virus.

Stringent implementation of healthcare advisories from WHO,
strategies such as national lockdowns [2,3] and effective interven-
tions by Governments in testing, isolating and treating the infected
aided to control the spread of the virus in its first wave [4-G]. Nev-
ertheless, the viral pandemic affected human life and the global

https://doi.org/10.1016/j.cmpb.2021.106402
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economy in an adverse manner [7]. The relentless efforts of the
scientific community in developing vaccines for the disease is fi-
nally a success and vaccination programs are taking place all over
the world [8,9].

Strategic planning and efficient deployment of resources is
crucial in controlling this pandemic without overwhelming the
healthcare system or further affecting the economy [10,11]. This re-
quires information on future demands of medical equipment and
additional infrastructure that may be needed [12]. Computational
models can provide valuable insights in this regard by forecasting
the growth trends of the pandemic under different circumstances
[13-15]. Possibility for repeated and cost-effective parametric stud-
ies in a virtual environment, flexibility to include and adapt to real-
time data and simulation in a short duration, are some of the other
advantages of modeling.
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Mathematical modeling of infectious diseases is a mature area
with many well-known methods [16,17] and there have been sev-
eral efforts in modeling COVID-19 too [18,19]. Simple deterministic
compartment models are a popular approach in simulating evolv-
ing pandemics [20]. In this approach, the entire population is di-
vided into distinct compartments at a particular instant of time,
based on infection status. The simplest compartment model is SIR
model, which consists of three states, S for susceptible individuals,
I for infected and R for recovered individuals [21]. Additional com-
partments can be added to the model to simulate other infection
states observed in a pandemic. These are either formulated and
computed as ordinary differential equations or methods such as
Cellular Automata (CA) approach are used for the simulation [22-
24].

COVID-19 exhibits different transmission characteristics com-
pared to other infectious diseases [25] and mathematical models
have been successful in identifying relevant parameters and repro-
ducing observed disease dynamics [26-30]. CA configurations, with
their flexibility for defining heterogeneous states and local rules for
state transitions based on neighbourhood information, are ideal for
simulating epidemics [31-33]. This method has been successfully
used for predicting long term behaviour of COVID-19 [34] and also
to understand the effect of lockdown measures in a region [35,36].

In a recent study, Ghosh and Bhattacharya [37], used Probabilis-
tic Cellular Automata (PCA) with simulation parameters optimized
using a sequential genetic algorithm to forecast COVID-19 dynam-
ics. This combination is shown to accurately estimate the time tra-
jectory of COVID-19 when physically meaningful parameters are
used. In this CA configuration, the initial population with differ-
ent disease states are distributed in a 2D lattice of fixed size. In
another work, the same authors incorporated factors like popula-
tion density, testing efficiency and movement restriction into a PCA
model through appropriate probabilities to explain the variability
of disease dynamics observed in different countries [38].

In another important work, Schimit [39], studied the impact of
social isolation on dynamics of COVID-19 using PCA and ordinary
differential equations. The model consists of eight disease states
and fifteen parameters and uses an extended neighbourhood to es-
tablish random contact networks between cells. Each state transi-
tion is based on either probabilities or pre-defined periods to ac-
count for the uncertainties in COVID-19 propagation. The results
suggest that maintaining social isolation is crucial to keep the pan-
demic spread under control and to avoid the overwhelming of the
healthcare system. The model is formulated for a country, with a
fixed lattice size of the order of 210 million and the simulation is
reported to take over a week to complete.

A spatiotemporal epidemiological forecast model for short and
long term local infection risk predictions for smaller regions such
as counties is proposed by Zhou et al. [40]. The work shows that,
by using local information in the model through a CA which en-
ables interconnectivity and regional variations, the prediction error
is significantly reduced compared to that for a larger space. Dai
et al. [41] predict the spread patterns of COVID-19 in cities using a
CA model that incorporates factors such as sex ratio, age, immunity
and various disease characteristics. The movement of the popula-
tion is simulated by defining moving proportion and a maximum
moving step length in a fixed lattice size with occupied and empty
cells.

Decentralised response through cluster containment or regional
lockdowns is an effective approach to manage the pandemic in
a short period [42]. Real-time surveillance of small geographical
clusters called micro-containment zones enables error-free data
collection and analysis, followed by rapid decision making and
interventions with minimum disruption to the overall economy.
Local administration can mobilise their resources to support the
community during the containment and also to implement the
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find, test, trace, isolate and support system [4], successfully carried
out to control the spread of the pandemic in its first wave. Addi-
tionally, in cluster containment, the size of the susceptible popula-
tion, which is a crucial parameter in determining the spread of the
pandemic [12] is small and can be easily monitored.

