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Automatically disambiguating medical acronyms
with ontology-aware deep learning
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Devin Singh'3 & Michael Brudno'234™

Modern machine learning (ML) technologies have great promise for automating diverse
clinical and research workflows; however, training them requires extensive hand-labelled
datasets. Disambiguating abbreviations is important for automated clinical note processing;
however, broad deployment of ML for this task is restricted by the scarcity and imbalance of
labeled training data. In this work we present a method that improves a model's ability to
generalize through novel data augmentation techniques that utilizes information from bio-
medical ontologies in the form of related medical concepts, as well as global context infor-
mation within the medical note. We train our model on a public dataset (MIMIC 1lI) and test
its performance on automatically generated and hand-labelled datasets from different
sources (MIMIC lll, CASI, i2b2). Together, these techniques boost the accuracy of abbre-
viation disambiguation by up to 17% on hand-labeled data, without sacrificing performance
on a held-out test set from MIMIC IlI.
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ARTICLE

ealth care practitioners typically abbreviate complex

medical terminology when preparing clinical records,

saving time of writing out long terms/phrases, while
making the text clear to an experienced professional in the con-
text. Correctly disambiguating medical abbreviations is important
to build comprehensive patient profiles, link clinical notes to
ontological concepts, and allow for easier interpretation of the
unstructured text by practitioners from other disciplines.
Expanding abbreviated terms into their long forms is nontrivial
since abbreviations can have many expansions. For example, “ra”
can mean right atrium, rheumatoid arthritis, or room air
depending on both its local (adjoining words) and global (type of
note and other information in it) context. While disambiguating
abbreviations is typically simple for an expert in the field, it is a
challenging task for automated processing, which has been
addressed by a number of methods going back at least 20 years.
These methods largely rely on supervised algorithms such as
Naive Bayes classifiers trained on co-occurrence counts of senses
with automatically tagged medical concepts in biomedical
abstracts!. Semi-supervised approaches also took root during this
time: Pakhomov et al. improved the contextual representation of
senses in clinical notes by augmenting them with text from the
Web and biomedical abstracts, but were only able to validate their
methods on eight abbreviations?.

Modern methods that disambiguate abbreviations rely on the
local context of the abbreviation to discern its meaning. A
number of supervised machine learning (ML) models have been
built for abbreviation disambiguation in medical notes, including
ones based on support vector machines (SVM), Naive Bayes
classifiers, and neural networks3-®. More recently, abbreviation
disambiguation models have been fine-tuned using contextualized
embeddings generated from BERT and ELMo model
derivatives’8. However, the development and deployment of
methods for automated abbreviation disambiguation are limited
by the availability of appropriate training data. Creating hand-
labeled medical abbreviation datasets to train and test ML models
is costly and difficult, and to the best of our knowledge, the only
such publicly available dataset with training data and labels is the
Clinical Abbreviation Sense Inventory (CASI)?, which contains
just 75 abbreviations. The sparsity of these datasets makes
methods built based on them vulnerable to overfitting and
inapplicable to abbreviations not present in the training data.
This is evident in studies where training and testing models on
different corpora can result in performance drops of 20-40%"9.
Moreover, the same studies typically disambiguate 50-2000
abbreviations, compared to >80,000 medical abbreviations that
are in AllAcronyms, a crowd-sourced database of abbreviations
and their possible expansions!?.

Finley et al.!l utilized reverse substitution (RS) to auto-
generate training data by replacing expansions with their corre-
sponding abbreviations. For example, the phrase “Patient was
administered intravenous fluid” in the training data was trans-
formed to “Patient was administered ivf”, and the label for this
instance of the abbreviation “ivf” was “intravenous fluid”. RS,
however, creates imbalanced training sets because the distribu-
tions of terms in their abbreviated and long forms are often
different. Some phrases, due to their obvious meaning, or because
they are too long, are rarely written out fully; for example, mil-
ligrams (mg) next to medication dosage, or “in vitro fertilization”
(see Results, below). Although additional work has improved RS
by hand-labeling of specific instances®, none of the existing
methods for abbreviation disambiguation scale to tens of thou-
sands of medical abbreviations listed in resources such as
AllAcronyms.

