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The COVID-19 (coronavirus disease 2019) pandemic, caused

by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), has led to loss of human life in millions and devastating

socio-economic consequences worldwide. The disease has

created urgent needs for intervention strategies to control the

crisis and meeting these needs requires a deep understanding

of the structure-function relationships of viral proteins and

relevant host factors. The trimeric spike (S) protein of the virus

decorates the viral surface and is an important target for

development of diagnostics, therapeutics and vaccines. Rapid

progress in the structural biology of SARS-CoV-2 S protein has

been made since the early stage of the pandemic, advancing

our knowledge on the viral entry process considerably. In this

review, we summarize our latest understanding of the structure

of the SARS-CoV-2 S protein and discuss the implications for

vaccines and therapeutics.
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is the causative agent of the COVID-19 (coro-

navirus disease 2019) pandemic [1��], and its infection

has led to millions of lives lost and devastating socio-

economic consequences throughout the globe. There are

urgent needs for innovative vaccine and therapeutic

strategies to control this unprecedented crisis, as well

as potential future needs if it becomes seasonal with

continuous emergence of new variants. A deep under-

standing of the structure-function relationships of viral
www.sciencedirect.com 
proteins and relevant host factors will be required in

order to meet these needs. Coronaviruses (CoVs) are

enveloped positive-stranded RNA viruses that enter a

host cell by fusion of its envelope lipid bilayer with the

target cell membrane. This first critical step of viral

infection is catalyzed by its trimeric spike (S) protein,

which decorates the virion surface as a major antigen and

induces neutralizing antibody responses. The protein is

therefore an important target for development of diag-

nostics, therapeutics and vaccines. Remarkable progress

in the structural biology of SARS-CoV-2 S protein has

been made since the initial outbreak of the virus [2],

substantially advancing our molecular understanding of

the viral entry process. Here we summarize our current

knowledge on the structure of the SARS-CoV-2 S pro-

tein and discuss the implications for vaccines and

therapeutics.

Overall structure of SARS-CoV-2 S protein
The SARS-CoV-2 spike glycoprotein is a type I mem-

brane protein (Figure 1a), which forms a trimer,

anchored to the viral membrane by its transmembrane

segment, while decorating the virion surface with it large

ectodomain (Figure 1b). It binds to the receptor angio-

tensin-converting enzyme 2 (ACE2) on a host cell and

undergo large structural rearrangements to promote

membrane fusion [1��,3�]. The protein is heavily glyco-

sylated with each protomer containing 22 N-linked

glycosylation sites [4,5]. The full-length S protein of

the Wuhan-Hu-1 strain from the initial outbreak has

1273 amino acid residues, including a N-terminus signal

peptide, a receptor-binding fragment S1 and a fusion

fragment S2. S1 can be further divided into N-terminal

domain (NTD), receptor-binding domain (RBD) and C-

terminal domains (CTD1 and CTD2), while S2 includes

fusion peptide (FP), fusion-peptide proximal region

(FPPR), heptad repeat 1 (HR1), central helix (CH),

connector domain (CD), heptad repeat 2 (HR2), trans-

membrane segment (TM) and the cytoplasmic tail (CT),

depicted in Figure 1a.

Structures of S protein fragments derived from the

Wuhan-Hu-1 strain, including the S ectodomain stabi-

lized in its prefusion conformation [6��,7�], RBD-ACE2

complexes [8��,9�,10,11], and segments of S2 in the

postfusion state [12], were determined within the first

several months of the pandemic. Soon after, structures of

detergent-solubilized, full-length S proteins in both pre-

fusion and postfusion conformations [13��,14], as well as

those of the intact S trimer on the virion surface, studied

by cryo-electron tomography [15�,16��,17�,18��], were also

reported (Figure 1b and c). Overall, the SARS-CoV-2 S
Current Opinion in Virology 2021, 50:173–182
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Figure 1

(a)

(b) (c)
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Distinct conformational states of the SARS-CoV-2 spike protein.