The computational model in the present work is developed
based on the idea of monitoring a susceptible population in a clus-
ter to mitigate the pandemic. The susceptible population can be
people in a geographical region, or a subgroup in the region iden-
tified through the process of contact tracing and kept in quaran-
tine, or people in a particular age group or gender [43]. The size of
the susceptible population is not constant but can change during
the spread of the pandemic or migration of people. In the litera-
ture, most studies on modelling COVID-19 using CA have used a
fixed lattice size with human-occupied and empty cells. We pro-
pose to use a variable size lattice, initially with only susceptible
and infected cells in it, which increases in size to accommodate the
incoming susceptible or infectious population. From the simulation
perspective, concentrating on the susceptible population eliminates
empty cells, keeps the size of the lattice small, computational time
and memory requirements to a minimum and model varialbes to
a few. Hence, in this work, we develop a PCA model, by defin-
ing novel neighbourhood schemes and transition rules to include
COVID-19 transmission and propagation characteristics and investi-
gate the disease dynamics in a variable susceptible population un-
der different conditions.

The next section describes the model and algorithm in detail.
Important model parameters are identified from a sensitivity anal-
ysis in the third section. The fourth section discusses the effect of
lockdown, migration and vaccination on COVID-19 dynamics and
presents a validation of the model.

2. Methods: probabilistic cellular automata

Cellular automata are discrete dynamical systems with a finite
number of identical cells [33]. The information of interest is stored
in each cell and is called the state of the cell. There could be a
finite set of distinct states depending on the phenomena being in-
vestigated. The states of the cells are updated simultaneously in
discrete time steps, according to a pre-defined transition function
[44]. The evolution of the state of a particular cell depends on
its state and the states of its local neighbourhood of cells. The
transition functions may be deterministic or probabilistic and are
uniform in space and time. These are either given by analytical
functions or as a set of transition rules [45]. The local transition
functions are formulated such that, they replicate the physical be-
haviour of the system being studied. The cellular automata C, thus
can be represented as a tuple of four elements C = (£, A, N, F),
namely lattice £, state A, neighbourhood A and transition func-
tion F [15].

The cells of a CA can be represented as uniformly arranged el-
ements in a two-dimensional space Z2. Mathematically the lattice
L={x;1<i<m,1<j<n}, where £c 72, is a two dimensional
array of m x n cells, and x;; € £ for the cell x with indices i and j.
A two-dimensional square lattice with m = n is used in the present
work. The detailed formulation of A, N and F are described in the
following sections.

2.1. Cellular automata configuration for Covid-19 simulation

In the present CA configuration, a cell represents a person, and
various stages of the infection life-cycle undergone by the per-
son, from susceptible to recovery or vaccinated, are represented by
the state of that cell. The probable state of a cell is an element
of a finite and ordered state set defined as A= {S,E,L,I.T,R,V}.
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Table 1
Cellular automata states and assigned numerical values.

CA State a Notation of a State value v
(acA) (vev)

Susceptible (potential) S 0

Exposed (infected) E 1

Latent L 2,3

Infectious 1 4to8

Treatment T 9to 14

Recovered (Removed) R tg=15

Vaccinated Vv tr+1=16

Here the epidemiological states are represented by S the suscepti-
ble (potential) state, E exposed (infected) state, L latent state, I in-
fectious state, T treatment state, R recovered (removed) state and
V the vaccinated state.

In the computer code, a particular state is identified by assign-
ing a single or range of numerical values called state values to
it. The state values, denoted by v, starts with 0 and extends to a
user-defined upper limit t;, which represents the average time for
recovery. Every state a € A, is assigned a state value v as a func-
tion of time by g(t) : V — A where V = {v,0 < v < tg}. The values
0 and 1 represents susceptible and exposed states respectively. The
details of other states in A and corresponding numerical value set
V used to represent these states are given in Table 1. The values
of latent, infectious and treatment periods are flexible and can be
decided based on scientific studies.

A susceptible state v =0 will become infected only as per lo-
cal transition rules to be defined shortly. All other state values are
sequentially updated in each time step by v = v + 1. This updating
represents the movement from the exposed state to the recovered
state through different stages of infection. The discrete-time step
used in the simulation is 1 day. Hence, the state value v of a cell
also indicates days passed after that cell became infected. The up-
dating of state value is stopped when v = t, the recovered state.
It is assumed that the vaccinated people are immune to infection
and all infected people are recovered in due course of time.

A cell, with a particular state assigned to it at time t, is denoted
by xfj. There will be a corresponding global state configuration of

CA denoted by £! = {xlfj}, which is an array of states of all cells

at time t. The most probable S state cells, in £f, to which virus
transmission can happen in a particular time step are identified by
the procedure described further.

2.2. Transition and transmittable neighbourhoods

The neighbourhood of a cell is a set of its surrounding cells
whose states influence the evolution of that cell. The state xfffl of
a cell at time t + 1 is a function of its own state and that of its
neighbourhood cells A c Z2? at time t. The number of cells in the
neighbourhood can be decided depending on the phenomena be-
ing simulated.