An additional problem with medical abbreviation disambigua-
tion is that the local context of a word is not always sufficient to

disambiguate its meaning. For example, “rt” could represent
“radiation therapy” or “respiratory therapy”, and the phrase “the
patient underwent rt” cannot be disambiguated without further
information. Huang et al. showed that words can be better repre-
sented by jointly considering their local and global contexts!?, and
Kirchoff and Turner demonstrated that document contexts are
useful in medical abbreviation disambiguation tasks!3. A study by
Li et al.1 represented acronyms in scientific abstracts using the
embeddings of words with the highest term frequency-inverse
document frequency (TF-IDF) weights within a collection of
documents. This was motivated by the idea that acronym expan-
sions are related to the topic of the abstract and that topics can be
described by words with the highest TF-IDF weights.

In this work, we tackle the problem of disambiguating medical
abbreviations in the absence of training data for any specific
abbreviation, thus dramatically increasing the ability of such
models to generalize to new texts. We took the following three-
pronged approach:

1. We used information from related medical concepts to
create more balanced and representative examples of
training data for RS approaches. We did this by sampling
sentences of related concepts in the immediate vector space
and adding them to our training cohort, which is especially
beneficial for medical concepts that are rare or not written
in the training text.

2. We leveraged structural relationships in biomedical ontol-
ogies such as the unified medical language system (UMLS)
to pre-train our models!® by constraining medical concepts
to be in the same vector space as their neighbors.

3. We defined a simple global context that combines medical
knowledge from the entire note and used it in conjunction
with the local context of an abbreviation to further improve
the accuracy of abbreviation disambiguation.

Using these three techniques, we achieve an overall 17%
improvement on CASI. Using automatically generated testing
samples from i2b2, a collection of patient discharge summaries!®,
we show a 2% accuracy improvement on i2b2, and over a 7%
increase on abbreviations with little training data. Finally, we
recruited medical professionals and students to hand label
abbreviations in i2b2. We tested our model on these abbreviations
and found a 16% improvement compared to the baseline.

Results

Disambiguation algorithm. An overview of our approach to
disambiguating medical abbreviations is shown in Fig. la. Our
framework leverages the RS paradigm, but introduces a data
augmentation technique that supplements the training set with
samples of closely related medical concepts to reduce the false
prior of training sets generated using RS and eliminate the need
for labeling abbreviation datasets by hand. First, we learn word
embeddings for terms in clinical notes by training a FastText
model on MIMIC III notes!’. We then map medical concepts in
UMLS to the resulting vector space to generate a word embedding
for every medical concept. Then, for a given abbreviation, we
augment the training samples for each expansion with sentences
containing closely related medical concepts determined using
embedding distance (Fig. 1b). The key assumption is that sen-
tences containing long forms of related medical concepts can be
used as proxies for unknown abbreviations. For example, sen-
tences containing the phrase “assisted fertilization” are more
similar to sentences that contain the term “ivf” which expands to
in vitro fertilization rather than to “ivf” expanding to intravenous
feeding. Hence, they can be used as training samples for the
concept “in vitro fertilization” even though we never see the
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Fig. 1 Overview of our abbreviation disambiguation pipeline for data collection and model training. a Overview of our method. Our key contributions are
indicated with yellow boxes. b lllustration of data augmentation technique for the training set. For each expansion, we sample sentences for the ten closest
medical concepts using reverse substitution (RS) with a probability proportional to their Euclidean distance in the embedding space. The Euclidean distance
is shown above the dotted line connecting the expansion to its relative. The probability of sampling is indicated above the arrow. d, is the Euclidean distance
between the expansion and relative and R refers to the ten closest medical concepts. During training, we learn a temperature T using Bayesian optimization
that is used in the sampling function. In the event that an expansion is present in the training corpus, we sample it with a distance of ¢, which we set to
0.001. We add each sample to our training set by replacing the relative with the abbreviation and using the target expansion as the label. An example of
this is shown below the color bar. The color of each relative corresponds to the color in the bar to the right of the arrow, which reflects the proportion of the

training set composed by that relative.

phrase “in vitro fertilization” in the training corpus. This method
does not require expert annotation and thus scales to previously
unseen abbreviations.

Using this training set, we trained a convolutional neural
network (CNN) to perform the classification task of predicting
the correct expansion for an abbreviation given its local context
(the neighboring words) and global context (the whole note,
represented by IDF-weighted word embeddings). Further details
on each step are provided in the “Methods” section.

