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Summary
Schizophrenia is a complex condition associated with perceptual disturbances, decreased motivation and affect, and dis-
rupted cognition. Individuals living with schizophrenia may experience myriad poor outcomes, including impairment in 
independent living and function as well as decreased life expectancy. Though existing treatments may offer benefit, many 
individuals still experience treatment resistant and disabling symptoms. In light of the negative outcomes associated with 
schizophrenia and the limitations in currently available treatments, there is a significant need for novel therapeutic interven-
tions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that can modulate 
the activity of discrete cortical regions, allowing direct manipulation of local brain activation and indirect manipulation of 
the target’s associated neural networks. rTMS has been studied in schizophrenia for the treatment of auditory hallucinations, 
negative symptoms, and cognitive deficits, with mixed results. The field’s inability to arrive at a consensus on the use rTMS 
in schizophrenia has stemmed from a variety of issues, perhaps most notably the significant heterogeneity amongst existing 
trials. In addition, it is likely that factors specific to schizophrenia, rather than the rTMS itself, have presented barriers to the 
interpretation of existing results. However, advances in approaches to rTMS as a biologic probe and therapeutic, many of 
which include the integration of neuroimaging with rTMS, offer hope that this technology may still play a role in improving 
the understanding and treatment of schizophrenia.
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Introduction to Schizophrenia

Schizophrenia is a complex and disabling illness that is esti-
mated to affect over 20 million people across the globe [1]. 
Since Emil Kraepelin’s coining of the term dementia prae-
cox in the late nineteenth century [2], much has been discov-
ered about the condition. However, in spite of advances in 
our understanding of schizophrenia, it nonetheless remains 
one of the top 10 causes of disability worldwide with detri-
mental effects on individual, family, and societal levels [3].

Schizophrenia is a heterogeneous condition consisting of 
“positive” and “negative” symptoms as well as cognitive 

dysfunction. Positive symptoms include delusional think-
ing, disorganized speech and behavior, and perceptual dis-
turbances such as auditory hallucinations, which have been 
associated with disrupted function of temporal-parietal 
cortical circuitry [4]. Negative symptoms include avolition, 
blunted affect, and asociality. Cognitive deficits are com-
monly observed in domains including working, episodic and 
verbal memory, processing speed, and social cognition. Neg-
ative symptoms and cognitive deficits are major drivers of 
poor outcomes associated with the illness [5], and both have 
been associated with decreased function of the dorsolateral 
prefrontal cortex (DLPFC) [4, 6–8]. The mainstay of schizo-
phrenia treatment is antipsychotic pharmacotherapy, which 
is generally effective for positive symptoms but less so for 
negative symptoms [9] and cognitive deficits [10, 11]. While 
approximately a third of affected individuals will adequately 
respond to antipsychotics, functionally impairing symptoms 
persist in a third, and up to another third will see little benefit 
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[12]. There is a clear need for novel therapeutics for schizo-
phrenia, as evidenced by associated morbidity and poor out-
comes more than 60 years after antipsychotic medications 
were introduced [13]. Non-invasive brain modulation tech-
niques, such as repetitive transcranial magnetic stimulation 
(rTMS), are potential novel therapeutic options.

Introduction to Repetitive Transcranial 
Magnetic Stimulation

Background and Mechanism

Transcranial magnetic stimulation (TMS) was first described 
by Anthony Barker [14] in a letter to Lancet in 1985, follow-
ing his observation that running an electrical current through 
a circular magnetic coil applied to the human motor cortex 
could produce movements of the contralateral limb. Single 
pulse TMS has since been used to measure cortical excit-
ability as well as to create a “virtual lesion” where investiga-
tors stimulate a cortical target, creating a short-term disrup-
tion in function in order to simulate the effects of a brain 
insult. This was first demonstrated by Amassian et al. who 
applied TMS over the visual cortex, observing a temporary 
impairment in visual perception [15]. The observation that 
repetitively pulsed TMS, coined repetitive transcranial mag-
netic stimulation (rTMS), could produce effects that extend 
beyond the period of stimulation raised the possibility of 
TMS as a clinical intervention in addition to an investiga-
tional tool [16].

rTMS applies a repetitively pulsed magnetic field over 
the scalp to induce an electric field within a discrete area 
of the brain. This electric field modulates ion flow across 
the neuronal cellular membrane with resultant changes 
in neuronal polarization. The end result is altered neu-
ronal activity in the area where the rTMS is applied [17, 
18] (Fig. 1). It is thought that rTMS causes lasting neural 
effects through long-term potentiation (LTP) and long-term 
depression (LTD) like mechanisms [19]. rTMS is a mal-
leable neuromodulation technique that can exert varying 
physiologic effects depending on how it is administered. 
Early studies demonstrated that using different stimulation 
frequencies (Hz), or pulses per second, may result in differ-
ent effects. Investigators observed that rTMS administered 
at 10–25 Hz, or high-frequency rTMS, led to an increase in 
cortical excitability. Stimulation at 1 Hz, or low frequency 
rTMS, is thought to result in cortical inhibition [20, 21]. 
Though the precise mechanisms are unclear, it is believed 
that these disparate effects may be related to differences in 
calcium influx resulting from application of these stimula-
tion fields [22–24].