Two of the commonly used neighbourhood schemes in cellu-
lar automata computations are Von Neumann and Moore neigh-
bourhoods of range r =1 as shown in Fig. 1. In the Von Neumann
scheme, the states of x;; and its four adjacent cells excluding the
four diagonal cells constitute the neighbourhood; whereas in the
Moore scheme, states of x;; and all eight surrounding cells forms
the neighbourhood.

For a cell x;;, the Moore neighbourhood of range r is defined
as a finite set A, = {(k.]) e 7%, |k —i| <r and |l — j| < r}, where
(k,I) represents the indices of neighbourhood cells. Range r indi-
cates the number of adjacent layers of cells that are included in
the neighbourhood, such that the cardinality of Nl; is4r(r+1). A
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neighbourhood configuration /\/lzf contains information on states of
each cell in the neighbourhood at time ¢.

In the model, to simulate the local interactions of Covid-19
propagation, two types of neighbourhoods are defined. The first
one is an extended neighbourhood, called a transmittable neigh-
bourhood, defined around an infectious cell and the second is the
transition neighbourhood, defined around a susceptible cell. The
transmittable neighbourhood identifies all potential cells for virus
transmission, and the transition neighbourhood decides whether
that transmission will happen or not.

An infectious cell at time t can transmit the virus to many po-
tential cells in its transmittable neighbourhood, that become in-
fected at time t + 1. The transition of a potential cell from xle =Sto

xfj“ = E will but depend on states of cells in its transition neigh-
bourhood. A Moore scheme of r=1 around potential cell x,?j =S

is taken as the transition neigbhourhood and a Moore scheme of
r =3 around the cell x,?j =1 is taken as the transmittable neigh-
bourhood. The cardinality of /\/I} =8, /\/5 =24 and /\/3 =48 (Fig. 1).
Defining the transmittable neighbourhood as an extended Moore
scheme of 48 cells increases the chances of finding potential cells
around a host, which meets various constraints for virus trans-
mission compared to a traditional Moore scheme of 8 cells. This
enables the reproduction of an observed infection rate, especially
during lockdown conditions.

Additionally, the transmittable neighbourhood of range r=3
brings in the following interactions of importance observed in
Covid-19 propagation in to the model. Nl} represents the primary
contacts and Nj represents the secondary contacts to infectious
person. /\/3 takes into account the exposure due to the movement
of people in the locality. All the 48 cells in the transmittable neigh-
bourhood are examined to identify potential S state cells which
may get infected in a particular time step. The model algorithm
will scan the extended neighbourhood only if potential cells are
not found in lower ranges.

2.3. Virus transmission in transmittable neighbourhood

Transmission of the SARS-CoV-2 virus is reported to happen
when there is direct, indirect or close contact between infected
persons and others. Testing, identifying and isolating infected peo-
ple is an important step in breaking the chain of virus transmission
[46]. The computational model thus should include parameters ac-
counting for local interaction of people for realistic forecasting of
the disease dynamics [25,47]. Two parameters, namely, social iso-
lation factor for the locality and social isolation factor for the indi-
vidual, are defined to account for the possibility of movement and
contact of people. These factors represent the probability of virus
transmission and bring in the stochasticity of COVID-19 dynamics
into the model.

The imposed restrictions to movement in a region is repre-
sented by social isolation factor for locality A;, with A; =0 for un-
restricted movement and A; =1 for total restriction. The value of
A, is the same for the entire lattice and is kept constant for a par-
ticular duration of time such as the lockdown period. The move-
ment of an individual in a region depends on the receptiveness of
restrictions and regulations by the individual. The social isolation
factor for the individual A,, which is unique and time-dependent
accounts for this. The value of A, is randomly generated in the
time step and has a range of 0 to 1, with O representing total com-
pliance and 1 representing no compliance to restrictions. For an in-
fected individual, the condition A, < A}, indicates that the person
complies with imposed restrictions and virus transmission will not
happen from that individual. Whereas the condition A, > A, indi-
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Fig. 1. Neighbourhood schemes and boundary conditions.

cates the possibility of contact between an infected individual and
susceptible people, and a high chance of transmission.

If the condition A, > A; is satisfied for an infected cell, then
the procedure of identifying exposed cells in its neighbourhood in-
volves a two-step process. Both these steps are sequentially exe-
cuted in each time step. In the first step, the transmittable neigh-
bourhood of the infected cell is examined and a finite set {C;;} with
all potential S state cells is created. The elements of the set are a
tuple, (i, j, Z? v) € {G;}, which contains indices i, j of each S state
cell and a sum of state values of its transition neighbourhood Y5 v.
The sum of state values is an indication of the proximity and dura-
tion of local interaction between potential and all infected individ-
uals in its transition neighbourhood. {Gj;} can be an empty set or
can have a maximum cardinality of 4r(r + 1) in time t. An empty
set results when no susceptible cells are available in the transmit-
table neighbourhood. This is the second condition, after A, < A,
that leads to a stochastic outcome of the model.