(a) Schematic representation of the SARS-CoV-2 spike protein organization. Segments of S1 and S2 include: NTD, N-terminal domain; RBD,

receptor-binding domain; CTD1, C-terminal domain 1; CTD2, C-terminal domain 2; S1/S2, S1/S2 cleavage site; S20, S20 cleavage site; FP, fusion

peptide; FPPR, fusion peptide proximal region; HR1, heptad repeat 1; CH, central helix region; CD, connector domain; HR2, heptad repeat 2; TM,

transmembrane anchor; CT, cytoplasmic tail; and tree-like symbols for glycans. (b) Left: viral SARS-CoV-2 S trimer in the prefusion conformation

(EMD-30430; Ref. [15�]), fitted with the structures of purified proteins (PDB ID: 7KRR and 6XR8; Refs. [13��,50��]). Right: cryo-EM structure of the

full-length S trimer in the RBD-down conformation (PDB ID: 6XR8). (c) Left: viral SARS-CoV-2 S2 trimer in the postfusion conformation (EMD-

30428; Ref. [15�]), fitted with the structure of the purified protein (PDB ID: 6XRA; Ref. [13��]). Right: cryo-EM structure of the full-length S2 trimer in

the postfusion conformation (PDB ID: 6XRA). (d) Additional structures of coronavirus S proteins, including the full-length SARS-CoV-2 S trimer

carrying G614 in the one RBD-up conformation (PDB ID: 7KRR), the stabilized soluble SARS-CoV-2 S trimer in the RBD-down conformation (PDB

ID: 6VXX; Ref. [7�]), the stabilized soluble SARS-CoV-2 S trimer in the one RBD-up conformation (PDB ID: 6VSB; Ref. [6��]). (e) MHV (mouse

hepatitis virus) S2 in the postfusion state (PDB ID: 6B3O; Ref. [25]), and SARS-CoV S2 in the postfusion state (PDB ID: 6M3W; Ref. [24]).
structure shows many similarities to those of other coro-

navirus spike proteins [19–23]. In the prefusion structure,

the S1 fragment, adopting a ‘V’ shaped architecture with

the NTD at one arm and the RBD, CTD1 and CTD2 at

the other (also see Figure 2a), which wrap around the

central helical bundle formed by the prefusion S2 frag-

ment, projecting the N-terminal end of HR1 toward the

viral membrane. Three RBDs form the apex of the S
Current Opinion in Virology 2021, 50:173–182 
trimer, sampling two distinct conformations — ‘up’ repre-

senting a receptor-accessible state and ‘down’ represent-

ing a receptor-inaccessible state (Figure 1b). The three

NTDs are located at the periphery of the trimer, each

making contacts with the RBD from the adjacent proto-

mer. The CTD1 and CTD2 pack underneath the RBD

against S2 and between the two neighboring NTDs,

indicating they could modulate these domains and play
www.sciencedirect.com
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Figure 2

(a)

(d) (e)

(f)

(b) (c)

Current Opinion in Virology

Structures of NTD and its antibody complexes.

(a) Cryo-EM structure of S1 fragment from the full-length SARS-CoV-2 S trimer (PDB ID: 6XR8), with the NTD highlighted in blue and the rest of

S1 in gray. (b) Close-up view of the NTD in the SARS-CoV-2 S protein. (c) The NTD (in blue) from its complex with 4A8 is superposed with the

domain from the full-length S trimer in gray, showing shifts of the five surface loops (N1–N5). (e) and (f) Close-up view of the binding interface for

the NTD-4A8 and NTD-DH1205 complexes with contacting residues in the NTD highlighted in sticks. (d) Superposition of the structures of the

NTD in complex with antibody 4A8 Fab (PDB ID: 7C2L; Ref. [28��]) and DH1052 Fab (PDB ID: 7LAB; Ref. [32]), as indicated. Heavy and light

chains of 4A8 are colored in red and pink, respectively, and those of DH1052 are in green and cyan, respectively.

www.sciencedirect.com Current Opinion in Virology 2021, 50:173–182
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important roles in the structural rearrangements required

for membrane fusion.