Other variables, including the intensity of stimulation, 
pulse pattern, and coil type have been used to modify the 

effects of rTMS. The stimulation intensity is believed to 
inform rTMS induced changes in cortical excitability. 
Intensity is defined as a percentage of an individual’s rest-
ing motor threshold (MT), which is the stimulation output 
required to produce a motor-evoked potential [25]. Stimulat-
ing at intensities greater than an individual’s resting MT is 
believed to result in more sustained effects, while stimula-
tion below MT threshold may result in weaker, less consist-
ent effects [20, 26, 27].

The coil type used in rTMS is important, as this influ-
ences both the depth and focality of stimulation. The figure-8 
coil initially came into use as it offered a focality advantage 
over the circular coil [28]. Since then, the H-coil has been 
shown to penetrate more deeply [29], though focality is lost. 
There are many different coil types [30], and investigations 
remain underway to clarify optimized depth-focality tradeoff 
[31, 32].

Different stimulation patterns are observed to result in 
varying physiologic effects. Theta burst stimulation (TBS) 
is an increasingly common variant of rTMS that was devel-
oped based on studies in rodent and human brains which 
indicated that theta rhythms are associated with LTP 
[33–37]. TBS consists of lower intensity stimuli applied at  
a high frequency over a shorter period of time, with effects  
potentially lasting longer than standard rTMS [38]. TBS is  
often administered in bursts of 3 stimuli at 50 Hz (20 ms  
between each stimulus) at 80% MT, with repeated bursts at  
intervals of 200 ms (5 Hz). When applied intermittently 
(intermittent theta burst stimulation or iTBS), e.g., 2 s at a 
time with an 8 s break, it results in increased cortical excit-
ability. When applied continuously (continuous theta burst 
stimulation, cTBS), it results in cortical inhibition, though 

Fig. 1   During repetitive transcranial magnetic stimulation (rTMS), an 
electric current is used to create a repetitively pulsed magnetic field. 
When applied over the scalp, this induces an electric current within a 
discrete area of the brain with resultant changes in neuronal polariza-
tion. The end result is altered neuronal activity in the area where the 
rTMS is applied
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recent work has suggested that cTBS may be associated with 
inconsistent effects [39, 40]. Another pattern is quadripulse 
stimulation (QPS), which consists of stimulation at 90% of 
MT, arranged in 4 pulses separated by a given interstimulus 
interval. Shorter interstimulus intervals lead to long-lasting 
facilitation, whereas longer interstimulus intervals led to 
long-lasting suppression. Investigators have observed that 
an interval of 50 ms, corresponding to a frequency of 20 Hz, 
resulted in suppression lasting over an hour. Without the 
QPS pattern, rTMS at this frequency would result in a few 
minutes of facilitation [41]. Relative to TBS, QPS has dem-
onstrated stronger and more predictable (smaller number of 
opposite responders) excitatory and inhibitory effects [42].

Effects on Neural Circuitry

rTMS has many clinical applications because it impacts not 
only the region that is directly stimulated but also associ-
ated downstream circuitry. In her 2018 review, Hanlon [43] 
reasons that even the earliest studies of TMS demonstrate 
a polysynaptic effect, because the impulse travels from the 
upper motor neuron to the lower motor neuron, resulting in 
a motor evoked potential. PET studies have provided data 
elucidating the effects of rTMS at a brain circuit level. Inves-
tigations in healthy subjects have demonstrated that rTMS 
targeting the prefrontal cortex (PFC) induced dopamine 
release in the anterior cingulate cortex, orbitofrontal cor-
tex, caudate nucleus, and striatum [44–46]. Vidal-Pineiro 
and colleagues [47] demonstrated via magnetic resonance 
spectroscopy that iTBS applied to the inferior parietal lobule 
of healthy volunteers was associated with increased gamma 
aminobutyric acid (GABA) throughout the posteromedial 
cortex, with the strength of GABA release at the posterior 
cingulate cortex correlating to baseline functional connectiv-
ity between these regions.

Functional magnetic resonance imaging (fMRI) studies 
have also demonstrated the activation of neural circuitry fol-
lowing TMS. Denslow et al. [48] demonstrated that single-
pulse TMS applied to the motor cortex resulted in motor 
circuit activation. A recent study by Dowdle and colleagues 
[49] demonstrated that single-pulse TMS to the left DLPFC, 
compared to sham TMS, resulted in increased activity in the 
anterior cingulate, caudate, and thalamus. These results pro-
vide support for the belief that multiple networks involved 
in psychopathology can be modulated by TMS and have 
opened the door for various therapeutic applications.