In the second step, Ry number of cells in {G;} are marked as
infected by assigning v = 1, starting from the cell with the high-
est value of Z? v and proceeding in descending order. The number
R; represents the maximum number of transmission from a sin-
gle host per time step. The value of R; can be kept as constant or
randomly selected from a set of numbers in each time step. Even
though Ry could range from 1 to cardinality of {G;}, selecting a
higher value will result in a sudden and unrealistic spread of in-
fection in few time steps. Hence, in the present study a constant
value of R; =2 is used. It may be noted that R; is not the same
as the basic reproduction number R, which represents the average
number of secondary infections caused by an infected individual
introduced to a susceptible population [34,48].

2.4. Transition rules and boundary conditions

The global state configuration £! of the CA is updated in dis-
crete time steps as a sequence of mappings F: L' — a,a€ A,
where F represents the local transition function. The transition
rules can be formulated as follows,

o A cell in an infectious state infects a maximum of R; susceptible
cells in its transmittable neighbourhood when social isolation
factor Ap > A}

e The R; number of susceptible cells are identified in decreasing
order of their sum of state values.

e The value of any state other than susceptible is updated se-
quentially in each time step with v=v+ 1 until v = t.

In terms of assigned state values v, the transition rules can be
written as Eq. (1).
F Lt vvey
v(xgj.“) =1 for v(x)=0 if xj;e{C} (1)
v(xgj“) =v(x)+1 for 0<v(x) <t

Here, {C,.Sj} c {G;} has R; number of elements with maximum

values of Z? v. It may be noted that only the transition from S to
E state takes place as per the procedure explained in Section 2.3.
All other mappings fi+1 (xlfj), a € A\E progresses in time as map-
ping to the sequence of states in .4, for the duration considered
for simulation as f¥ (xl?j), o<t <(t=1).

The initial configuration of the CA consists of only susceptible
and infected states i.e., at time t =0, £0 = {S E}. The state val-
ues of all lattice cells are assigned v = 0, except the infected cells
which are assigned a state value of v = 1. The infected states are
randomly assigned in the lattice. An adiabatic boundary condition,
in which the boundary cells of the lattice are mapped with their
adjacent cell states (Fig. 1), is used in the simulation to handle evo-
lution at lattice boundaries. The mapping can be mathematically
represented as Eq. (2).

j=1...n
i=1...m

X1j = Xaj,
Xi1 = Xi2,

Xmj = X(m-1)j» 2)
Xin = Xi(n-1)»

This boundary condition is applied and boundary cells are
updated in each time step after lattice computations are over.
The supplementary file describes the model algorithm in detail..
A computer code is written in Python programming language
based on this algorithm. The simulations and analysis are carried
out on a computer with AMD Ryzen™3 2200U processor with
Radeon™Vega 3 Graphics card and 4 GB RAM.

3. Sensitivity analysis of model parameters

The probabilistic cellular automata model presented above is
tested with a fixed susceptible population to see if the model can
reproduce the macroscopic behaviour of a pandemic propagation.
It is assumed that the entire susceptible population is infected and
recovered in due course. Further, a parametric study assesses the
qualitative response of the model to changes in input parameters.
Table 2 shows the details of parameters used in the simulations.



Number of instances

Computer Methods and Programs in Biomedicine 211 (2021) 106402

w
o
T

mode : 5053
median : 5046 |
mean : 5045

N
w1
T

N
o
T

=
wu
T

i
o
T

s § B ¥ W A A N A R F AR A

" 1 1 2l L i L
4975 5000 5025 5050 5075 5100 5125

Predicted infection

=]

(b) Stochastic outcome for 1000 simulations (day

=49)

Fig. 2. Temporal evolution of the probabilistic cellular automata.

PK. Jithesh
x104
10f ooooog, 1 500000
= |
“ ¢
5|
o 08r g 4 1
g R 4
8 06 o Susceptible & 1
"E o Active o Qc,oo‘;,o
% gaF © Recovered & PR ]
£ I\ \
2 Doo /5 %
0.2r pd 0/0 a] Q |
oO & Q
(o} <& Q
0.0} ?0000‘298.0000 i Sooootroocooo
0 20 40 60 80
Time (Days)
(a) Trajectory of infection and recovery
Table 2
Model parameters used in simulations.
Parameter Notation ~ Value
Discrete time step t 1 day
Range of neighbourhood r 1,2,3
Maximum transmission R: 2
Lattice dimension (m = n) m 100, 150, 200
Initial infected I 1
Initial recovered R 0 people
Latent period Ly 1 - 4 days
Infectious period Ip 3 -9 days
Recovery time tr 7, 14, 21 days
Social isolation factor, locality A, 0
Social isolation factor, person Ap Random (0,1)

3.1. Time trajectory of COVID-19 propagation

The simulation is initiated with one infected cell placed at the
center of the lattice and the temporal evolution of the PCA is
shown in Fig. 2a. The susceptible population decreases, the recov-
ered population increases, and the active infections (states E, L, I, T)
exhibit growth and decline in time. The time taken for 1000 re-
peated simulations for statistical analysis is 156 min. The rate of
infection increases with time, as the percentage of infected popula-
tion increases and further accelerates the spread in the susceptible
population. The recovered cases gradually increase after the spec-
ified recovery time and surpass the active cases with progress in
time. Simulation with this parametric configuration shows a peak
of 50 % active cases, after 49 days of infection onset.