Evaluation. To evaluate the contribution of each component of
our model, we compared its performance to models trained
without the critical sub-components. The first model (Control)
uses training samples acquired using RS without any alterations.
The second (sampling with replacement, SWR) is similar to the
first, but samples training sentences with replacement such that
each expansion has an equivalent number of training samples.
The third model (Relatives) incorporates our novel data sampling
technique by including relatives of expansions in the biomedical

ontology (UMLS) into the training set. We sample concepts with
replacement so that all expansions have an equivalent number of
training samples. To evaluate whether using the structure of the
ontology can improve the results we initiated it with weights
learned from the hierarchical training task (+ hierarchical pre-
training, HP). We also trained the models using both only the
local neighborhood of the abbreviation (default) and by incor-
porating global context information for each sample (+ global).
We used bootstrapping to obtain the mean for each abbreviation
by resampling our predicted values and true values 999 times.

We consider two forms of accuracy. Micro accuracy is the total
number of abbreviations correctly disambiguated divided by the
total number of samples in the test set across all abbreviations
with two or more possible expansions. Macro accuracy is the
average of individual abbreviation accuracies and gives a better
reflection on the performance of imbalanced datasets. A
Wilcoxon signed-rank test was used to compare the macro
accuracy results of different models (micro accuracy is a point
estimate).
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generated by RS, and (d) MIMIC Il generated by RS.

(a) CASI accuracy

Table 1 Micro and macro accuracy of (%) of our model on (a) CASI abbreviations, (b) i2b2 generated by hand labeling, (c) i2b2

(b) i2b2 hand-labeled

(c) i2b2 RS accuracy (d) MIMIC-III accuracy

accuracy
Dataset generation method Hand-labeled Hand-labeled RS RS

Macro Micro Macro Micro Macro Micro Macro Micro
Sampling method
Control 0.672 0.673 0.702 0.682 0.869 0.850 0.948 0.917
Control + global 0.686* 0.687 0.738 0.745 0.877* 0.862 0.955* 0.929
SWR 0.705* 0.708 0.701 0.680 0.864 0.834 0.948 0.914
SWR + global 0.715* 0.712 0.701 0.677 0.873* 0.850 0.956* 0.931
Relatives 0.813* 0.806 0.833* 0.795 0.873 0.827 0.945 0.910
Relatives + global 0.825** 0.820 0.855** 0.816 0.886** 0.842 0.954** 0.925
Relatives + global + HP 0.8471*** 0.834 0.859 0.825 0.889*** 0.848 0.961*** 0.935
Clinical BERT 0.648 0.643 0.602 0.591 0.824 0.788 0.917 0.871
Clinical BERT + Relatives 0.721+* 0.717 0.690**** 0.699 - - - -

“p<0.05 (one-sided Wilcoxon signed-rank test compared with Control model).

“p<0.02 (one-sided Wilcoxon signed-rank test compared with Relatives model).
“’p<0.01 (one-sided Wilcoxon signed-rank test compared with Relatives + global model).
""" <0.03 (one-sided Wilcoxon signed-rank test compared with Clinical BERT model).

constraints.

We sample training data with replacement (SWR)and augmentation with related medical concepts (Relatives). We report results for when we incorporate the ontology during pretraining (HP) and the
global context of the note (global). Bolded values indicate the best-performing model for each column. We have omitted running ClinicalBERT + Relatives on the RS datasets due to computational

We evaluated our model on four datasets (see “Methods” for
further detail):

(1) aheld-out test set consisting of RS samples of abbreviation
expansions from MIMIC III (20% of the dataset),

(2) an orthogonal dataset of 65 abbreviations from CASI with
gold-standard annotations,

(3) 1116 abbreviations from i2b2 generated by finding
sentences with expansions from AllAcronyms using
RS, and

(4) 24 abbreviations from i2b2 hand-labeled by medical
students.

Table 1 shows the micro and macro accuracies of our concept
embedding model using our data augmentation technique on test
sets from MIMIC-III, CASI, and i2b2. The first two columns
show results on test sets generated by hand, while the last two
columns show results on RS-generated datasets. While both types
of datasets show improvements using our techniques, we note
that the gain is stronger for hand-generated datasets and the
performance on RS-generated datasets is higher overall. This is
likely due to biases inherent in RS-derived test sets that more
closely resemble the training set.