In the postfusion conformation, S1 dissociates as a mono-

mer, while S2 adopts a rigid, baseball-bat-like shape

(�220 Å long), and the HR1 flips over to form a continu-

ous long helix together with the CH, which is further

surrounded by short helices and b-sheets at the distal end

of the membrane (Figure 1c and e). The connector

domain (CD), together with a segment (residues 718–

729) in the S1/S2–S20 fragment, form a three-stranded b
sheet, and residues 1127–1135 join the connector b sheet

to expand it into four strands. Another segment (residues

737–769) in the S1/S2–S20 fragment makes up three

helical regions locked by two disulfide bonds that pack

against the groove of the CH part of the coiled coil to form

a short, six-helix bundle structure (6HB-1). The N-ter-

minal region of HR2 adopts a one-turn helical conforma-

tion and also packs against the groove of the HR1 coiled

coil; the C-terminal region of HR2 forms a longer helix

that makes up the second six-helix bundle structure with

the rest of the HR1 coiled coil (6HB-2) [13��,24,25].

N-terminal domain
At the periphery of the spike (Figure 1b) [13��], the NTD

projects away from the threefold axis, and can be divided

into the top, core and bottom regions (Figure 2b). The

core structure has a galectin-like antiparallel b-sandwich
fold, formed by one six-stranded b-sheet and the other

with seven strands. The top region has two antiparallel b
strands connected by a short loop, while the bottom

region is primarily made up of two short b sheets and a

helix. The overall structure of the NTD is decorated by

eight N-linked glycans and similar to that of the S

proteins from Middle East respiratory syndrome corona-

virus (MERS-CoV) [26] and bovine coronavirus [27].

The exact function of the NTD in SARS-CoV-2 S

remains unknown, although NTDs of other coronaviruses

have been shown to recognize sugars upon initial attach-

ment or specific protein receptors, or play a role in the

prefusion-to-postfusion transition [27]. Nonetheless,

NTD-targeted neutralizing antibodies (nAbs), with a

potency at the nM level, have been isolated from

SARS-CoV-2 infected patients [28��], suggesting a func-

tionally critical role of this domain. High-resolution struc-

tures of the S protein in complex with NTD-directed

neutralizing antibodies (4A8, FC05, CM25, 4-18, S2M28,

and DH1205) have been determined [28��,29�,30,31�,32],
showing that these antibodies primarily bind to two

glycan-free surfaces of the domain, designated NTD-1

and NTD-2 regions, respectively (Figure 2b; Ref. [33]).

Most antibodies target the NTD-1 region, which is thus

named the NTD-1-antigenic supersite. It is located at the

edge of the NTD top-core region, including five surface

loops: N1 (residues 14–26), N2 (residues 67–79), N3

(residues 141–156), N4 (residues 177–186), N5 (residues
Current Opinion in Virology 2021, 50:173–182 
246–260) (Figure 2c), and a b-hairpin structure near N3,

surrounded by four N-linked glycans (Asn17, Asn74,

Asn122 and Asn149). These loops reconfigure upon bind-

ing to various antibodies (Figure 2c).

In the S-4A8 complex structure (Figure 2d) [28��], the

third complementarity determining region (CDR3) of the

4A8 heavy chain inserts to a cleft formed by the N3

b-hairpin/loop and N5 loop, while the CDR1 and

CDR2 interact with the tips of the two loops. Moreover,

the glycan at Asn149 is very close to the interface and may

also contribute to antibody binding (Figure 2e). Other

antibodies, such as S2M28, 4-18, DH1050, CM25, FC05,

12C9 [33], also use their CDR1-3 to contact the N3 and

N5 loops, but some interact with the nearby N1 loop or

the glycan at Asn17 as well. Despite the differences in

approaching angles among these antibodies, their inter-

face with the NTD-1 is highly conserved. Up till now,

NTD-2 is recognized by non-neutralizing antibodies,

such as by DH1052 and 81D6 [33]. The CDR loops of

both heavy and light chains in DH1052 interact with the

surface formed by residues spanning 27–32, 59–62 and

211–218 in the NTD (Figure 2f), with possible involve-

ment of the glycan at Asn603 of the CTD-2. Not surpris-

ingly, the newly emerged SARS-CoV-2 variants of con-

cerns, including Alpha (lineage B.1.1.7), Beta (B.1.351),

Gamma (B.1.1.28) and Delta (B.1.617.2), all have muta-

tions and/or deletions within the NTD-1-supersite, ren-

dering resistance to neutralization by NTD-directed anti-

bodies [34,35].