It can be seen that the model reproduces the macroscopic trend
of pandemic propagation anticipated in a susceptible population.
The initial positioning of the infected cell in the lattice significantly
affects the temporal evolution of the CA as the propagation front
grows. The supplementary file contains plots showing the evolu-
tion of lattice cells in their respective coloured states for better
data visualisation.

The number of active cases for the 49th day obtained from all
1000 simulations is shown in Fig. 2b to analyse the distribution
of stochastic outcome from the model. The data exhibits a normal
distribution with a mean of 5049 and has a standard deviation of
24, The corresponding error estimate based on 95% confidence in-
terval is below 1% of the mean value.

3.2. Effect of parameters on COVID-19 propagation

The effect of CA configuration on the time trajectory of the pan-
demic is studied first. The lattice dimensions (size of the suscep-
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Fig. 3. Temporal evolution of active infections with cellular automata parameters
(Ly=1, I, =4, tg=14).

tible population) and the range r of the transmittable neighbour-
hood are two parameters of the CA that influence the peak and
duration of the pandemic.

Fig. 3 shows that, when r is held constant at 1, for a lattice di-
mension of m = 100 the active infections reach a peak of 39.4% on
day 52, and the entire population is infected and recovered in 77
days. For lattice dimensions m = 200, the peak is 21.1% on day 102,
and it takes 140 days for infection and recovery of the entire pop-
ulation. The maximum transmission R; and recovery time t; deter-
mine infection and recovery rates in the model. Both parameters
are held constant in these simulations. The number of active cases
thus linearly increases as the disease spreads in the fixed popu-
lation and decreases rapidly after the peak value when the recov-
ery rate dominates the infection rate. Evidently, as the size of the
population increases, it takes more days to infect all. For the case
m = 200, when the range r = 3, the rate of propagation is steep,
with a peak of 57.2% on day 37 and recovery on day 59. Hence, the
rate of virus transmission is slow in a large population compared
to that in a small population when the range r is held constant.
Whereas, the per-day infection increases with an increase in the
range r, resulting in a rapid propagation of virus in a population of
constant size.

The effect of significant infection characteristics such as latent
period, infectious period and recovery period on the progress of
the pandemic is now studied. The latent period is the time taken
for the virus to develop the ability to transmit after infecting a
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Fig. 4. Temporal evolution of active infections with infection characteristics.

host. Fig. 4a shows that, latent period has a sensitive influence on
the model output when other parameters are held constant. When
the latent period is one day, the virus transmission is rapid in the
population and when it is four days, the virus transmission occurs
at a slower rate. In these simulations, lattice size is m = 100 and
range r = 3. The rapid rise and decline of the L, =1 trajectory is
also because of the change in range r =3, as a comparison with
same latent period curve in Fig. 3 (m = 100, r = 1) shows. For the
COVID-19 pandemic, studies report a latent period of 2 to 6 days
[48], and as mentioned in Section. 2.1, the model is flexible to in-
clude such range of values.

Another important period in the life-cycle of the virus is the in-
fectious period during which the virus remains contagious and its
transmission occurs through various spread mechanisms. If the in-
fectious period is more, the host could transmit the virus to many
people. The present CA configuration, however, has limitations in
capturing this fact, as a host in an infectious state is restricted
to transmit only to the S state cells in its transmittable neigh-
bourhood. As the infectious period is increased, the host cell may
be in the infectious state, but this is not reflected in the rate of
pandemic propagation, as no additional susceptible cells are avail-
able to infect in the neighbourhood. The identical time trajectory
with different infectious periods and same average recovery time
tr = 14 days, shown in Fig. 4b, is attributed to this constraint in
the present model. Fig. 4b also shows the effect of average recov-
ery time of the disease, tg, on rate of propagation. Clearly, when
tg = 21, the peak of active cases is high compared to that for ty =7
or 14. In the model recovery period tg is user-defined, and hence
it is easy to adapt the value reported by authorities.

4. Results and discussions

Control measures such as lockdowns, steps such as relaxing re-
strictions and allowing migration of people to revive the economy
and resume daily life and mitigation strategies such as vaccination
roll out are some of the vital phases observed in the course of the
COVID-19 pandemic. The developed model is used to carry out a
parametric study to simulate these phases and the results are dis-
cussed in this section.