CASI—hand-labeled dataset. The p-values and performance
differences between all models are displayed in Fig. 2. Training
abbreviation with both local and global contexts gave significantly
better performance than training on local context alone. Likewise,
augmenting the training set with related medical concepts
resulted in a 14% (p = 1.2e—03) increase in accuracy on CASI
compared to the control. Incorporating global context increased
this value to 15% (p=>5.3e—05) and hierarchical pretraining
improved it by another 2% (p = 1.4e—05). This demonstrates that
the global context in which related terms appeared and hier-
archical information aided disambiguation.

While the main goal of this paper is to evaluate the data
augmentation and the use of ontological information for pre-
training, which can be applied to any method, as an additional
baseline we downloaded and installed the codebase of Finley
et al!! (https://github.com/gpfinley/towards_comprehensive) and
utilized it on the CASI dataset. We found that our baseline model

(“Control”) has a 3% improvement (67% versus 64% for Finley
et al.).

Figure 3 is a histogram displaying the performance difference
between our best model (Relatives+ global +HP) and the
control model for CASI abbreviations. Notably, the performance
improved for 38 out of 65 abbreviations. The abbreviations that
benefited most were the ones where an expansion did not appear
in the training corpus or appeared at a very low frequency. For
example, our model increased the performance for the abbrevia-
tion “na” by 75% compared to the control. This is because
“narcotics anonymous” (a possible expansion) only appears twice
in MIMIC III. Incorporating related concepts such as “alcoholics
anonymous” and “nicotine use” enabled us to create a better
representation.

i2b2—automatically generated dataset. Table 1c shows the raw
performance numbers and Fig. 2c displays the p-values and
performance differences of the various model iterations tested on
the larger test set of 1116 abbreviations using another orthogonal
dataset, i2b2, with labels generated using RS. of all the models.
While the full model outperformed the control, the total perfor-
mance gain was more modest (2%). Higher overall performance
and smaller improvement indicate that i2b2 more closely
resembles MIMIC III with respect to the frequency of different
disambiguations. For example, in the case of “ivf”, there are sig-
nificantly fewer instances of fully spelled out “in vitro fertiliza-
tion” compared to “intravenous fluids” in both MIMIC III (zero
versus 2503) and i2b2 (2 versus 49). At the same time, “in vitro
fertilization” is the more common expansion in CASI (294 versus
181). This could indicate either a difference between the datasets,
or human behavior: the RS method relies on the long form of an
abbreviation to be written out fully, and this may be less likely
with abbreviations that are either clearer in the context, or longer
and hence rarely written out.

Further breaking down our model’s performance on the i2b2
test set, we see that it performed better on abbreviations with little
training data (Fig. 4). Almost a quarter of the 1116 abbreviations
have less than 200 training samples per expansion on average.
Our model performed 7% better than the baseline on these
abbreviations.
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Fig. 2 Matrix showing performance differences and p-values between all models on test sets generated by (i) hand-labeling and (ii) RS. The external
test sets are a CASI, b i2b2 generated by hand labeling, ¢ i2b2 generated by RS, and d MIMIC-III generated by RS. The color intensity of each square
reflects the performance difference between the corresponding model on the vertical axis and the model on the horizontal axis. p-Values were obtained
using a one-sided Wilcoxon signed-rank test and are displayed inside each square. Note that we expect (and observe) no improvement from introducing
relatives in the MIMIC-III dataset (d), as the default (control) algorithm better represents the underlying data distribution in MIMIC-III.

i2b2—hand-labeled dataset. As an orthogonal metric, we
manually labeled a dataset of 270 abbreviations from the i2b2
corpus. Of the 270, only 24 had multiple expansions, illustrating
the strong bias in which abbreviations are written out fully (see
“Methods”). Figure 2b shows the performance difference between
our model and the baseline as well as the p-values between all
models. Table 1b shows the raw performance. We find that our
model generalizes better to the test set by almost 16% compared
with the control model.

Contextualized embeddings. Impressive advances have been made
in a variety of natural language processing (NLP) tasks by learning
context-dependent embedding representations!®1°. One advantage of
using such embeddings is that a single word can have a different
embedding depending on its context. Specifically, attention-based
models such ClinicalBERT have shown dramatic improvements in
clinical NLP tasks?’. We fine-tuned the ClinicalBERT model for our
abbreviation disambiguation task and compared it to our baseline
CNN model (see “Experiments” for training specifications). We find

that in our case, using embeddings from ClinicalBERT does not offer
any improvement on our baseline. We believe that this is because the
clinical notes in both the training and test sets lack structure typical of
training corpa for BERT such as Wikipedia and that the average
number of expansions per abbreviation is small enough that a single
embedding per term is sufficient. The benefit of using a simpler
model such as our baseline is that BERT models are memory
intensive; because we train one model per abbreviation, this adds up
quickly and becomes impractical.