Receptor binding domain
The RBD contains two subdomains — a five-stranded

antiparallel b sheet connected by short helices and loops,

and an extended loop, named receptor binding motif

(RBM) [8��,9�,36]. In the host cell, ACE2 is an important

component of renin-angiotensin system (RAS) and cata-

lyzed the hydrolysis of angiotensin II to angiotensin 1–7

[9�]. The full-length human ACE2 is also a chaperone of

the amino acid transporter B�AT1 and forms a homo-

dimer mediated by its neck domain in the presence of

B�AT1 (Figure 3a) [10]. Cryo-EM structures of the solu-

ble uncleaved S protein in complex with monomeric

ACE2 show that the S trimer can bind one, two or three

ACE2s in the RBD-up conformations (Figure 3b) [37,38].

The crystal structure of the SARS-CoV-2 RBD-ACE2

complex reveals a similar structure to the SARS-CoV

RBD-ACE2 complex [8��,9�]. A gently concave outer

surface of the extended RBM interacts with the N-ter-

minal helix of the claw-like peptidase domain (PD) of

ACE2 (Figure 3c) [8��,9�,10]. Hydrogen bonds and salt

bridges between a series of polar residues, such as K417,

E484, N487 and N501 of the RBD and D30, K31, H34,

Y41 and K353 of the ACE2, dominate the RBD-ACE2

interaction (Figure 3c) [8��,9�,10]. Additional hydropho-

bic interactions between F486 of the RBD and L79, M82

and Y83 of the ACE2 also contribute to the receptor
www.sciencedirect.com
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Figure 3

(a)

(c)

(d)

(b)
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Structures of ACE2, ACE2-S complexes and RBD-antibody complexes.

(a) Cryo-EM structure of the full-length ACE2 in complex with BoAT1 (PDB ID: 6M17; Ref. [10]), with the peptidase domain (PD) of ACE2 in pink,

its neck domain in magenta, the transmembrane helix in yellow, and BoAT1 in gray. (b) The side view (left) and the top view (right) of cryo-EM

structure of the soluble S trimer complexed with three ACE2s (PDB ID: 7KJ4; Ref. [37]). (c) Left, the crystal structure of SARS-CoV-2 RBD in

complex with ACE2 (PDB ID: 6M0J; Ref. [8��]), with ACE2 in pink and the RBD in cyan. Middle and right, close-up views of the binding interface

with contacting residues from the N-terminal helix of the ACE2 and the RBM of the RBD shown in sticks. (d) Left, cryo-EM structure of the RBD in

complex with antibody REGN10933 (PDB ID: 6XDG; Ref. [43��]). Middle, cryo-EM structure of the RBD in complex with antibody REGN10987

(PDB ID: 6XDG; Ref. [43��]). Right, crystal structure of the RBD in complex with antibody CR3022 (PDB ID: 6YLA; Ref. [45]). The RBD is shown in

cyan and heavy and light chains of the antibodies in various colors. The RBM is highlighted in dark blue.

www.sciencedirect.com Current Opinion in Virology 2021, 50:173–182
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Figure 4

Current Opinion in Virology

Structures of CTDs.

Structures of CTDs form the full-length S trimer (PDB ID: 7KRQ; Ref. [50��]) are shown, with CTD1 in magenta, CTD2 in purple, the 630-loop in

yellow, and the b-strand in the CTD2 from S2 subunit in gray.
engagement (Figure 3c) [8��,9�,10]. Mutations of the key

residues, such as N501Y, K417N and E484K, have been

identified in the fast-spreading variants of concern, lead-

ing to enhanced affinity for ACE2 and immune evasion

[39,40].