Safety and Tolerability of rTMS

A strength of rTMS is its safety profile. The most severe 
known adverse effect is seizures, and these are remarkably 
rare, occurring in fewer than 1 per 60,000 sessions [50]. Syn-
cope has been observed and can be distressing, especially 

when convulsive features may make the episode appear to be 
a seizure [18]. The most common side effects are local pain 
and headaches [18]. A 2008 review of sham-controlled stud-
ies found that 28% experienced headache and 39% experi-
enced pain with active rTMS, versus 16% headache and 15% 
pain with sham treatment [51]. Fortunately, these symptoms 
commonly resolve without clinical intervention.

rTMS in Schizophrenia

The majority of studies examining rTMS in schizophre-
nia fall into one of two camps. The first are investigations 
modulating auditory cortical function via stimulation of the 
temporal-parietal cortex (TPC), an area for which there had 
traditionally been less data regarding tolerability or effi-
cacy. The second are investigations that retained the same 
or similar protocols as studies in major depressive disorder, 
targeting the DLPFC. Though few in number, there have also 
been investigations studying other rTMS targets in schizo-
phrenia, such as the inferior parietal lobule and cerebellum. 
The scope of this review will include studies targeting the 
TPC and DLPFC in schizophrenia, with a focus on trials 
leveraging neuroimaging in either study design or outcomes.

rTMS of the Temporal‑Parietal Cortex 
in Schizophrenia

Aberrant TPC function has been hypothesized to contribute 
to a cardinal symptom of schizophrenia, auditory halluci-
nations. This theory has been supported by neuroimaging 
investigations demonstrating associations between auditory 
hallucinations and altered TPC function [52]. Leveraging 
the ability of rTMS to modulate neural function and con-
nectivity, investigators have questioned whether stimulation 
of the TPC may reverse these neural abnormalities and thus 
ameliorate auditory hallucinations associated with schizo-
phrenia (Table 1).

The first to publish in this area was Hoffman et al. [53], 
who used a 1 Hz rTMS protocol in three subjects, stimulat-
ing directly over the midway point between the left tem-
poral (T3) and left parietal (P3) positions defined by the 
International 10–20 EEG system, an approach that has 
been replicated in trials that followed. All subjects reported 
improvements in auditory hallucinations following rTMS, 
and two of the three experienced a maintained reduction 
in hallucination severity two weeks later. Hoffman et al. 
[54–56] later replicated these findings, extending the dura-
tion of treatment. Other investigators began to examine the 
effects of rTMS on auditory hallucinations, with mixed 
results. Chibbaro and colleagues [57] observed maintained 
reduction of auditory hallucinations at follow-up 8 weeks 

829Repetitive Transcranial Magnetic Stimulation as a Therapeutic and Probe in Schizophrenia:…
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post-stimulation, while work by Poulet et al. [58] reported 
significantly reduced scores on the auditory hallucinations 
rating scale (AHRS) after rTMS twice per day over 5 days. 
However, in other trials, the results demonstrated either 
similar improvement in rTMS and sham groups [59–63] or 
no effect in either [64–67].

While the majority of studies focusing on the TPC as a 
rTMS target involve a 1 Hz protocol, there are a few excep-
tions. Montagne-Larmurier and colleagues [68] adminis-
tered 20 Hz rTMS targeting the left posterior superior tem-
poral sulcus twice daily over 2 days. Subjects experienced 
a significant reduction in combined auditory and visual hal-
lucinations at 12-day follow-up, though there was no control 
group. Kimura et al. [69] and Dollfus et al. [70] also used 
20 Hz protocols directed at the left TPC but did not find 
significant reductions in auditory hallucinations. cTBS pro-
tocols targeting the left TPC have likewise produced mixed 
results, showing either no effect [71] or a reduction in audi-
tory hallucinations relative to sham treatment [72]. Though 
initial studies targeting the TPC for the treatment of auditory 
hallucinations were promising, subsequent work revealed 
mixed results. This prompted investigators to consider alter-
native approaches, such as imaging guided rTMS.

Role of Neuroimaging in Studies of rTMS 
Targeting the TPC in Schizophrenia

Neuronavigation

While some studies have used traditional EEG scalp lead 
placement to guide and standardize target location, others 
have employed neuroimaging, commonly structural mag-
netic resonance imaging (MRI), to more precisely target 
areas of interest. The selected target area can also be speci-
fied based on brain function, as revealed by fMRI data col-
lected at rest or during task performance.