To evaluate whether our data augmentation technique
(Relatives) is applicable to more complex models, we applied
clinicalBERT to the CASI dataset and find that there is a
significant gain in performance (~7%, from 64.8% to 72.1% for
macro accuracy, from 64.3% to 71.7% for micro accuracy). We
have also observed a significant performance increase for the i2b2
hand-labeled dataset (8.8% gain for macro accuracy, 10.8% gain
for micro accuracy). This demonstrates that our novel data
augmentation technique can be useful regardless of the under-
lying model architecture.

NATURE COMMUNICATIONS | (2021)12:5319 | https://doi.org/10.1038/s41467-021-25578-4 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

25

20

15

10

Num abbreviations

0 |
-50+ -40 -30 -20 -10

Accuracy change

B Negative
None

N Positive

=Bl=0-ml
0 10 20 30 40 50+

Accuracy difference between Relatives + global + HP and Control models

Fig. 3 Histogram showing the accuracy difference between the Relatives + global +~ HP model and control model performance (%) on CASI
abbreviations. The x-axis shows bins of 5%, where each unit is the bucket means (i.e., x = 0 bins data from an accuracy difference of —2.5% to +2.5%).
The abbreviations that improved using our method (“Positive”) are shown in blue, the abbreviations that had a performance decrease are shown in red
("Negative”), and the abbreviations that were unchanged are in gray (“None").

Downstream task—predicting medical test. We tested the
impact of expanding abbreviations in clinical notes on the pre-
diction of required medical tests in an Emergency Department
setting. We developed a model that extracts UMLS concepts in
clinical notes from the Hospital for Sick Children (Concept
Unique Identifiers, CUIs) and predicts whether the patient
received a specific clinical test (forearm X-ray, abdominal ultra-
sound, urine testing, and bloodwork). We found that without
expanding abbreviations, the model achieved an accuracy of
78.09% on an independent test set. After training the model on
clinical notes with expanded abbreviations, the performance
increased to 78.51% (p<0.05 using the standard bootstrap
method), showing that there is value in disambiguating abbre-
viations in clinical notes before using them in downstream tasks,
at least in this specific setting. See “Methods” for additional
details on this experiment. This work will be more fully described
in a separate paper.

Discussion

One of the key requirements of most ML methods is the presence
of datasets that are used to train the model. In the medical space,
such training datasets are often difficult and expensive to obtain.
Particularly within the problem of disambiguating abbreviations,
the largest human-labeled datasets that are available contain
dozens of abbreviations?, while in the literature, we know there
exist tens of thousands?!. Utilizing methods that utilize RS typi-
cally leads to biased training datasets and overfitting by the
algorithm.

In this work, we demonstrate a general algorithm for dis-
ambiguating medical abbreviations that scales to previously
unseen medical acronyms by utilizing biomedical ontologies as
prior medical knowledge. Our approach is based on the ideas
introduced by us in an extended conference abstract??, where we
explored the global context and data augmentation to improve
performance for this task. This manuscript, however, goes beyond
the preliminary work by introducing the use of hierarchical
ontologies as a pretraining step, improving the Bayesian Opti-
mization algorithm to select an optimal temperature, creating and
analyzing the hand-labeled dataset as another orthogonal metric,
tripling the set of analyzed abbreviations, and enhancing the
“Results” section by including the comparison to Clinical BERT,

and Finley et al., as well as including the analysis of the down-
stream clinical task (test prediction). Overall, our approach
overcomes the lack of training data and achieves additional
improvements by considering the relationship of the terms in the
ontology, introducing a pre-training step to help embed concepts.
For all samples, we are also able to generate better representations
by considering the global context in which an abbreviation
appears. Because of these improvements, our overall framework
demonstrates up to 17% higher accuracy of abbreviation dis-
ambiguation on auxiliary datasets.