4.1. Effect of lockdown on time trajectory of pandemic

Lockdowns aim to prevent the movement and interaction of
people and thus break the chain of the transmission cycle. As de-
scribed in Section 2.3, the social isolation factor for the locality A,
is the parameter that indicates the intensity of lockdown in that
region. In the simulations, the value of A, is O at the start, and on
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Fig. 5. Temporal evolution of active infections with lockdown conditions.

the day of lockdown it is changed to a higher value by invoking a
subroutine. The randomly generated social isolation factor for the
infected person Ap, is then compared with A;. Virus transmission
can happen if Ap > A;. The probability of A, > A; reduces with an
increase in A; during the lockdown, thus reducing the rate of virus
transmission. If there is no lockdown, then all infected individual
could transmit the virus to their susceptible contacts. The reduc-
tion in the rate of infection with the increase in values of A, im-
posed on day 15 onwards, is shown in Fig. 5.

A lower value of A; shows a higher rate of infection propaga-
tion. As A, is increased from 0.55 to 0.85, the rate of virus trans-
mission decreases as indicated by the change in slope of active
cases. For A; =0.55, the peak of active cases is 42.2 % on the
46th day, and all individuals are infected and recovered in 75 days.
When X; =0.85, the rate of virus transmission is slow and the
peak cases has a lower value of 18.4 % on the 83rd day but it takes
147 days for all active cases to recover. The different values of in-
fection rate before and after imposing lockdown leads to the two
local peaks observed on this curve. It can be seen that when A;
= 0.95, the number of active cases rapidly declines after impos-
ing lockdown and reaches zero in 46 days. Only a few individu-
als are infected in this case which emphasizes the significance of
strict lockdown on mitigating the pandemic. When A; = 0.65 or
0.75, lockdown is not very effective and the entire population is
infected eventually.

Previous studies show that a high percentage of reduced con-
tacts through social isolation limits the spread of new cases
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Fig. 6. Temporal evolution of active infections with different migration conditions
(Mgqy is migration start day).

[39,47]. The timing of enforcing lockdown restrictions is also cru-
cial, with earlier implementations leading to lesser infections [3,5].
The present study also agrees with these results. In lockdown sit-
uations, if movement and interaction of people are there, then the
infection will spread gradually with a smaller peak but for a longer
duration. The healthcare system may not collapse but might ex-
haust the resources and people involved in it. Aggressive lockdown
can curb the curve in a short span without infection spreading to a
large section of the population. Different non-pharmaceutical inter-
ventions have varying effects on disease transmission [6], and the
present model can provide initial estimates of such interventions
by choosing appropriate values of social isolation factors.

4.2. Effect of migration on time trajectory of pandemic

Migration changes the size of the population and the dynam-
ics of the pandemic. In a closely monitored and controlled region,
the number of people migrating by various modes of transporta-
tion is accurately registered. The size of the cellular automata is
incremented by a value § in each time step to account for the
migrating population. It is assumed that people are only migrat-
ing into the region and not moving out, so the size of the lattice
only increases. In the migrating population, susceptible as well as
exposed (infected) people will be present. Exposed states are as-
signed proportionally and distributed randomly in the lattice in
each time step to account for this.

We studied two factors of importance in allowing migration in
a region. First, the day on which migration can be started in a
region with lockdown restrictions and second, the relaxations in
lockdown that can be allowed during migration. Fig. 6 shows a
comparison of active cases per day when migration is allowed on
day 30, 45 and 60 with strict lockdown conditions of A; = 0.85 and
& = 5. In all three cases, the second surge of active infections hap-
pens, which gradually declines with time. The increase in suscep-
tible population and infection rate due to migration results in the
second higher peak observed in these cases. For migration day 30,
the peak of active cases is 40.7 % on day 53, and for migration day
60, the peak is 35.2 % on day 82.

The effect of relaxing the lockdown restrictions during migra-
tion is also shown in Fig. 6. The active cases per day under differ-
ent lockdown conditions of A; = 0.85 and 0.55 are compared with
no lockdown condition of A; = 0 for migration start day of 60. Re-
laxing the lockdown restrictions during migration rapidly increases
the active cases close to that of A; = 0. A sharp decline that follows
is due to a high rate of recovery in comparison to new infections.
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The results are in line with the observations of Sirakoulis et al.
[32], that movement of people increases the overall infected popu-
lation. A second surge is unavoidable during migration, but delay-
ing the process can limit the peak of active cases. The spread of
infections is also closely linked to the interactions between peo-
ple as described in Section. 4.1. The surge in infections observed
in delayed migration is due to this fact. Thus, the results infer that
migration should be allowed only under strict lockdown conditions
so that the peak of active cases is limited to a manageable level.