The RBD is a dominant target of nAbs elicited by either

natural infection or vaccination, confirming its pivotal role

during infection [41,42]. The RBD-directed nAbs can

recognize multiple distinct epitopes, showing great

potencies at the pM-nM level in vitro neutralization

assays (Figure 3d) [42]. The nAbs that target the

ACE2-binding-site, such as REGN10933, C144 and

S2H14, directly compete for ACE2 association

[41,42,43��,44]. Those recognizing the non-ACE2-bind-

ing-site, such as REGN10987 and C135, probably prevent

ACE2 binding either by clashing with ACE2 or by block-

ing the transition of the RBD from the ‘down’ to the ‘up’

conformation [42,43��,44]. Other nAbs against the so-

called ‘cryptic supersite’, such as CR3022 and S304,

can destabilize the S trimer and induce S1 dissociation

[41,42,45]. Although the great potency of this class of

antibodies makes them promising therapeutic agents,

emergence of resistant variants could limit their clinical

applications for treating the COVID-19.

A recombinant human ACE2, named APN01, is under

evaluation as a treatment for COVID-19 in a phase

2 clinical trial, based on the favorable results from a
Current Opinion in Virology 2021, 50:173–182 
previous phase 1 trial [46], and evidence that the protein

blocks SARS-CoV-2 infection effectively in vitro [47].

Other ACE2-based fusion inhibitors have been devel-

oped with optimized binding and potency comparable to

those of the nAbs [37,48,49]. The ACE2 constructs with

multivalency, such as the dimeric protein sACE22.v2.4-

IgG1 carrying the mutation T27Y/L79T/N330Y and the

trimeric protein ACE2-foldon T27W, can inhibit the viral

infection with a potency 1000-fold and 1700-fold greater

than that of the monomeric soluble ACE2 with the

wildtype sequence [37,48]. Substitution of T27 with an

aromatic residue appears to further stabilize the binding

interface through non-polar interactions with residues

Y489, F456 and Y473 of the RBD (Figure 3c). In addition,

a series of miniproteins, created using computer-gener-

ated scaffolds to mimic the N-terminal helix of ACE2, can

bind the RBD and inhibit viral infection at a concentra-

tion below the nM level [49]. These ACE2-derived

inhibitors may show even greater potency to those

SARS-CoV-2 variants that have gained increased receptor

binding than the Wuhan-Hu-1 virus. Nonetheless, phar-

macokinetics, in vivo efficacy and safety profile of these

new designs still require further validation.

C-terminal domains
The C-terminal domains (CTDs) are formed primarily by

b-structures of segments from S1, as well as the N-

terminal segment of S2 adjacent to the furin cleavage

site (Figure 4). CTD1 contains two antiparallel b-sheets,
www.sciencedirect.com
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Figure 5

(a) (b) (d)

(c)
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Structures and proposed conformational changes of SARS-CoV S2.

(a) Close-up view of S2 in the prefusion (left) and postfusion (right) conformations from PDB ID: 6XR8 and 6XRA, with the fusion peptide (FP)

highlighted in purple, the FPPR in red, central helix (CH) in gold, connector domain (CD) in green, HR1 in orange and HR2 in green. (b) Proposed

structural transition of the HR1 from the prefusion to postfusion conformation. (c) Proposed conformational change of the HR2. (d). Six-helix

bundle structures in the postfusion S2 with HR1 in orange and HR2 in green.
with two strands and four strands, respectively. CTD2

also has two b-sheets: a four-stranded one and another

four-stranded one that includes a strand from the S2

subunit [6��,7�,13��,50��]. In the RBD-down conformation

of the S trimer, a structural element in the CTD2, named

the ‘630 loop’, becomes well-ordered in the G614 variant

while disordered in the Wuhan-Hu-1 strain [13��,50��].
When structured, the 630 loop inserts into a gap between

the NTD and CTD1 of the same protomer, stabilizing

the CTD2 structure. It is also located in the vicinity of the

S1/S2 boundary as well as the FPPR of a neighboring

protomer [50��]. The FPPR and the 630 loop help retain

the RBDs in the down conformation but move out of their

positions when the adjacent RBD flips up. Thus, the

CTDs, together with the FPPR and the 630 loop are key

components of the S fusion machinery that modulate the

fusogenic structural rearrangements of S protein.