One notable limitation of our approach is runtime. As was
done in the previous work®, we train one model per abbreviation;
the training cost of this is significantly more expensive using our
data augmentation technique than the baseline model since we do
25 rounds of Bayesian optimization to search for the optimal
temperature (although this can possibly be reduced, we did not
experiment with that in this study). To give a concrete example,
training 65 abbreviations (the size of CASI dataset) on a single
Tesla V-100 GPU takes ~25h using our data augmentation
technique but ~1h for the baseline. Furthermore, given the
variability among the various datasets used in this study, more
work is required in creating a unified corpus for possible abbre-
viations and related medical terms. While AllAcronyms give an
idea for what senses are possible, there exist senses in CASI that
are not in AllAcronyms. Finally, to make the pipeline fully end-
to-end, better abbreviation detection models should be developed.
While some publically available models do exist, they are trained
on a small fraction of all possible medical abbreviations.

Our approach has immediately led to better results for the
abbreviation disambiguation problem and has further implica-
tions for the development of other ML-based methods. Utilizing
examples of closely related concepts from an ontology has already
shown improved results for named entity recognition?* and word
sense disambiguation in biomedical texts**. We believe that such
approaches can be useful for addressing a wide variety of bio-
medical problems.

Methods
Datasets. We used seven datasets in this study, all of which are publicly available:

(1) We used clinical notes from MIMIC III as our training set. We collected
sentences from MIMIC III containing abbreviation expansions, as well as
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concepts in UMLS to augment our training set. We also used MIMIC-III to
pre-train word embeddings using FastText and IDF weights.

We augmented our training sets based on relationships between expansions
and concepts defined by UMLS Metathesaurus.

We used the medical section of AllAcronyms, a crowd-sourced database, to
obtain a list of 80,000 medical abbreviations and 200,000 potential
expansions. We removed abbreviations with only one disambiguation and
those that do not appear in UMLS, resulting in 30,974 abbreviations.

We used the CASI dataset as an orthogonal test set to measure model
generalizability. We removed expansions that are the same as the
abbreviation (for example, the word “it” is an abbreviation and an
expansion) and abbreviations with one expansion since the disambiguation

(©)

(©)

™

task is trivial in that case. This left us with 65 abbreviations. On average,
each abbreviation has 4 expansions with 459 test sentences.

As another test set, we used i2b2. This dataset does not have hand-labeled
annotations, so we used RS to generate labels. There are 1116 abbreviations
in i2b2 containing more than one expansion. On average, each abbreviation
has 4 expansions with 97 test sentences.

To ensure the in-distribution performance was not compromised with our
augmentation techniques and demonstrate the level of overfitting, we tested
our model on a small test set from MIMIC III. We test our model on the
same 1116 abbreviations as in the i2b2 test set.

We also generated a hand-labeled dataset to better reflect the frequency of
abbreviations used in practice. Starting with 270 abbreviations whose
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expansions occurred with a similar frequency in i2b2, we sampled up to
50 sentences containing each abbreviation. We developed a website that
presented this sentence and possible expansions (Supplementary Fig. 1) to
one of seven volunteer medical students at the University of Toronto. Each
abbreviation was hand-labeled by two students. If the labellers disagreed it
was reviewed by a staff physician (D.S.). We started with 270 abbreviations
(Supplementary Data 1); however, after labeling only 24 abbreviations had
more than one expansion (Supplementary Table 1).

Word embeddings. To map semantically similar words close in vector space, we
trained word embeddings in an unsupervised manner on the MIMIC-III corpus
using FastText. FastText learns word embeddings by representing each word as a
bag of character n-grams!”. This is useful for creating good representations of rare
words in the training corpus since it considers sub-word information and for
predicting embeddings of concepts not present in the training corpus. We joined
multi-word medical concepts from UMLS with a “_” symbol to represent and
embed them as a single token.

Training set sampling. For each expansion for a given abbreviation, we aug-
mented the training samples with the ten most related medical concepts. Figure 1b
illustrates our sampling technique. The degree of relatedness was measured as the
Euclidean distance between the expansion phrase and UMLS concepts. We sam-
pled each relative (with replacement) in proportion to its distance from the
expansion according to the following probability:

edi/T
Pampling = $= 2,77 @
where d, is the Euclidean distance between the expansion and the relative and T is
the temperature of the distribution. R refers to the 10 closest medical concepts. If
sentences for an expansion were present in the training corpus, we treated the
expansion as a relative with a distance of € (a hyperparameter which we set to
0.001). The temperature T is a “sharpening” function?”. For each abbreviation, we
searched for a temperature that minimizes the loss on the MIMIC III validation set
using Bayesian optimization, constraining the temperature to be between 27! and
2. We found that smaller values overfit to MIMIC III, while larger ones added too
much noise. For each abbreviation, we performed 25 iterations of Bayesian opti-
mization using the Tree-structured Parzen Estimator algorithm and took the model
with the lowest validation loss?.