4.3. Effect of vaccination on time trajectory of pandemic

Universal immunisation is the scientific solution to control and
mitigate a pandemic. As inoculation drive is a time-consuming pro-
cess, it is vital to study the effect of various factors of vaccination
program on infection reduction to aid in formulating a vaccination
policy. In the present work, we look at how three such factors, G,
ry and dy influence the dynamics of COVID-19. Here G, is the per
day capacity of the healthcare system to administer vaccination, ry
is the rate parameter of vaccination and d, is the day on which
vaccination is started,

To simulate the vaccination program, the number of people to
be vaccinated in each time step is estimated as a function of G,
and ry. An equal number of people in the susceptible state are then
randomly selected and marked as vaccinated in the lattice [32]. A
value of v = 16, which is higher than the recovered state value, is
assigned for vaccinated states to identify them as immune indi-
viduals. Since the health system capacity limits the maximum vac-
cinations per day, in the model a logistic function that converges
to this capacity estimates the per-day registrations R,. Time de-
lay in reaching this maximum per day capacity depends on factors
such as availability of vaccine and hesitancy of people, which is
accounted by the rate parameter r;, in the function.

G

Rp=———2%
G—Ri 1t
1+ g e

3)
The logistic function is shown in Eq. (3), in which the per day vac-
cination capacity G, is provided as a percentage of total susceptible
population, t is the time step and R; represents the initial regis-
tration on dy = 1. In the following simulations, G, = 0.01, r, = 0.6,
dy =1 and R; = 1 unless otherwise specified.

Fig. 7 a shows the effect of rate parameter r, on peak and dura-
tion of the pandemic. A notable reduction in per day active infec-
tions is observed with an increase in r,. The peak percentage of ac-
tive infections with r, = 0.2 is 53 % on day 36 and it reduces to 38
% on day 34 with an increase in r, = 1. An increase in r, from 0.2
to 0.6 significantly reduces the peak cases, whereas further change
to 1 does not, because in the logistic function r, has an exponen-
tial influence on the growth of per day registration. The duration of
the pandemic is comparable in all the cases as it mainly depends
on the recovery time.

Fig. 7 b shows a comparison of the time trajectory of active
cases without vaccination and with different vaccination capaci-
ties. As G, increases, the peak of active cases reduces due to the
quick rise in the immune population. If C, is at least 10% of the
susceptible population, then a substantial decline in active infec-
tions and duration of the pandemic is observed. Starting the vac-
cination campaign at the earliest possible day reduces the peak of
active cases (Fig. 8) and subsequently the pressure on healthcare
system. The peak cases is 56.6 % on day 37 without vaccination,
whereas it is 50 % on day 35 for d;, = 25 and 40.8 % on day 34, for
dy =0.

The present model is also used to investigate the peak and du-
ration of a second wave of infection in a partially vaccinated popu-
lation. An immune state V is assigned for vaccinated people in the
initial configuration of the lattice. As shown in Fig. 9, when the



PK. Jithesh
1.0 T T T T
S —4A— No Vaccination
® —o— r,=0.2
g LEf - r, =06 i
8 —— r,=1.0
o
0.6
(]
(%]
©
9]
.g 0.4
©
@©
-
© 0.2
RS
S
©
o ;
0 20 40 60 80
Time (Days)

(a) Effect of rate parameter r,, on active infections

1.0 T T T T
—— No Vaccination
—o— C, = 0.01 x m?
681 - C,=0.05xm? |
—— C, =0.10 x m?
0.6

0.4

0.2

Ratio of active cases to population

0.0

Time (Days)
(b) Effect of health system capacity C\, on active in-
fections

Fig. 7. Temporal evolution of active infections with parameters estimating number
of vaccinations per day.

1.0 T T T T

Ratio of active cases to population

0 20 20 60 80
Time (Days)

Fig. 8. Effect of vaccination start day d, on active infections.

percentage of the immune population is increased from V = 15%
to 30% and 45%, the peak of the active infections is seen to re-
duce significantly. The decline in susceptible population and in-
crease in recovered population with an initial immune population
of V =45% is also shown in this figure.

The results show that an increase in the percentage of the vac-
cinated population slows down the spread of new infections. An

Computer Methods and Programs in Biomedicine 211 (2021) 106402

1.0 T

0.8F

—— Active, V= 15%
—0— Active, V = 30%
—O— Active, V=45%
—/— Susceptible, V = 45% |
—A— Recovered, V = 45%

0.6F

0.4

0.2

Ratio of cases to population

0.0

Time (Days)

Fig. 9. COVID-19 spread in a partially vaccinated population.

Table 3
Model parameters used in validation.

Common parameters (Notation)  Value

Initial parameters
Lattice dimension (m) 25
Infection parameters

Latent period(Lp) 2 days
Infectious period (I,) 3 - 6 days
Recovery time (tg) 14 days

Social isolation factor (A;) 0.1
Simulation for 110 days
Lockdown (day 15) A =075
Migration (day 60) 2 =0606=5
Simulation for 237 days

Lockdown (day 15) X =075

Migration (day 60) A =060 6=1
Relaxing restrictions (day 110) A, =0.50,6 =4
Flattening of curve (day 220) X =06568=1

accelerated vaccine rollout and adherence to non-pharmaceutical
interventions until adequate vaccination coverage are critical in
controlling the COVID-19 pandemic [8]. Initially, people received
the COVID-19 vaccination campaign with hesitancy due to various
concerns [9], and now there is a shortage of supply. The model can
forecast the overall impact of the vaccination program and priori-
tise population subgroups for effective inoculation.