Schönfeldt-Lecuona and colleagues [73] were the first to 
use image-guided, neuronavigated rTMS in schizophrenia. 
In this small study (n = 11), T1-weighted structural MRI 
was employed to identify the superior temporal gyrus and 
Broca’s area. Five subjects also had fMRI data collected 
during a delayed match-to-sample task, where subjects were 
asked to memorize and later recall previously shown sylla-
bles and geometric figures, which activated regions within 
the left superior temporal sulcus. In a blinded crossover trial 
between 4 conditions (left superior temporal gyrus, Broca’s 
area, midline parieto-occipital sham stimulation, and no 
stimulation), no significant effects on auditory hallucina-
tions were observed in any of the four groups, though there 
was a trend toward improvement in the subjects whose left 
superior temporal sulcus was targeted via fMRI.Ta
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In a larger randomized control trial of subjects experienc-
ing auditory-visual hallucinations, fMRI was used to iden-
tify the area of maximal activation in subjects experiencing 
auditory-visual hallucinations within left or right superior, 
medial, inferior, and transversal temporal gyri, supramar-
ginal gyrus, and angular gyrus. However, administering 
1 Hz rTMS to this target had no effect on positive symp-
toms compared to a structurally defined anatomical target or 
sham treatment [74]. Blumberger et al. [75] examined MRI 
guided stimulation of Herschel’s gyrus in three groups, a 
6 Hz priming lead-in to 1 Hz stimulation, 1 Hz, and sham, 
but did not observe an effect in any of the three groups. 
Paillere-Martinot et al. [76] targeted the region of greatest 
temporal activation during a language-fragment detection 
task but did not observe an effect on hallucinations.

Nathou and colleagues [77], observing the inconsistency 
of findings in the literature regarding rTMS efficacy in schiz-
ophrenia, sought to determine if individual anatomical varia-
tions were a possible contributor. Here, 15 subjects received 
20 Hz rTMS targeting the left TPC after undergoing MRI. 
The authors observed that treatment response, i.e., improved 
AHRS scores, was predicted by the scalp-to-cortex distance 
and the gray matter density in the target region. Interestingly, 
the resting MT was not at all predicted by the same measures 
in the primary hand cortex, leading the authors to argue that 
individualized resting MT may not be as useful a tool for 
gauging stimulation intensity in this population.

In summary, structural MRI that focuses on anatomical 
landmarks, scalp-to-cortex distance, and gray matter density 
at the target regions may predict clinical response, though 
the results are varied. fMRI has been employed as a means 
of more precise targeting of rTMS, though the impact of the 
practice on efficacy has yet to be fully explored.

Effects of rTMS on Brain Structure or Function

As the field’s understanding of rTMS expanded, studies 
began to employ neuroimaging for purposes other than navi-
gation. Functional imaging before and after rTMS may be 
useful for assessing how brain activity is impacted by the 
stimulation. Further, functional connectivity analysis can 
characterize downstream, network-related changes in brain 
function.

In one study, Fitzgerald and colleagues [78] had three 
subjects perform a repeated block-design word generation 
fMRI task before and after 1 Hz rTMS of the left TPC. These 
subjects experienced significantly reduced auditory hallu-
cination severity as well as increased blood oxygen level 
dependent (BOLD) signal in the left TPC (angular gyrus), 
left frontal-precentral cortex, and left inferior frontal gyrus 
compared to imaging from four healthy controls that did not 
undergo rTMS. Subjects also showed reduced task-related 
activation in brain regions including left superior temporal 

gyrus, left inferior frontal gyrus, right inferior frontal gyrus, 
anterior cingulate cortex, and parietal regions compared to 
controls. Kindler et al. [79] measured cerebral blood flow 
(CBF) in patients versus controls with pseudo-continuous 
magnetic resonance-arterial spin labeling before and after 
either 1 Hz rTMS or cTBS to the left TPC. The 1 Hz rTMS 
and cTBS groups exhibited decreased auditory hallucination 
scores as well as reductions in CBF in the primary audi-
tory cortex, Broca’s area, and cingulate gyrus, compared 
to controls.

Vercammen and colleagues [80] studied 1 Hz rTMS 
or sham targeting the left TPC in 18 subjects, obtaining 
fMRI at baseline and following study intervention. While 
no significant reduction in auditory hallucinations were 
observed, there was a trend-level effect (p = 0.068) in the 
active group. In the active arm, there was significantly 
increased functional connectivity (FC) between the left 
TPC and the right insula, but no FC change between pre-
determined regions of interest that were hypothesized to be 
elements of a network substrate for auditory hallucinations. 
Gromann et al. [81] demonstrated that rTMS, compared to 
sham, was associated with increased FC between the right 
TPC, the DLPFC, and the angular gyrus, supporting claims 
that rTMS may be a mechanism with which to modulate 
abnormal FC in schizophrenia. Bais et al. [82] measured 
changes in FC as a result of 1 Hz rTMS targeting either 
left or bilateral TPC, compared to sham. Results revealed 
varying effects on network FC, including frontotemporal, 
auditory-sensorimotor, and default mode network changes. 
Chen and colleagues [72] performed fMRI before and after 
active vs sham cTBS of the left TPC, examining changes in 
FC in addition to auditory hallucinations. The active cTBS 
group had a greater improvement in symptoms and a larger 
decrease in FC within the left cerebellum. The investiga-
tors observed that greater FC of the cerebellar cluster at 
baseline was associated with a lesser response to treatment, 
a potential biomarker of treatment response. In summary, 
though existing work have successfully employed rTMS as 
a means of exploring the relationship between TPC struc-
ture–function and hallucinations in schizophrenia, the opti-
mized approaches for doing so have yet to be elucidated. 
This remains a fertile area for continued investigation.