Sentence embeddings. We mapped an input sentence to a vector representation
using a simple encoder similar to that used by Arbabi et al.?3. The network consists
of one convolution layer with a filter size of one word, followed by ELU
activation?’. Max-overtime pooling was used to combine the output into a single
vector, v

v= mfax(ELU(Wlx(') + b)) (2

where x® is the word embedding of the term at index t. W; and b correspond to
the weight matrices and bias vectors, respectively, which we learned through
training.

A fully connected layer with ReLU activation followed by L2 normalization was
used to map x to the final encoded sentence representation:

ReLU(W,v)

* = TRV, ¥

The embedded sentence is a representation of the local context. To incorporate the
global context of a sample, g, we took the weighted average of the embedding

vectors for each word in the document. The embeddings were weighted using IDF
weights trained on the MIMIC III corpus. The vector g was calculated as follows:

d
2 4 w(t) i ()
Doty

where j is the index of the abbreviation, i is the index of the ith word in the
document, and d is the number of words in the document. u; is the word
embedding and w(t;) is the IDF-weighting of the ith word.

We then concatenated g with the encoded sentence vector, v, and normalized it
to produce the final encoded sample embedding

ReLU(W,[v; g])

© = ReLUW, : gD, ®)

Classification using a CNN. Our model was trained to minimize the distance
between a target expansion embedding and its context (Fig. 5).

Our model represents expansion embeddings with an embedding matrix, H,
where each row, H,, corresponds to the embedding of an expansion for a given
abbreviation. To do the classification task of assigning an expansion label, ¢, to an
input sentence, e, we took the dot-product of H and e and apply a softmax

function, such that

exp(H.e)

Zc’ EXP(Hc’ e) ©

plele) =
We labeled the abbreviation with the expansion having the largest probability p(c|
e).

Pre-training using ontological relationships. Ontologies are structured medical
terminologies that link related concepts together. Incorporating structure in this
form can entangle embeddings of related concepts and generate more refined
embedding clusters in the medical domain??) and has been shown to improve
vector space representations for general language tasks28,

We linked related concepts together using a hierarchical medical ontology as a prior.
The benefit of this is that concepts with insufficient training data are constrained to be
close to their relatives. For an abbreviation, we took all expansions and closest medical
concepts within a Euclidean distance of & (we treated J as a hyperparameter and found
§=2.6 to work best). We linked these concepts using the lowest common ancestor in
the UMLS hierarchy and trained a model to predict which concepts from UMLS best fit
the context. This is similar to our abbreviation model; however, to take structural
information into account, we first learned a matrix, H', where each row, H., is the raw
concept embedding for a given concept, c. H. is then derived by taking the sum of H’.
and all of ¢'s ancestors” embeddings, H , such that

H, = H; + % Hp, @)

The ancestors of ¢ project ¢ to a global location, while the raw embedding of ¢ learns a
local location. During training, we backpropagated through H and H), by the same
amount. Thus, if a concept’s ancestors are not present during training, their embeddings
still get updated. If the concept itself is not present during training, it simply inherits the
embeddings of its ancestors. We then used these weights to initialize our model for the
abbreviation disambiguation task.

Contextualized embeddings. We compare our embeddings to contextualized
word embeddings generated from ClinicalBERT?(. In general, we find that Clin-
icalBERT performs significantly better than the original BERT model for this
application. We finetune the ClinicalBERT model on our task by stacking two
hidden layers joined by a nonlinear activation function which takes as input the
embedding from the ClinicalBERT model and outputs the probability of each
expansion. We experiment with the number of hidden layers and find that two work
best. BERT-style architectures output an embedding for each token in the input, as
well as a “start of sentence” token that serves to encode the entire sentence!$. We
experiment with using the “start of the sentence” token and the abbreviation token,
and find that the “start of sentence” token performs better. We also tune other
hyperparameters such as sentence length, batch size, and learning rate.