4.4. Model performance and validation

To assess the performance of the computational model and to
validate the results, a comparison of the simulated and actual pan-
demic propagation data for the state of Kerala, India, is done. The
first case of the COVID-19 pandemic in India is reported in Kerala
on 30 January 2020. The data for 237 days from 9 March 2020,
when the first wave of infections started, to 31 October 2020 is
used for comparison [49]. A statewide lockdown is declared from
23 March 2020, and after lifting of restrictions in phases, notable
migration to the state started on 7 May 2020, which are equal to
15th and 60th day respectively from 9 March 2020.

Table 3 lists the model parameters used in the validation. All
other parameters are same as given in Table 2. The lockdown and
migration conditions are simulated by changing the value of pa-
rameters on day 15 and 60. From day 60, the size of the lattice
is proportionally increased (m = m +§) per time step to account
for the change in susceptible population. The additional exposed
cases introduced due to migration is taken as 4% of the population.
Fig. 10a shows a comparison for the first 110 days, with lockdown
starting on day 15 and migration starting on day 60. Time taken
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Fig. 10. Validation of simulated results with actual data from Kerala, India.

for 1000 iterations for statistical analysis is 112 min. The shaded
region indicates the confidence interval with a cumulative proba-
bility of 95%. The results establish the ability of the present model
to reproduce the trajectory of the pandemic with appropriate val-
ues of model parameters.

The forecast for longer durations with constant model parame-
ters resulted in the divergence of the trajectory with an increase in
population. To improve the results, the parameters are changed in
selected intervals and an estimate of incoming infections based on
actual data is given as input. The model parameters are changed
on day 60, 110 and 220 as shown in Table 3. The percentage
of infected individuals in the incoming population is estimated
from the actual data as the ratio of the seven-day rolling aver-
age of infections to the seven-day rolling average of individuals
in quarantine. Fig. 10b shows a close comparison of actual and
simulated data for a longer duration of 237 days. For this case, it
takes 186 min to complete 50 iterations for the statistical anal-
ysis. Hence, the model with appropriately estimated parameters
from actual data forecasts the dynamics with many infections in
a longer duration.

Realistic forecasting of the time trajectory of the pandemic is
obtained with few parameters when the population size is small.
As the size of the population increases, the results deviate from ac-
tual data and simulating the exact trajectory requires changing the

Computer Methods and Programs in Biomedicine 211 (2021) 106402

values of model parameters in smaller intervals of time. Hence, the
presented model with simple transition rules and neighbourhood
schemes is ideal for simulating COVID-19 outbreak in a population
subgroup with fewer computational resources and time.

5. Conclusion

The unprecedented crisis of the COVID-19 pandemic has af-
fected the lives of millions of people across the world. Decen-
tralised cluster containment, which concentrates on small regions
or population subgroups, facilitates early detection and isolation of
infected cases and efficient use of resources in the long run. This
study proposes a computational model based on probabilistic cel-
lular automata for forecasting the peak and duration of the COVID-
19 propagation in a cluster under various conditions. The cellular
automata configuration consists of a two-dimensional regular lat-
tice, representing a population subgroup, with each of its cell rep-
resenting a person at a particular stage of pandemic. A transmit-
table and transmission neighbourhoods are defined around a sin-
gle host to identify the most probable susceptible individuals. The
transition rule states that virus transmission occurs when suscep-
tible individuals are present in the transmittable neighbourhood of
the infected individual and violates the conditions of social iso-
lation. The size of the lattice is increased proportionally to ac-
commodate incoming susceptible and infectious populations dur-
ing migration.

The sensitivity of model parameters such as the size of the sus-
ceptible population, range of the transmittable neighbourhood and
various disease characteristics on the time trajectory of the pan-
demic is simulated first. A statistical analysis of the output shows a
variation of results within 1% of the mean data. The impact of lock-
down, migration and vaccination on the dynamics of the pandemic
is then studied. Results indicate that stringent lockdown, controlled
migration under strict social isolation conditions and a higher vac-
cination capacity is essential for a smaller peak and duration of
the pandemic. The model performance is assessed and validated
by simulating and comparing the results with actual COVID-19 data
from the state of Kerala in India.

Simulations using the present model, with minimum parame-
ters and computational requirements, can provide valuable insights
into evolving disease dynamics in a cluster for effective decision
making and quick response. Improvements by including fluctua-
tions in migrating population, using scientifically estimated social
isolation factors and testing different vaccination scenarios with
real data will enable the model to forecast the long-term behaviour
of the pandemic.
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