rTMS of the Dorsolateral Prefrontal Cortex 
in Schizophrenia

In contrast to studies involving the TPC, rTMS investiga-
tions targeting the DLPFC in schizophrenia have generally 
focused on negative symptoms or cognitive dysfunction.  
Thus far these results have been mixed (Table 2). A pilot study by  
Cohen et al. [83] treated 6 patients with 20 Hz rTMS over 
the left DLPFC for 2 weeks. The investigators observed 
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a significant reduction in positive and negative syndrome 
scale (PANSS) negative symptom score as well as improved 
performance during a delayed visual memory task, though 
the study suffered from lack of a control group. Hajak et al. 
[84] were the first to clearly demonstrate improved negative 
symptoms following a sham controlled trial of 10 Hz rTMS 
targeting the left DLPFC, with subsequent investigations 
similarly observing benefit [85–89]. Li 2016 et al. [90] failed 
to show negative symptom improvement after four weeks of 
rTMS, but did report a delayed effect in the rTMS, but not 
sham group, at 4-week follow-up. Quan and colleagues [91] 
not only showed improvement in negative symptoms follow-
ing 10 Hz rTMS of the DLPFC, compared to sham, but also 
that this was maintained at 24-week follow-up. Schneider 
et al. [92] targeted the DLPFC with 10 Hz, 1 Hz, and sham 
stimulation, observing significant improvements in negative 
symptoms and a trend-level effect on the Wisconsin Card 
Sorting Task in the 10 Hz group.

In a large clinical trial examining three different rTMS 
paradigm, Zhao et al. [93] divided 96 subjects into 4 groups 
for stimulation of the left DLPFC: 20 Hz rTMS, 10 Hz 
rTMS, iTBS, and sham. After 4 weeks of treatment, the three 
rTMS groups had decreased scores on the PANSS negative 
and general psychopathology subscales as well as the scale 
for the assessment of negative symptoms (SANS). The iTBS 
group experienced a greater decrease in these scores than the 
10 and 20 Hz arms. There was no difference between the 10 
and 20 Hz groups. Wolwer et al. [94] and Kamp et al. [95] 
both showed improvement in facial affect recognition after 
10 Hz rTMS protocols targeting the left DLPFC.

Though some trials have reported promising results 
of DLPFC stimulation, others have failed to demon-
strate clinical benefit. Holi and colleagues [96] observed 
improvement in negative symptoms and cognitive deficits 
in both 10 Hz rTMS and sham conditions, without any sig-
nificant difference between the two groups. Cordes et al. 
[97] found no significant improvement in negative symp-
toms, although a subset of patients with worse negative 
symptoms at baseline had significantly improved global 
assessment of functioning (GAF) scores. Mittrach and col-
leagues [98] performed a double-blind, sham-controlled 
study with a larger sample (n = 32) to assess for changes 
in cognition. Subjects received 10 Hz rTMS of the left 
DLPFC daily over 2 weeks. There were no significant 
effects of stimulation, though a subgroup with poor base-
line performance on the Wisconsin Card Sorting Task 
demonstrating trend-level improvement (p = 0.059). The 
authors also argued that the correlational data, while not 
significant, suggested that “inferior performance in cer-
tain neuropsychological aspects before treatment predicts 
a better response to active rTMS.” Barr et al. [99] admin-
istered 20 Hz sequential, bilateral DLPFC rTMS vs sham 
in a study of 25 subjects over four weeks and detected 

no significant effect on negative symptoms. In a large, 
multi-center, double-blinded randomized controlled trial 
(RESIS, Repetitive Transcranial Magnetic Stimulation for 
the Treatment of Negative Symptoms in Schizophrenia), 
76 patients with high illness severity were treated with 
10 Hz rTMS applied 5 days per week for three weeks to 
the left DLPFC, compared to 81 well-matched patients 
who received sham rTMS. There were no significant dif-
ferences between groups in negative symptoms, depressive 
symptoms, or cognition at 21-day and 105-day follow-up, 
although there was a statistically significant, but small 
improvement in positive symptoms for the active rTMS 
group at day 21 [100]. This was shortly followed in pub-
lication by Hasan and colleagues [101], who reported a 
lack of rTMS effects on cognition in the RESIS trial at 21, 
45, or 105-day follow-up. In summary, while early studies 
targeting the DLPFC with rTMS demonstrated efficacy for 
negative symptoms or cognitive deficits, later trials did not 
consistently replicate these results [102].