Downstream task—medical test prediction. We acquired 176,140 clinical notes
from the emergency department at the Hospital for Sick Children as well as the
corresponding codes for tests that the patients received. The possible tests were: [C-arm,
CT, Cecostomy Maintenance, ECG, GI Assessment, MRI, Other, PICC Maintenance,
Tube Maintenance, Ultrasound, X-Ray, None]. First, we detected abbreviations in the
clinical notes using the CARD abbreviation detection model developed in ref. >. While
this model is publically available, it was trained to detect only 500 medical abbreviations,
which is a small proportion of all existing abbreviations and may have missed abbre-
viations in our notes. 156,801 sentences (89%) were found to contain at least one
abbreviation using the CARD model. We removed all sentences that did not contain
any abbreviations (11%), since we are comparing the performance of expanded vs. non-
expanded sentences. We then expanded the detected abbreviations using our pipeline.
We then extracted CUIs from both the original and expanded notes and encoded them
using a one-hot representation. We trained a simple neural network consisting of two
fully connected layers linked by a ReLU nonlinear activation function that took in the
one-hot-encoded CUIs and predicted which of the tests the patient should have
received. The model was evaluated based on whether the corresponding tests were
actually ordered by the physicians.

Experiments

Model training. We trained our model on sentences from MIMIC III. We collected
sentences containing expansions from CASI and medical concepts from UMLS
using RS. In total, 105,161 concepts in UMLS were found in MIMIC III. To learn
word vectors, we trained a FastText model using a skip-gram architecture with an
embedding size of 100!7. For the classification task, we built one model for each
abbreviation. To train our model, we used a maximum of 1000 samples per
expansion and found a context window of 3 words to work best. On average, each
abbreviation had 3.46 expansions. We trained our models on 60% of the sample set,
validated it on 20%, and kept 20% as a held-out test set. We trained all concept
embedding models for 100 epochs with a learning rate of 0.01 and saved the epoch
with the lowest validation loss. We ran the Bayesian Optimization acquisition
function using 15 random seeds and used the one with median validation loss to
get typical model performance. Only 1 random seed was used for the i2b2-RS
dataset due to extremely long runtimes.
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Fig. 5 Overview of our abbreviation disambiguation model. Sentences containing a target concept are passed through a convolutional neural network
(CNN) and max-pooled over time to generate an encoding of the local context. Global context takes the IDF-weighted average of word embeddings in the
entire document. We combine global context with the output from the sentence encoder and pass it through a fully connected layer (FC). We maximize

the dot-product of the encoded sentence and expansion embedding.

Pretraining. To pre-train our model using structural relationships from UMLS, we
first learned a 1-D CNN encoder similar to our abbreviation model that predicted
what medical concept is present given its context. The embeddings for each con-
cept were calculated by summing the raw embeddings of itself and its ancestors (as
specified in the pre-training using ontological relationships section). We collected
sentences for every concept in UMLS using the RS technique. To train our model,
we used 1000 samples per concept and incorporated both a local context of 3 words
and the global context. On average, the global context is 60 words per clinical note.
We split the dataset into a training set (90%) and a validation set (10%). We used a
learning rate of 0.002 and a batch size of 2048.

We initialized the weights of the convolution and fully connected layers with
corresponding weights from the hierarchy model. If an expansion for a given
abbreviation has a concept code in UMLS, we also initialized the expansion embedding
in the abbreviation model with the corresponding embedding from the hierarchy.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The datasets used in this study are all publically available from the following sources:
MIMIC II (https://physionet.org/content/mimiciii/1.4/, version 1.4). CASI (https://
conservancy.umn.edu/handle/11299/137703). i2b2 (https://www.i2b2.org/NLP/DataSets/
Main.php). UMLS (https://uts.nlm.nih.gov/uts/umls/home). AllAcronyms (https://
www.allacronyms.com/_medical). We have published our code on how to generate
training/validation/test sets from these datasets. Note that to make use of our code base,
one must first obtain access to MIMIC 111, i2b2, and/or UMLS. For the i2b2 hand-labeled
dataset, we have noted the location of each abbreviation and its expansion in
Supplementary Data 1. We are unable to provide clinical notes from The Hospital for
Sick Children due to privacy restrictions.

Code availability

Our code can be found at https://github.com/martaskrt/abbr_disamb.
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