S2 structure
In the prefusion conformation [13��], three S2 subunits

tightly pack around a central three-stranded coiled-coil of

�140 Å long, formed by CH (Figure 1b). Portion of the
www.sciencedirect.com 
HR1 together with another segment of S2 (residues 758–

784) adopt a-helical conformation and assemble into a

nine helix-bundle with the central coiled-coil, forming

the most rigid part of the entire S trimer. The CD region

links CH and the C-terminal HR2 through a linker region

(Figure 5a). The FP forms a short helix and tucks in a

pocket formed by two neighboring S protomers. The

structured FPPR clashes with the CTD1 if the RBD

moves up and thus appears to help clamp the prefusion S

trimer in the closed, RBD-down conformation. It has also

been suggested to function as a pH-dependent switch

domain that modulates the RBD position [38]. The

remaining HR2, TM and CT segments are disordered

in the most S trimer structures, but show low-resolution

density in the cryo-ET reconstructions that can be tilted

away from the threefold axis of the trimer with an angle

from 17� to 60� [16��].

In the postfusion conformation [13��,24], the HR1 and

CH form a continuous a-helix and three copies of them

assemble into a long central three-stranded coiled-coil of

�180 Å (Figure 5a). Two proline substitutions at the
Current Opinion in Virology 2021, 50:173–182
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boundary between the HR1 and CH to prevent formation

of the postfusion helix have been introduced to stabilize

the prefusion conformation and such a design has been

used for structural studies and the first-generation vac-

cines [6��,7�,51]. Part of the HR2 folds into a-helix and

packs against the groove between two HR1-CH helices to

form a six-helix bundle structure, reminiscent of the

postfusion organization of other viral fusion proteins

[52,53]. The CD remains unchanged from the prefusion

conformation, as a three-stranded b-sheet covering the C-

terminal end of HR1-CH helices. Comparison of the

prefusion and postfusion conformations of S suggests that

HR1 undergoes large rearrangements to form a coiled-

coil, translocating its N-terminal end by a large distance to

project the FP towards the target cell membrane

(Figure 5b). In addition, the HR2 and the TM at its

C-terminal end must fold back to pack along the groove of

the HR1-CH coiled-coil to form the postfusion six-helical

bundle (Figure 5c). These refolding events effectively

bring the viral and target cell membranes close together,

ultimately leading to membrane fusion (Figure 5d). Inter-

estingly, five N-linked glycans decorate the postfusion S2

surface along the long axis with a regular spacing and may

protect the S2 from the host immune responses.

Implications for vaccines and therapeutics
The SARS-CoV-2 S protein is the key component of

almost all the first-generation COVID-19 vaccines [51].

Based on structural studies, concerns have been raised

that the inactivated-virus vaccines or those used the

wildtype sequence of the Wuhan-Hu-1 strain may have

too many postfusion spikes and induce mainly non-neu-

tralizing antibodies [13��,18��]. Indeed, these vaccines

have induced lower levels of neutralizing antibody

responses than other S constructs containing stabilization

modifications to prevent conformational changes [54].

Additional studies have identified the G614 S trimer as

a possible superior immunogen candidate [50��,55], as it is

naturally constrained in a prefusion state presenting both

the RBD-down and RBD-up conformations with great

stability. Moreover, the global spread of SARS-CoV-2 and

the consequently vast number of replication events make

emergence of new variants inevitable, and substantially

increases the genetic diversity of the virus, which will

bring much greater challenges for vaccine development

than it was at the beginning of the pandemic. Indeed,

genetic diversity is also the major hurdle for development

or optimization of vaccines against several other human

pathogens, such HIV-1, hepatitis C virus and influenza

virus [56–58]. If SARS-CoV-2 becomes seasonal, struc-

ture-based innovative strategies will likely be needed for

developing next-generation vaccines designed to elicit

broadly neutralizing antibody responses. Likewise, high-

resolution structural information has been instrumental

for creating peptide-based and ACE2-based fusion inhi-

bitors [12,37,49,59], it will undoubtedly continue to serve
Current Opinion in Virology 2021, 50:173–182 
as a foundation for rational design of antiviral therapeutics

to fight against the pandemic.

Conclusion
Tremendous progress in the structural biology of SARS-

CoV-2 spike protein has been made since the initial

outbreak of the virus. The structural knowledge not only

fills the major gap in our understanding of the viral entry

process, but also provides a solid foundation for develop-

ment and optimization of vaccines and therapeutics

against the current and future pandemics of

coronaviruses.
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