Though most studies targeting the DLPFC have focused 
on negative symptoms or cognitive deficits, some have 
identified effects of rTMS on auditory hallucinations. For 
instance, Rollnik et al. [103] used a crossover design with 
20 Hz rTMS targeting the left DLPFC compared to sham, 
finding an improvement in brief psychiatric rating scale 
(BPRS) score. Similarly, Novak and colleagues [104] exam-
ined 20 Hz rTMS of the left DLPFC, compared to sham, 
finding a small but significant improvement in the PANSS 
positive symptom subscale score. Wagner et al. [105] per-
formed a secondary analysis on the subset of RESIS trial 
patients treated with clozapine during active or sham rTMS, 
and reported significant improvements on PANSS total 
and positive symptom subscale, but not negative subscale, 
scores. This suggested a potential add-on role for DLPFC 
rTMS in patients on clozapine.

Role of Neuroimaging in Studies of rTMS 
Targeting the DLPFC in Schizophrenia

Neuronavigation

There are relatively few studies utilizing neuronavigated 
approaches to targeting the DLPFC, compared to the TPC, 
which can presumably be attributed to the relative stand-
ardization of DLPFC stimulation in the field. Barr et al. 
[106] used MRI-guided neuronavigation to target sequen-
tial bilateral DLPFC with higher precision in 27 subjects 
who performed a working memory task before and after four 
weeks 20 Hz rTMS vs sham, with results demonstrating sig-
nificantly improved 3-back accuracy for rTMS, compared 
to sham.
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Effects of rTMS on Brain Structure or Function

Although there has been less use of imaging to guide rTMS 
targeting the DLPFC in schizophrenia, there has been inter-
est in using imaging to identify potential treatment biomark-
ers and to clarify functional network-related responses to  
stimulation of the DLPFC or other regions (Table 3). Hasan 
and colleagues [107] analyzed structural MRI data collected 
before and after 10 Hz rTMS of the left DLPFC, compared 
to sham, and correlated it with negative symptom response. 
Volumetric gains in the left hippocampal, parahippocam-
pal, and precuneal cortices following active rTMS predicted 
negative symptom improvement. The authors suggested that 
the observed heterogeneity in negative symptom response to 
rTMS may be in part mediated by the variable capacity for 
structural plasticity, especially in the left hippocampus and 
precuneus. Koutsouleris et al. [108] also suggested that indi-
vidual variation in responsiveness to 10 Hz rTMS in patients 
with negative symptom predominant schizophrenia may be 
predicted through the use of structural biomarkers. Using data 
from a trial examining DLPFC directed 10 Hz vs sham rTMS, 
they fed pre- and post-experiment structural MRI data into 
a machine learning tool to identify patterns and make pre-
dictions. Their prediction tool was able to use pre-treatment 
MRI information related to gray matter density in a variety 
of cortical and subcortical areas to predict with some degree 
of specificity, which patients were most likely to respond to 
rTMS selectively in regard to negative symptoms.

Guse et al. [109] studied the effects of 10 Hz rTMS of 
the left posterior middle frontal gyrus on working memory 
performance and task related activation during fMRI. The 
active rTMS group did not perform significantly better than 
sham following treatment, and there was no observed dif-
ference in working memory network activation during task 
performance between the two groups. Dlabac-de Lange and 
colleagues [89] performed a multicenter, randomized control 
trial with 32 patients targeting bilateral DLPFC vs sham. 
Although there were no changes in the PANSS negative 
symptom subscale score, the active rTMS group did show 
significant improvement on the SANS. Overall, there was 
no significant effect on cognition. A subset of these patients 
also underwent fMRI while performing the Tower of London 
task. The active group demonstrated increased activation of 
the right DLPFC and right medial frontal gyrus, as well as 
decreased activation of the left posterior cingulate, while 
the sham group had increased activation of the left posterior 
cingulate [110]. Liemburg et al. [111] had subjects perform 
the Wall of Faces (WOF) task [112], where both gender and 
emotional valence (happy or angry) were identified on an 
array of displayed faces, before and after active and sham 
rTMS. There was no significant difference in performance 
between active and sham arms, though the active group was 
found to have decreased activation in frontal, parietal, and Ta
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striatal areas compared to before treatment, whereas sham 
was associated with increased activation of these areas. The 
authors were hesitant to draw conclusions due to the small 
sample size but suggested that 10 Hz rTMS of the DLPFC 
may lead to a normalization of a heightened neural response 
to ambiguous emotional stimuli. In their early phase psy-
chosis pilot study, while they did observe a beneficial effect 
of rTMS on cognition, Francis et al. [113] did not observe 
changes in BOLD signal or functional connectivity during 
in-scanner working or episodic memory tasks. However, 
investigators did observe that thicker left frontal cortex pre-
dicted a greater cognitive response to rTMS.

A Place for rTMS in Schizophrenia?

Since Hoffman’s first published work describing the effects 
on auditory hallucinations [53], there has been great interest 
in rTMS as an investigational and therapeutic tool for schiz-
ophrenia. However, though many investigators have studied 
rTMS as a treatment of hallucinations, negative symptoms, 
or cognitive deficits, with some reporting promising results, 
questions about the utility of rTMS in schizophrenia remain.

Reaching a consensus on the efficacy of rTMS in schizo-
phrenia has been challenging for a variety of reasons. Early 
studies relied on potentially imprecise targeting strategies, 

such as locating the DLPFC by positioning the coil 5–6 cm 
anterolaterally from the point of maximal stimulation of 
the abductor pollicus brevis muscle (thumb) [92, 94, 103, 
113, 114]. Unfortunately, this technique does not accom-
modate subject-to-subject anatomic variance and may 
result in imprecise stimulation delivery [115]. As the field 
has evolved, many studies now use neuronavigation tech-
niques, including infrared cameras and trackers that display 
the location and orientation of the coil in real time over a 
subject’s magnetic resonance image. Investigators can use 
image guidance to map specific stimulation targets based 
off standardized coordinates, individually specified anatomic 
regions, or regions of functional activation during fMRI.

The use of discrepant stimulation paradigms across trials has 
been a notable source of heterogeneity in the field. Studies target-
ing auditory hallucinations have, relative to work in other symp-
tom domains, used more uniform stimulation settings. However, 
trials examining rTMS for negative symptoms and cognitive dys-
function have varied more widely in approach. Positive and nega-
tive results with 10 Hz [84, 86, 114, 116] and 20 Hz [99, 104, 
106, 113] paradigms have been reported, though many of these 
studies have suffered from small sample sizes. Larger multi-site 
clinical trials have generally been yielded negative results [100, 
101], but they are limited in number. Additional multi-site trials 
with large sample sizes will be necessary to move toward a con-
sensus on rTMS as a treatment for schizophrenia.

Table 3   Studies examining the effects of rTMS on structure, functional activation, and functional connectivity in schizophrenia

iTBS intermittent theta burst stimulation, cTBS continuous theta burst stimulation, TPC temporal-parietal cortex, DLPFC dorsolateral prefrontal 
cortex, L left, R right, B/L bilateral, post-mid- posterior-middle, rTMS repetitive transcranial magnetic stimulation, FC functional connectivity, 
CBF cerebral blood flow, WoF wall of faces

First author, year rTMS Target Summary

Fitzgerald, 2007 1 Hz L TPC Increased post-treatment activation in left medial frontal gyrus, right cingulate 
gyrus, left middle frontal gyrus, left fronto-temporal regions, left dorsal infe-
rior frontal gyrus, and left inferior parietal gyrus in patient group

Vercammen, 2010 1 Hz L TPC Increased FC between L TPC and R insula post-rTMS; but no FC change in a 
proposed “auditory hallucination network” between L TPC and B/L cingulate 
and amygdala

Prikryl, 2012 10 Hz L DLPFC No statistically significant changes in activation following rTMS or sham
Guse, 2013 10 Hz L post-mid-frontal gyrus No change in activation patterns of common frontoparietal and subcortical 

working memory networks following treatment
Kindler, 2013 1 Hz, iTBS L TPC Reduced CBF in primary auditory cortex, as well as Broca’s area and cingulate 

gyrus
Dlabac-de Lange, 2015 10 Hz B/L DLPFC Increased activation of R DLPFC and R medial frontal gyrus in the active 

group. Also, the active group had decreased activation in the left posterior 
cingulate, while sham had increased activation in this region

Bais, 2017 1 Hz L TPC, B/L TPC Varying effects on network FC, including frontotemporal, auditory-sensorimo-
tor and default mode network changes

Hasan, 2017 10 Hz L DLPFC Volumetric gains observed in the left hippocampal, parahippocampal, and 
precuneal cortices, that were predictive of negative symptom improvement in 
the active group following rTMS

Leimburg, 2018 10 Hz L DLPFC Decreased striato-fronto-parietal activity seen on fMRI during WoF task
Chen, 2019 cTBS L TPC Larger reduction of FC within the L cerebellum following cTBS
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There remain unanswered questions regarding to the opti-
mal “dose” of rTMS needed to elicit a clinical response. 
Though it may be intuitive to think of rTMS trials in a drug 
development sense, where increased “dose” may have a 
better chance of engaging the target and exerting an effect, 
which is not clearly the case. A recent meta-analysis indi-
cated that beyond a certain point, increasing the number 
of pulses delivered does not translate to a greater biologic 
effect [117]. Many studies have thus far focused on 1 to 2 
weeks of stimulation, perhaps balancing the practical need 
for subjects to successfully complete a trial with the under-
standing that multiple sessions are required to affect some 
type of behavioral or symptom response, presumably related 
to LTP/LTD-like effects of rTMS [19, 22–24]. This issue 
could be clarified by further investigating the mechanisms 
underlying the proposed LTP/LTD-like effects or rTMS. 
Though it has been suggested that rTMS induced changes 
in presynaptic calcium concentration, where by increased 
or decreased calcium leads to the respective faciliatory or 
inhibitory changes in plasticity [38, 118], the precise means 
by which plasticity may be changed are unclear. Elucidating 
this point may be important, as a more precise understand-
ing of the biologic mechanism of lasting rTMS effects could 
inform standardized study design. Another question involves 
durability of rTMS effects. More is known about the dura-
tion of anti-depressant effects of rTMS, highlighted by a 
recent meta-analysis by Senova et al. showing response rates 
of up to 50% 1 year after initial response [119]. However, 
less is known about the durability of effects in schizophrenia 
populations where differences in study design and underly-
ing illness biology complicate comparisons. Considering the 
implications for trial design and subject safety, clarifying 
these questions is an important task for future research.

Illness‑Related Challenges

Beyond the issues associated with rTMS study design, it is 
worth considering disease-specific factors which may com-
plicate the interpretation of findings. It is unknown whether 
changes in brain structure and function that occur during the 
course of schizophrenia could influence response to rTMS. If 
so, perhaps brain stimulation could be more impactful earlier 
in the course of illness. Relatively little work has examined 
response early in the course of schizophrenia. Francis et al. 
[113] demonstrated a positive effect of bilateral 20 Hz reTMS 
on cognitive function in an early-phase psychosis cohort, though  
the sample size was small. Related to the duration of illness, it 
is unclear what impact antipsychotic medication exposure may 
have on the response to rTMS. It has been observed that antipsy-
chotic medications may be associated with changes in brain struc-
ture [120–122] and function [120, 121, 123, 124]. If this is the 
case, it is possible that factors such as the duration or amount of 

antipsychotic medication exposure may mitigate or predict potential  
therapeutic effects of rTMS. Clarifying these points will inform 
our interpretation of current results and the design of future trials.

Future Directions

Interleaved TMS and fMRI

Schizophrenia is an illness associated with neural dysconnec-
tivity [125–127], which pairs nicely with the ability of rTMS 
to modulate activity in target structures and connectivity with 
associated circuitry. Interleaved TMS and fMRI is an impor-
tant direction for research in schizophrenia, as it expands the 
ability of investigators to determine how rTMS modulates 
brain circuitry. Interleaved TMS/fMRI enables investigators to 
sequentially perform TMS and fMRI to look at the immediate 
effects of the stimulation. Hanlon and colleagues [128] have 
developed innovative paradigms to explore the associations 
between neural circuitry and response to alcohol cue expo-
sure in individuals with alcohol use disorder. Chen and col-
leagues [129] have employed interleaved rTMS and fMRI to 
examine the interplay between disparate large-scale networks, 
displaying the potential utility of the technology. Intentional 
exploration of neural circuit function is particularly relevant 
in schizophrenia and future investigations should replicate 
approaches that have been successfully used in other diseases 
to clarify the role of dysconnectivity in psychosis.

Precision Medicine Approach

In addition to more robust exploration of the pathophysiol-
ogy of schizophrenia, movement toward a precision medi-
cine approach will enable investigators to draw more defini-
tive conclusions about the effectiveness of rTMS for the 
condition. By identifying patient-specific factors that pre-
dict response to neuromodulation, we can ultimately use the 
technology to greater clinical effect. This is an area where 
the combination of neuroimaging and non-invasive brain 
stimulation holds the most promise. Investigators have begun 
incorporating fMRI either at rest or during task performance 
to clarify the optimal location of intended stimulation targets 
on a subject-by-subject basis. This is important consider-
ing the individual variability in neuroanatomy and should 
move the field in a personalized direction. Though findings 
using this approach are mixed [73, 130], it represents an 
important area for continued innovation. For instance, work 
by our group employs this technique to explore the effects 
of precuneus rTMS on episodic memory neurocircuitry in 
early-phase psychosis by having subjects perform a scene 
recognition task during fMRI, which reliably activates the 
precuneus [131] and enables precise targeting (Fig. 2) [132].
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In conclusion, the evidence supporting rTMS as a thera-
peutic for schizophrenia is mixed. Though it is reasonable 
to believe that rTMS holds promise as a treatment option 
for individuals living with psychosis, larger replicative stud-
ies are needed to define optimized stimulation paradigms 
and appropriate follow-up intervals to assess the duration 
of rTMS induced effects. Beyond its therapeutic potential, 
rTMS also holds significant promise as a probe of the role 
neural circuit dysconnectivity in psychosis. Greater use of 
interleaved TMS and fMRI, a practice employed success-
fully in other populations, will move the field forward. This 
may be important not only for future rTMS-schizophrenia 
trial development but also for areas such as identifying bio-
markers of illness progression or even onset, in populations 
such as those at clinical high risk for psychosis.
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